On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

Size: px
Start display at page:

Download "On Local Transformations in Plane Geometric Graphs Embedded on Small Grids"

Transcription

1 On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E 2 ) with E 1 = E 2 m in th n n gri, with stright-lin sgmnts s gs, w show tht with squn of O(n) point movs (ll point movs sty within 5n 5n gri) n O(n 2 ) g movs, w n trnsform th ming of G 1 into th ming of G 2. In th s of n-vrtx trs, w n prform th trnsformtion with O(n) point n g movs with ll movs stying in th n n gri. W prov tht this is optiml in th worst s s thr xist pirs of trs tht rquir Ω(n) point n g movs. W lso stuy th quivlnt prolms in th ll stting. 1 Introution Informlly, lol trnsformtion is n oprtion prform on th vrtis n gs of grph. Th trm lol is us us gnrlly th oprtion os not fft th whol grph. Typilly, th vrtis of th grph fft y lol trnsformtion r th nighorhoo of onstnt numr of vrtis. For xmpl, n g ontrtion is lol trnsformtion tht ffts th nighorhoo of two vrtis. On lol trnsformtion hs n fin, proprtis n pplitions of th lol trnsformtion with rspt to givn lss of grphs r stui [3 6, 9 12, 14, 16 20, 23]. A nturl qustion with rspt to lol trnsformtions is: Fult Informáti, U. Politéni Mri, Mri, Spin Shool of Computr Sin, Crlton U., Ottw, Cn. F. Cinis. Dp. Métoos Estístios, U. Zrgoz, Zrgoz, Spin Dprtmnt Mtmàti Apli II, U. Politèni Ctluny, Brlon, Spin Dp. Mtmátis, U. Allá, Mri, Spin Dp. Mtmátis, U. Autónom Mtropolitn-Iztplp, Méxio D.F., Méxio This work ws initit whn th uthors wr ttning workshop t th Univrsi Zrgoz. Th son n sixth uthors wr on stil lv t UPC. This work is prtilly support y MCYT TIC C02-1, SAB grnt of MECD Spin, grnt y Conyt Mxio, PIV 2001 grnt of Gnrlitt Ctluny, NSERC Cn, MCYT-FEDER BFM , MCYT-FEDERBFM , Gn. Ct 2001SGR00224, n DGA As thr r mny iffrnt flvors of g ontrtions, for this xmpl, w ssum tht n g ontrtion in simpl grph is th oprtion of lting n g n mrging th two npoints of th g into nw vrtx whos nighorhoo is th union of th nighorhoos of th two npoints. All multipl gs r rmov so tht th rsulting grph is still simpl. 1

2 Dos prforming lol trnsformtion of grph in givn lss kp th grph in th sm lss? For xmpl, if th lss is iprtit grphs, thn prforming n g ontrtion on iprtit grph os not nssrily kp it iprtit. Howvr, if th lss of grphs is omplt grphs, thn g ontrtions o kp th grph in th sm lss. Anothr qustion tht is oftn stui is: Givn n instn of grph of prtiulr lss, n ll th grphs of this lss numrt vi lol trnsformtions on th givn instn? Th lol trnsformtion tht initit this stuy is rfrr to s n g flip or mor gnrlly n g mov. Th lss of grphs on whih g flips r fin is tringultions (n somtims nr-tringultions ) n g movs r normlly fin on plnr grphs. Th oprtion of n g flip or g mov is simply th ltion of n g, follow y th insrtion of nothr g suh tht th rsulting grph rmins plnr n simpl. Mor forml finitions r givn in th nxt stion. Wgnr [22] prov tht givn ny two tringultions G 1 = (V 1,E 1 ) n G 2 = (V 2,E 2 ) with V 1 = V 2 = n, thr lwys xists finit squn of g movs tht trnsforms G 1 into grph G 3 = (V 3,E 3 ) tht is isomorphi to G 2. Tht is, thr xists mpping φ : V 2 V 3 suh tht for u,v V 2, uv E 2 if n only if φ(u)φ(v) E 3. Susquntly, Komuro [13] show tht in ft O(n) g flips suffi. Rntly, Bos t l. [2] show tht O(log n) simultnous g flips suffi n r somtims nssry. This stting of th prolm is rfrr to s th omintoril stting sin th tringultions r only m omintorilly, i.. th yli orr of gs roun h vrtx is fin. Originl grph Invli gomtri flip Vli omintoril flip Dlt g n g. This is vli omintoril g mov sin th grph is still plnr ut it is n invli gomtri g mov sin th gs n intrst proprly. Figur 1: Vli omintoril g flip ut invli gomtri g flip. In th gomtri stting, tringultion or nr-tringultion is m in th pln suh tht th vrtis r points n th gs r stright-lin sgmnts. Hnforth, w only onsir grphs m in th pln hving stright-lin sgmnts for gs. Eg flips n g movs r still vli oprtions in this stting, xpt tht now th g tht is must A nr tringultion is pln grph whr vry f xpt possily th outrf is tringl 2

3 lin sgmnt n this lin sgmnt nnot proprly intrst ny of th xisting gs of th grph. This itionl rstrition implis tht thr r vli g movs in th omintoril stting tht r no longr vli in th gomtri stting sin vnthough th grph rsulting ftr mov is plnr n simpl, it os not hv pln ming. S Figur 1. Lwson [15] show tht givn ny two nr-tringultions N 1 n N 2 m on th sm n points in th pln, thr lwys xists finit squn of g flips tht trnsforms th g st of N 1 to th g st of N 2. Hurto t l. [12] show tht O(n 2 ) flips r lwys suffiint n somtims nssry. Susquntly, Gltir t l. [9] show tht O(n) simultnous g flips r suffiint n somtims nssry. Not tht thr is isrpny twn th omintoril rsult n th gomtri on. In th omintoril stting, Wgnr [22] show tht vry tringultion on n vrtis n ttin from vry othr tringultion vi g flips. In th gomtri stting, Lwson [15] show tht only th nrtringultions tht r fin on th spifi point st n ttin vi g flips. For xmpl, in th point st shown in Figur 2, no plnr K 4 (omplt grph on 4 vrtis) n rwn on th givn point st without introuing rossing. In ft, in th gomtri stting, givn st of points in onvx position, th only pln grphs tht n rwn without rossing r outr-plnr. Givn point st Stright-lin ming of K 4 hs rossing Figur 2: Disrpny twn omintoril n gomtri stting. It is prisly this isrpny tht sprk our invstigtion. Th first qustion w sk is whthr or not thr xists simpl lol trnsformtion tht prmits th numrtion of ll n-vrtx tringultions in th gomtri stting. In orr to nswr this qustion, th lol trnsformtion must mor gnrl thn n g mov. Two ky ingrints n to spifi for this qustion. First, w n to spify th st of points P on whih ths grphs r m n on whih th trnsformtions n prform. To ovrom th isrpny with th omintoril stting, this st of points must hv th proprty tht vry n-vrtx tringultion hs stright-lin ming on n n-point sust of P. Suh st of points is ll univrsl point st. Shnyr [21] show tht th n n gri is univrsl point st for ll n-vrtx plnr grphs (s lso [8]). Thrfor, gri is nturl hoi for this stting. Howvr, using gri oms t ost sin thr r mny ollinr points in gri, w n to l spifilly with gnris. Dspit this ostl, w us gris s our univrsl point st n w outlin th xt gri sizs rquir for our rsults. All of our gri sizs r within onstnt of th optiml for stright-lin 3

4 mings of plnr grphs. It is importnt to kp th gri siz s smll s possil sin lrg gris hinr prtil pplitions of ths trnsformtions. Th son ingrint is th st of llowl lol trnsformtions. Bsis th g mov, th othr lol trnsformtion w us is point mov. A point mov is simply th moifition of th oorints of on vrtx. Th mov is vli provi tht ftr moving th vrtx to nw gri point, no g rossings r introu. f Eg mov: to f f Point mov vrtx. f Figur 3: Exmpl of n g mov follow y point mov 2 Trnsforming On Pln Tringultion to Anothr In this stion, w show tht O(n) point movs n O(n 2 ) g movs suffi to trnsform on pln n-vrtx tringultion into nothr. Th first tmpttion is to simply try to mimi omintoril flip in th gomtri stting with point n g movs. Howvr, this pproh prov to quit iffiult to hrtriz th point n g movs n to mimi on omintoril flip. In our proof, w rw is from Wgnr s originl rsult without mimiking omintoril flips. Essntilly, w show how to trnsform ny givn pln tringultion into nonil on, whih immitly implis th rsult. 4

5 Mor prisly, lt G 1 = (V 1,E 1 ) n G 2 = (V 2,E 2 ) with V 1 = V 2 = n two tringultions m in n n n gri. Lt th origin (0,0) of this gri th ottom lft ornr. Lt P 5n 5n gri with ottom lft ornr lot t ( 2n, 2n) n top right ornr lot t (3n, 3n). During th whol squn of movs, th lotion of vry point mov is gri point of P (i.. P is our univrsl point st). W show how to onstrut squn of O(n 2 ) g movs n O(n) point movs tht trnsforms oth G 1 n G 2 into nonil form. Th nonil tringultion is tringultion whr th outr f onsists of vrtis lot t ( 2n, 1),(3n, 1), n ( n/2, 3n). Th othr n 3 vrtis r lot t ( n/2,3n i),1 i n 3. Th two ottom ornr vrtis r strs jnt to ll othr vrtis n th grph inu y th rmining vrtis is pth whih w will ll th spin. Th nonil tringultion is shown in Figur 4. Not tht on w hv n ming of th nonil tringultion, th tul lotion of th oorints is no longr importnt us with O(n) point movs, it is firly simpl to mov from on ming of th nonil tringultion to ny othr s long s th spin is on vrtil gri lin n th outr-f forms tringl. ( n/2,3n) n n gri ( 2n, 1) (3n, 1) Figur 4: Illustrtion of th nonil tringultion n th initil gri. Bfor showing how to onstrut th squn of point n g movs, w n to stlish fw si uiling loks. On usful tool is th rsult y Hurto t l. [12] Thorm 1. [12] Lt T 1 n T 2 two tringultions whos vrtx st is st of n points in th pln. With O(n 2 ) g movs, T 1 n trnsform into T 2. Howvr, ky thnil lmm in thir proof of Thorm 1 is n ssntil tool in our work. 5

6 Lmm 1. [12] Lt T = (V,E) n ritrry nr-tringultion whos vrtx st is st of n points in th pln. Lt,, thr onsutiv vrtis on th outrf of T. Lt P th pth from to on th onvx hull of V \. With prisly k g movs, whr k is th numr of gs of T tht intrst P, w n trnsform T into tringultion tht ontins P. Not tht k is O(n). Nxt, w osrv two simpl fts out tringls tht will hlpful in th squl. Osrvtion 1. Lt () tringl in th pln. Lt x point ontin in th intrior of th tringl. Any lin through x whih hs oth n in on hlf-pln must hv in th othr n must intrst th lin sgmnts n. Osrvtion 2. Lt = (0,0), = (x 1,y 1 ) with x 1,y 1 > 0, = (x 1,y 1 + 1) n = (x 2,y 2 ) with x 2 > x 1 n y 2 (y 1 + 1)x 2 /x 1. Th point is ontin in th intrior of tringl (). W now sri squn of g movs n on point mov whih w will ll n px sli. Th stting for n px sli is th following. Lt,, th vrtis of 3-yl in tringultion G (i.. () is ithr f of G or sprting tringl in G). Lt x point suh tht x forms tringl with oth x n r on th sm si of hlf-pln fin y th lin through. Lt D ll th vrtis of G\ in (). Th st D is ontin in (x), n vry g in G intrst y sgmnt x or x is jnt to. S Figur 5 for n illustrtion. Figur 5: Apx Sli Lmm 2. With O(n) g movs n on point mov, vrtx n mov to point x. Proof. Lt D th vrtis of G\ in (). Lt C = 0, 1,..., k th lokwis orr of th onvx hull of D strting t = 0 n ning t k =. By Lmm 1, with O(n) g movs, w n onvrt th tringultion ontin in Th onvx hull of st of points is th smllst onvx polygon ontining th st. S ny stnr rfrn in Computtionl Gomtry [7] for n ovrviw. 6

7 to on whih ontins th sgmnts i n th gs of C. On this is omplish, Osrvtion 1 implis tht w n mov to x without introuing ny rossing sin C is ontin in oth () n (x) n y onstrution no othr g of G intrsts x or x. Thus, totl of O(n) g movs n 1 point mov suffi s rquir. To initit th whol pross, w n to show how givn tringultion m in th n n gri w n lwys mov th vrtis of its outrf to th oorints ( 2n, 1), (3n, 1) n ( n/2, 3n). In orr to ontinu, w n to fin th wg of onvx vrtx. Lt C onvx polygon on n vrtis. Lt v vrtx of C, n 1, 2 th two gs of C jnt to v. Givn th lin l 1 (rsp. l 2 ) fin y th npoints of 1 (rsp. 2 ), lt h 1 (rsp. h 2 ) th hlf-pln fin y this lin tht os not ontin th intrior of C. Th wg of v not W(v) is h 1 h 2. Th ngl of wg is th ngl twn th two rys fining th ounry of th wg. Th proprty of wg tht w will xploit throughout is th following: givn (), lt x point in W(). Not tht () (x). This ontinmnt proprty llows on to us px slis. Lmm 3. Givn tringultion G = (V,E) m in th n n gri, with O(n) g movs n t most 8 point movs, w n trnsform it into tringultion whos outrf hs oorints ( 2n, 1), (3n, 1) n ( n/2, 3n). All othr vrtis of G hv oorint vlus twn 0 n n (i.. thy r in th originl n n gri). Proof. Lt V = v 1,v 2,...,v n ll suh tht v 1, v 2 n v 3 r th vrtis on th outrf. Lt th oorints of h v i (x i,y i ) with 0 x i,y i n. Sin th outrf is tringl, th sum of th ngls of th wgs of its vrtis is π. This mns tht on of its vrtis prmits n px sli vrtilly (ithr up or own) n on of its vrtis prmits n px sli horizontlly (ithr lft or right). Not tht ths n th sm vrtx. Without loss of gnrlity, ssum tht v 1 n mov lft. All othr ss r symmtri. Th ft tht v 1 n mov lft mns tht th intrstion of horizontl lin through v 1 with W(v 1 ) is ry root t v 1 pointing lft. Mov v 1 to ( 2n,y 1 ). Aftr this mov, noti tht th ngl of th wg t v 1 is stritly lss thn π/2. This implis tht v 1 nnot mov vrtilly. Thrfor, on of v 2 or v 3 n mov vrtilly. Assum, without loss of gnrlity, tht v 2 n mov own. Agin, ll othr ss r symmtri. Mov v 2 to (x 2, 2n) h with n px sli. This mounts to O(n) g movs n 2 point movs. Nxt, pply two px slis to mov v 1 to ( 2n,n + 1) n v 2 to (n + 1, 2n). Both ths movs n ppli sin y onstrution no sgmnt with on npoint on th sgmnt [( 2n, 1),( 2n,n + 1)] n th othr npoint on sgmnt [( 1, 2n),(n + 1, 2n)] intrsts th originl n n gri. On ths movs hv n ppli, th outrf is suh tht v 3 llows n px sli up to (x 3,3n). On this hs n omplish, thr mor px slis pl th thr vrtis in nonil position. A totl of 8 px slis wr us giving th sir rsult. W now sri th min stp in th pross. Lt,, th vrtis of th outrf of tringultion G m on gri, suh tht n li on 7

8 th sm horizontl gri lin L 1, thr r t lst 5n 1 gri points twn n, th vrtx is ov n. Lt x point of th gri tht is not vrtx of G suh tht n x li on th sm vrtil gri lin L 2 suh tht th gri point z = L 1 L 2 is twn n with t lst 2n gri points twn n z n t lst 2n gri points twn n z. Th tringl () is th outrf of G n th point x stritly insi tringl (). All othr vrtis of G r stritly insi tringl (x). Thr r t lst n gri points on th sgmnt x. Noti tht if w r givn tringultion in n n n gri n pply Lmm 3, thn w mt th onitions spifi ov. Lmm 4. With O(n 2 ) g movs n O(n) point movs, w n trnsform G into nonil form. Proof. W pro y inution on th numr h of vrtis of G in (x). Bs Cs: h = 0. Th lmm hols trivilly sin no movs r rquir. Inutiv Hypothsis: 0 h k,k > 0. Assum tht 1 h 2 g movs n 2 h point movs suffi with onstnts 1 n 2. Inutiv Stp: h = k + 1. Lt r th first gri point low. Lt C = 0, 1,..., m+1 th lokwis orr of th onvx hull of th vrtis of G \ strting t = 0 n ning t = m+1. Apply Lmm 1, to onvrt G to tringultion ontining C n ll sgmnts i for vrtis i of th onvx hull. This is omplish with 3 k g movs for onstnt 3. Lt j j+1 th g of th onvx hull tht intrsts th vrtil lin through x. If th lin through x ontins vrtx of th onvx hull, ssum this vrtx is j. Thr r two ss to onsir. Cs: On of j or j+1 is vrtx of th onvx hull. Assum without loss of gnrlity tht j is onvx hull vrtx. Sin j is vrtx of th onvx hull, th points j 1, j, n j+1 r not ollinr. Sin th gri point r is in tringl ( j 1 j+1 ) y onstrution, w n pply n px mov to mov point j to r. Cs: Th g j j+1 is in th intrior of th onvx hull g = s t. Assum for th momnt tht th g hs positiv slop. Sin s is vrtx of th onvx hull, this mns tht s 1, s n s+1 r not ollinr. By Osrvtion 2, thr is gri point y on unit vrtilly ov s insi tringl ( s 1 s ). Apply n px mov to mov s to y. This rmovs th ollinrity from th onvx hull. Now th g y t is on th onvx hull. Romput th onvx hull n pply Lmm 1 so tht is jnt to ll gs of th onvx hull. Now w hv ru th sitution k to th prvious s. A symmtri rgumnt hols if hs ngtiv slop. Thrfor, with 4 k g movs n t most 2 point movs, w rmov on vrtx of G from (x), n mov it to r. Now, thr r only k vrtis of G rmining in th tringl (x). Apply Lmm 1 so tht r is jnt to ll vrtis on th onvx hull of G \ {,r}. W n now pply th inutiv hypothsis. Th totl numr of g movs is 1 k k n th totl numr of point movs is 2 k+2. If w st 1 > 4 n 2 > 2, thn 1 k k < 1 (k+1) 2 n 2 k + 2 < 2 (k + 1). Th lmm follows y inution. W r now in position to prov th min thorm of this stion. 8

9 Thorm 2. Givn n n-vrtx tringultion G = (V,E) m in th n n gri with stright-lin sgmnts s gs, with O(n 2 ) g movs n O(n) point movs (ll point movs sty within th gri [( 2n, 2n),(3n,3n)]), w n trnsform G into th nonil tringultion. Proof. Lt R rprsnt th points of th n n gri ontining G n lt P rprsnt th univrsl point st. First pply Lmm 3 to G. Thn, w n pply Lmm 4. Th thorm follows. An immit orollry is th following. Corollry 1. Givn two n-vrtx tringultions G 1 = (V 1,E 1 ) n G 2 = (V 2,E 2 ) m in th n n gri with stright-lin sgmnts s gs, with O(n 2 ) g movs n O(n) point movs (ll point movs sty within th gri [( 2n, 2n),(3n, 3n)]), w n trnsform G 1 into G 2 Rmrk: W not tht with littl r, our gri siz n ru to 3n 3n t th xpns of simpliity of xposition. W hos to kp th xplntions simpl in orr to sily onvy th min is rthr thn gt ogg own in tils. 3 Trnsforming On Tr to Anothr In this stion, w show tht O(n) point n g movs suffi to trnsform on tr into nothr n this is optiml s thr r pirs of trs tht rquir Ω(n) point n g movs to trnsform on into th othr. Lt G 1 = (V 1,E 1 ) n G 2 = (V 2,E 2 ) two trs m in th pln on n n n gri with V 1 = V 2 = n. Lt th origin (0,0) of this gri P th ottom lft ornr. During th whol squn of movs, th lotion of vry point mov is gri point of P. Th pproh is similr to tht us for tringultions, ut sin trs r simplr strutur, th numr of movs n th gri siz r ru. Avis n Fuku [1] show tht givn ny tr m in th pln, with t most n 2 g movs, this tr n trnsform into nonil tr. Th nonil tr thy us is th str from th lftmost vrtx. Morovr, th squn of g movs is suh tht h nw g os not intrst ny of th gs in th urrnt tr. Tht is, if T is th urrnt tr n th g mov onsists of ing T n lting f T, thn T is pln grph. W ll suh n g mov plnr g mov. Unfortuntly, w nnot us this rsult irtly, sin it is prov for points in gnrl position whr no thr points r ollinr n w r ling with trs m in th gri. Howvr, w moify thir rsult to ount for th ollinritis. Th nonil tr n no longr th str from th lftmost point sin thr my ollinritis. Lt p 1,p 2,...,p n th vrtx st of th givn tr T. Rll th points in th following mnnr. Lt p 1 th lftmost, ottommost point. Ll th othr points p 2,...,p n in sort orr ountr-lokwis roun p 1 so tht p 1 p 2 n p 1 p n r on th onvx hull, n if p 1,p i,p j r ollinr, thn i < j. Th nonil tr is th following: th g p 1 p i is in th tr if thr is no point p j,j i in th intrior of th sgmnt p 1 p i. If th sgmnt p 1 p i hs 9

10 points in its intrior, lt p k th intrior point losst to p i. Th sgmnt p k p i is in th tr. Not tht ssntilly this uils pths of ollinr vrtis from p 1. Th pths of ollinr vrtis shll rfrr to s tntls of p 1. S Figur 6 for n illustrtion. Figur 6: Cnonil Tr. Lmm 5. A tr T with n-vrtis m in th n n gri n trnsform into th nonil tr with n 2 g movs. Eh g mov is plnr. Proof. Lt T th givn tr m on th points p 1,...,p n ll s ov. Cll n g p i p j of T trnsvrsl g if th lin through p i p j os not ontin p 1. W pro y inution on th numr t of trnsvrsl gs. Bs Cs: t = 0. In this s, T is th nonil tr. Inutiv Hypothsis: t < k,k > 0. With t g movs, T n trnsform into th nonil tr. Inutiv Stp: t = k. Avis n Fuku [1] show tht for points in gnrl position, if T is not str from p 1, thr lwys xists n g p i p j T suh tht no othr g of T intrsts th intrior of th tringl (p 1 p i p j ). W nnot pply thir rsult irtly sin th points of T r not in gnrl position. Howvr, th sm rgumnt shows th xistn of trnsvrsl g p i p j suh tht for ny point p in th intrior of sgmnt p i p j, th sgmnt p 1 p os not intrst ny othr trnsvrsl g. Now, rmoving p i p j isonnts T into two omponnts C 1 ontining p i n C 2 ontining p j. Without loss of gnrlity, lt p 1 in C 1. Lt p 1 = x 1,x 2,...,x = p j th vrtis of T on th sgmnt p 1 p j. Sin p 1 C 1 n p j C 2, thr xists k suh tht x k C 1 n x k+1 C 2. A g x k x k+1 to th tr. Sin w hv ru th numr of trnsvrsl gs with on g mov, th rsult follows y inution. 10

11 Lmm 5 givs us th from to mov from ny on tr T 1 to ny othr tr T 2 fin on th sm point st with 2n 4 g movs sin w n trnsform on tr to th othr vi th nonil tr. Now, to trnsform tr m on on point st to nothr tr m on iffrnt point st, w n to prform som point movs. Givn n n-vrtx tr T m in th n n gri, w show how to trnsform it into pth m on vrtis (0,i), 0 i n 1. Lt p 1,p 2,...,p n th n points of T. Rll ths points so tht thy r sort y inrsing X oorint with p 1 ing th lftmost, ottommost point. If two points p i n p j r on th sm vrtil gri lin, thn i < j if p i is low p j. Now Lmm 5 implis tht T n trnsform to th pth p 1,p 2,...,p n with 2n 4 g movs. W ll suh pth monoton pth (s Figur 7 for n illustrtion of suh pth). Figur 7: A monoton pth. Lmm 6. A monoton pth m on th n n gri n trnsform to th nonil pth m on vrtis (0, i), 0 i n 1 with n point movs. Proof. By finition, th hlf-pln to th lft of th vrtil lin through th lftmost point is mpty. Thrfor, th lftmost, ottommost point n mov to ny gri point low it n to its lft. Mov it to (0,0). On this point is mov, th nxt lftmost, ottommost point n mov to (0,1). Th lmm follows y inution. Thorm 3. Givn two trs T 1 n T 2 m on th n n gri, with t most 4n 8 g movs n 2n point movs, T 1 n onvrt to T 2. All movs rmin in th originl gri. Proof. Th thorm follows from th isussion ov n Lmmt 6 n 5. In orr to show th lowr oun, tk n n-vrtx str n n n-vrtx pth h m on n iffrnt gri points. To onvrt th pth to str, w n t lst n 3 g movs sin ll vrtis of th pth hv gr t most 2 n th str hs vrtx of gr n 1. Similrly, sin non of th points of th str oini with th points of th pth, w n t lst n point movs to gt from th vrtx st of th pth to tht of th str. 11

12 Thorm 4. Thr xist pirs of trs T 1 n T 2 m on th n n gri tht rquir t lst n 3 g movs n t lst n point movs to trnsform on to th othr. 4 Trnsforming On Pln Grph to Anothr W now show how to gnrliz th rsults from Stion 2 to pln grphs. Givn two pln grphs G 1 = (V 1,E 1 ) n G 2 = (V 2,E 2 ) m in th n n gri with V 1 = V 2 = n n E 1 = E 2 = m, w show how to trnsform G 1 into G 2. W will ssum tht oth grphs r onnt. Th ovious pproh is to ummy gs to oth grphs until thy r tringultions. Thn, pply th prvious rsult n ignor th movs tht onrning ummy gs. Although this si pproh works, w n to rss fw tils long th wy. W will show how to trnsform G 1 into nonil form. Th prolm is tht sin G 1 is not tringultion, w n to spify prisly wht th nonil form is. Rll th nonil form for tringultions n ll its vrtis in th following wy. Lt p 1 n p 2 th lft n right ornrs of th outrf n lt p 3 th px. Ll th vrtis p 4,...,p n in sning orr on th spin from p 3. Ll th gs jnt to p 1 y 0,..., n 2 in lokwis orr roun p 1 with 0 = p 1 p 3 n n 2 = p 1 p 2. Ll ll th gs jnt to p 2 xpt g p 1 p 2 n p 2 p 3 y n 1,..., 2n 5, in ountr-lokwis orr with n 1 = p 2 p 4 n 2n 5 = p 2 p n. Now, th vlu of m trmins th shp of th nonil grph. Sin G 1 is onnt n plnr, n 1 m 3n 6. If m = n 1, thn th nonil grph is tr form y th pth from p 3 to p n long with th gs p 1 p 3 n p 2 p 3. If m > n 1, lt k = m n+1. Augmnt th nonil tr with th gs 1,..., k. Th first stp is to tringult G 1. Biolor th gs r n lu so tht th originl m gs r r n ll itionl gs r lu. Nxt, w show how to mov thr of th vrtis of G 1 to th oorints ( 2n, 1), (3n, 1) n ( n/2, 3n). Lmm 7. Givn nr-tringultion G m in th n n gri, with O(n) movs n t most 8 point movs, w n trnsform it into nr-tringultion whos outrf hs thr vrtis t oorints ( 2n, 1), (3n, 1) n ( n/2, 3n). All othr vrtis of G hv oorint vlus twn 0 n n (i.. thy r in th originl n n gri). Proof. Similr to th proof of Lmm 3 sin th outrf is onvx polygon so on of th vrtis of th polygon n mov vrtilly n on horizontlly. By pplying Lmm 7 to G 1, w onvrt it to to grph whos onvx hull onsists of 3 vrtis. Now, w n mor lu gs suh tht G 1 is tringultion n no longr nssrily nr-tringultion. This prmits us to pply Thorm 2, whih rsults in nonil tringultion with m r gs n th rmining r lu. Th r gs r not nssrily in nonil 12

13 position ut t most m g movs llow on to rshuffl th gs into orrt position. Thrfor, w hv th following: Thorm 5. Givn n n-vrtx pln grph G = (V,E) m in th n n gri with stright-lin sgmnts s gs, with O(n 2 ) g movs n O(n) point movs (ll point movs sty within th gri [( 2n, 2n),(3n,3n)]), w n trnsform G into th nonil pln grph. Corollry 2. Givn two n-vrtx pln grphs G 1 = (V 1,E 1 ) n G 2 = (V 2,E 2 ) m in th n n gri h hving m gs, with O(n 2 ) g movs n O(n) point movs (ll point movs sty within th gri [( 2n, 2n),(3n, 3n)]), w n trnsform G 1 into G 2 On spt of this pproh whih my unstisftory is tht throughout th squn, th grph my om isonnt vnthough w strt with onnt grph. This gs th qustion: is thr wy to gurnt tht in onvrting on pln grph into nothr, w rmin onnt throughout th whol squn? W nswr this in th ffirmtiv with slight inrs in th numr of g movs ut th totl numr of g movs rmins qurti. Not tht point movs o not hng th onntivity of grph. Thrfor, w solly n to onntrt on g movs. Th min tool w us for g movs in tringultions is Lmm 1. Th ky i is to mintin onnt spnning r grph ftr vry g flip. W prov th following. Lmm 8. Lt G n n-vrtx nr-tringultion. Lt sust of th gs of G olor r suh tht th grph inu y th r gs is onnt n spnning. Th rmining gs of G r olor lu. Lt n g of G to flipp. With t most 1 g mov, w n flip suh tht th grph inu y th r gs rmins onnt n spnning, ftr h of th g mov n g flip. Proof. Lt R th grph inu y th m r gs. W n to show tht w n flip n g of G suh tht R rmins onnt ftr th flip. Lt th g to flipp. If is lu, thn flipping os not fft th onntivity of th grph inu on th r gs. If is r, thn th only wy tht th onntivity of R is fft is if is ut g of R. Sin is in G, is jnt to t lst on tringulr f of G. Lt,, with = th thr vrtis fining this f. Th gs n nnot oth r sin this woul ontrit th ft tht is ut g. Sin is ut g, th ltion of from R isonnts th grph into two omponnts with n going to iffrnt omponnts. Without loss of gnrlity, ssum tht n r in iffrnt omponnts. Thn prforming n g mov in th r grph from = to, w hv nw st of m r gs tht form onnt n spnning sugrph of G. Essntilly, this mounts to oloring lu n r. Now, sin is lu, w n flip without ffting th onntivity of R. Thrfor, ftr on g mov, w n prform th flip. Th lmm follows. Sin Lmm 1 uss g flips in nr-tringultion, n ths r th only g movs w us, w onlu with th following. A ut g is n g whos ltion isonnts grph 13

14 Corollry 3. Givn two onnt n-vrtx pln grphs G 1 = (V 1,E 1 ) n G 2 = (V 2,E 2 ) m in th n n gri h hving m gs, with O(n 2 ) g movs n O(n) point movs (ll point movs sty within th gri [( 2n, 2n),(3n, 3n)]), w n trnsform G 1 into G 2 whil rmining onnt throughout th squn of movs. 5 Ll Trnsformtions In this stion, w rss th sm prolms in th ll stting, tht is w impos n initil mpping prior to th trnsformtion. Spifilly, givn two pln grphs G 1 = (V 1,E 1 ) n G 2 = (V 2,E 2 ), w fin mpping φ : V 1 V 2. Now prform squn of g n point movs tht trnsforms G 1 into grph G 3 = (V 3,E 3 ) tht is isomorphi to G 2. Thr is mpping δ : V 1 V 3. In th unll s, w simply wnt G 3 to isomorphi to G 2. In th ll s, in ition, w wnt for vry vrtx x V 1, tht φ(x) = δ(x). 5.1 Ll Trs In th s of trs, th ll stting is firly strightforwr. W r givn two trs T 1 n T 2 s wll s mpping φ. Lmmt 5 n 6 imply tht oth T 1 n T 2 n onvrt into nonil tr, whih is pth on on row of th gri. Givn th two nonil pths, th only prolm is th lling. W show simpl wy to prmut th lls. Assum without loss of gnrlity tht th pth is on th X xis with vrtis t points (0,0),(2,0),(4,0),...,(2n 2,0). Mov (0,0) to (0,1). With n 1 g movs, onvrt th pth to str root t (0,1). Now, if w wish to prmut th lotion of th vrtx t (2i,0) with tht of (2j,0) simply mov th vrtx (2j,0) to (2i + 1,0), vrtx (2i,0) to (2j,0) n (2i + 1,0) to (2i,0). In this wy, w n sort th lls of th vrtis with O(n) g n point movs. Thorm 6. Givn two trs T 1 n T 2 m on th n n gri, n mpping φ of th vrtis of T 1 to th vrtis of T 2, with O(n) point n g movs, T 1 n onvrt to T 2 rspting th mpping. Proof. Follows from th isussion ov n Thorm Ll Tringultions n Pln Grphs In th ll stting for tringultions n pln grphs, w simply n to show tht givn ny lling of th vrtis of nonil tringultion, w mov th vrtis to gt iffrnt lling of th vrtis. Th i is similr to th prvious stion. W will show how to prmut th lls on th spin n how to mov ll from th spin to th outrf. First w show how to prmut th vrtis on th spin. In orr to o this, w simply n to show how to trnspos th position of two vrtis. W first moify th spin of th nonil tringultion suh tht twn vry vrtx thr is t lst on gri point. W lso mk sur tht th tringl of th outrf hs s ngls lss thn π/4. This will nsur tht thr is gri point in vry tringl y Osrvtion 2 n mk th following movs possil. 14

15 f f f Figur 8: Prmuting th Spin of th Cnonil Tringultion. Lt,,, four onsutiv vrtis on th spin n w wish to prmut n. S Figur 8. With on point mov, mov on gri point to th right. Now,,, form onvx quriltrl, so flip g for. Nxt, mov on gri point to th lft n flip g f for. Now mov to th sm hight s. This givs us th tringultion in th mil of Figur 8. Rvrs th stps to hng th orr of n on th spin. So with O(1) point movs n g movs, w n prmut th position of two onsutiv vrtis on th spin. Lmm 9. With O(n 2 ) point n g movs, w n go from ny prmuttion of th spin to ny othr prmuttion. Proof. Follows from th isussion ov n th ft tht O(n 2 ) trnspositions r suffiint to sort ny prmuttion of n numrs. Nxt, it is sy to s tht vrtx n mov from th spin to th outrf with on mov, s illustrt in Figur 9. Thn, with O(n) g movs n two point movs, th vrtx tht ws in th outrf, n mov to th ottom of th spin. f f f Figur 9: Moving vrtx from th spin to th outrf. This implis tht ll of th rsults on moving pln grphs trnslt to th ll stting t th itionl ost of O(n 2 ) point n g movs. Thorm 7. Givn two n-vrtx pln grphs G 1 = (V 1,E 1 ) n G 2 = (V 2,E 2 ) m in th n n gri h hving m gs, n mpping φ of th vrtis of G 1 to th vrtis of G 2, with O(n 2 ) g movs n O(n 2 ) point movs (ll point movs sty within th gri [( 2n, 2n),(3n,3n)]), w n trnsform G 1 into G 2 whil rspting th givn mpping n rmining onnt throughout th squn of movs. 15

16 6 Conlusion W hv shown how point n g movs suffi to trnsform ny pln grph to ny othr pln grph m in th pln with finit numr of movs on smll gri. As for furthr rsrh, it woul intrsting to ithr ru th numr movs us or fin mthing lowr ouns in th gnrl stting. Rfrns [1] D. AVIS AND K. FUKUDA, Rvrs srh for numrtion. Disrt Appli Mth., 65:21 46, [2] P. BOSE, J. CZYZOWICZ, Z. GAO, P. MORIN, AND D. R. WOOD, Prlll igonl flips in pln tringultions. Th. Rp. TR , Shool of Computr Sin, Crlton Univrsity, Ottw, Cn, [3] R. BRUNET, A. NAKAMOTO, AND S. NEGAMI, Digonl flips of tringultions on los surfs prsrving spifi proprtis. J. Comin. Thory Sr. B, 68(2): , [4] C. CORTÉS, C. GRIMA, A. MARQUEZ, AND A. NAKAMOTO, Digonl flips in outr-tringultions on los surfs. Disrt Mth., 254(1-3):63 74, [5] C. CORTÉS AND A. NAKAMOTO, Digonl flips in outr-klin-ottl tringultions. Disrt Mth., 222(1-3):41 50, [6] C. CORTÉS AND A. NAKAMOTO, Digonl flips in outr-torus tringultions. Disrt Mth., 216(1-3):71 83, [7] M. DE BERG, M. VAN KREVELD, M. OVERMARS, AND O. SCHWARZKOPF, Computtionl Gomtry: Algorithms n Applitions. Springr-Vrlg, Brlin, Grmny, 2n n., [8] H. DE FRAYSSEIX, J. PACH, AND R. POLLACK, How to rw plnr grph on gri. Comintori, 10(1):41 51, [9] J. GALTIER, F. HURTADO, M. NOY, S. PÉRENNES, AND J. URRUTIA, Simultnous g flipping in tringultions. Intrnt. J. Comput. Gom. Appl., 13(2): , [10] Z. GAO, J. URRUTIA, AND J. WANG, Digonl flips in lll plnr tringultions. Grphs Comin., 17(4): , [11] F. HURTADO AND M. NOY, Grph of tringultions of onvx polygon n tr of tringultions. Comput. Gom., 13(3): , [12] F. HURTADO, M. NOY, AND J. URRUTIA, Flipping gs in tringultions. Disrt Comput. Gom., 22(3): , [13] H. KOMURO, Th igonl flips of tringultions on th sphr. Yokohm Mth. J., 44(2): ,

17 [14] H. KOMURO, A. NAKAMOTO, AND S. NEGAMI, Digonl flips in tringultions on los surfs with minimum gr t lst 4. J. Comin. Thory Sr. B, 76(1):68 92, [15] C. LAWSON, Softwr for 1 surf intrpoltion. In J. RICE,., Mthmtil Softwr III, pp , Ami Prss, Nw York, [16] A. NAKAMOTO AND S. NEGAMI, Digonl flips in grphs on los surfs with spifi f siz istriutions. Yokohm Mth. J., 49(2): , [17] S. NEGAMI, Digonl flips in tringultions of surfs. Disrt Mth., 135(1-3): , [18] S. NEGAMI, Digonl flips in tringultions on los surfs, stimting uppr ouns. Yokohm Mth. J., 45(2): , [19] S. NEGAMI, Digonl flips of tringultions on surfs, survy. Yokohm Mth. J., 47:1 40, [20] S. NEGAMI AND A. NAKAMOTO, Digonl trnsformtions of grphs on los surfs. Si. Rp. Yokohm Nt. Univ. St. I Mth. Phys. Chm., (40):71 97, [21] W. SCHNYDER, Eming plnr grphs on th gri. In Pro. 1st ACM- SIAM Symp. on Disrt Algorithms, pp , [22] K. WAGNER, Bmrkung zum Virfrnprolm. Jr. Dutsh. Mth.- Vrin., 46:26 32, [23] T. WATANABE AND S. NEGAMI, Digonl flips in psuo-tringultions on los surfs without loops. Yokohm Mth. J., 47: ,

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

Witness-Bar Visibility Graphs

Witness-Bar Visibility Graphs Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Witnss-Br Visiility Grphs Crmn Cortés Frrn Hurto Alrto Márquz Jsús Vlnzul Astrt Br visiility grphs wr introu in th svntis s mol for som VLSI lyout prolms.

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Generalized swap operation for tetrahedrizations

Generalized swap operation for tetrahedrizations Gnrliz swp oprtion for ttrhriztions B. Lhnr 1, B. Hmnn 2, G. Umluf 3 1 Dprtmnt of Computr Sin, Univrsity of Kisrslutrn, Grmny lhnr@s.uni-kl. 2 Institut for Dt Anlysis n Visuliztion (IDAV), Dprtmnt of Computr

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

Uniform 2D-Monotone Minimum Spanning Graphs

Uniform 2D-Monotone Minimum Spanning Graphs CCCG 2018, Winnipg, Cn, August 8 10, 2018 Uniorm 2D-Monoton Minimum Spnning Grphs Konstntinos Mstks Astrt A gomtri grph G is xy monoton i h pir o vrtis o G is onnt y xy monoton pth. W stuy th prolm o prouing

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Straight-line Grid Drawings of 3-Connected 1-Planar Graphs

Straight-line Grid Drawings of 3-Connected 1-Planar Graphs Stright-lin Gri Drwings o 3-Connt 1-Plnr Grhs M. Jwhrul Alm 1, Frnz J. Brnnurg 2, n Sthn G. Koourov 1 1 Drtmnt o Comutr Sin, Univrsity o Arizon, USA {mjlm, koourov}@s.rizon.u 2 Univrsity o Pssu, 94030

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

UNCORRECTED PAGE PROOFS

UNCORRECTED PAGE PROOFS 7 Shps 9 Unrstning lngth isovr n ojts Msurmnt n gomtry Wht informtion n w gthr from 2 shps n 3 ojts? 7 7 7 7 7E 7F 7G 7H 7I Tringl proprtis Quriltrl proprtis 2 shps n 3 ojts Isomtri rwings n plns Nts n

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Research Article On the Genus of the Zero-Divisor Graph of Z n

Research Article On the Genus of the Zero-Divisor Graph of Z n Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity,

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

Can transitive orientation make sandwich problems easier?

Can transitive orientation make sandwich problems easier? Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information