arxiv: v1 [math.mg] 5 Oct 2015

Size: px
Start display at page:

Download "arxiv: v1 [math.mg] 5 Oct 2015"

Transcription

1 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv: v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington othll Th prolm of lssifying th onvx pntgons tht mit tilings of th pln is long-stning unsolv prolm. Prvious to this rtil, thr wr 14 known istint kins of onvx pntgons tht mit tilings of th pln. Fiv of ths typs mit til-trnsitiv tilings (i.. thr is singl trnsitivity lss with rspt to th symmtry group of th tiling). Th rmining 9 typs o not mit til-trnsitiv tilings, ut o mit ithr 2- lok trnsitiv tilings or 3-lok trnsitiv tilings; ths r tilings ompris of lustrs of 2 or 3 pntgons suh tht ths lustrs form til-2-trnsitiv or til-3-trnsitiv tilings. In this rtil, w prsnt som omintoril rsults onrning pntgons tht mit i-lok trnsitiv tilings for i N. Ths rsults form th sis for n utomt pproh to fining ll pntgons tht mit i-lok trnsitiv tilings for h i N. W will prsnt th mthos of this lgorithm n th rsults of th omputr srhs so fr, whih inlus omplt lssifition of ll pntgons mitting 1-, 2-, n 3-lok trnsitiv tilings, mong whih is nw 15th typ of onvx pntgon tht mits til-3-trnsitiv tiling. Kywors: tiling, pntgon 1. Prliminris pln tiling T is ountl fmily of los topologil isks T = {T 1, T 2,...} tht ovr th ulin pln 2 without gps or ovrlps; tht is, T stisfis 1. i N T i = 2, n Prprint sumitt to rxiv Otor 6, 2015

2 2. int(t i ) int(t j ) = whn i j. Th T i r ll th tils of T. If th tils of T r ll ongrunt to singl til T, thn T is monohrl with prototil T n w sy tht th prototil T mits th tiling T. Th intrstion of ny two istint tils of T n st of isolt rs n points. Ths rs r ll th gs of T, n th isolt points, long with th npoints of th gs, r ll th vrtis of T. In this ppr, only tilings whos tils r onvx polygons r onsir. To istinguish twn fturs of th tiling n fturs of th polygons omprising th tiling, th stright sgmnts forming th ounry of polygon will ll its sis n th npoints of ths stright sgmnts will ll its ornrs. If th ornrs n sis of th polygons in tiling oini with th vrtis n gs of th tiling, thn th tiling is si to g-to-g. symmtry of T is n isomtry of 2 tht mps th tils of T onto tils of T, n th symmtry group S(T ) of T is th olltion of suh symmtris. If S(T ) ontins two nonprlll trnsltions, T is prioi. Two tils T 1, T 2 T r si to quivlnt if thr is n isomtry σ T suh tht σ(t 1 ) = T 2. If ll tils of T r quivlnt, T is si to til-trnsitiv (or isohrl). Similrly, if thr r xtly k istint trnsitivity lsss of tils of T with rspt to S(T ), thn T is til-ktrnsitiv. Th til-trnsitiv tilings of th pln hv n lssifi [4], n this lssifition will ntrl to th mthoology prsnt in this rtil. Th tils of T r uniformly oun if thr xist prmtrs u, U > 0 suh tht vry til of T ontins isk of rius u n is ontin in isk of rius U. tiling T is norml if thr onitions hol: 1. h til of T is topologil isk, 2. Th intrstion of ny two tils of T is onnt st, n 3. Th tils of T r uniformly oun. Th pth of T gnrt y th isk (r, P ) of rius r ntr t point P is th st of tils (r, P ) T tht mt (r, P ), long with ny itionl tils in T rquir to mk th union of th tils in (r, P ) los topologil isk. Th numrs of tils, gs, n vrtis of T ontin in (r, P ) will not y t(r, P ), (r, P ), n v(r, P ), rsptivly. Th following is funmntl rsult onrning norml tilings. Thorm 1 (Normlity Lmm [3]). Lt T norml tiling. Thn for 2

3 ny rl numr x > 0, t(r + x, P ) lim r t(r, P ) = 1. norml tiling T is ln if th following limits xist. v(t ) = lim r v(r, P ) t(r, P ) n (T ) = lim r (r, P ) t(r, P ) (1) ln tilings hv th following ni proprty. Thorm 2 (ulr s Thorm for Tilings [3]). For ny norml tiling T, if ithr of th limits v(t ) or (T ) xists (n is finit), thn so os th othr. Morovr, if ithr of th limits v(t ) or (T ) xists, T is ln n v(t ) = (T ) 1. (2) 1.1. Monohrl Tilings y onvx Pntgons This rtil is onrn with monohrl tilings of th pln in whih th prototil is onvx pntgon. It is known tht ll tringls n quriltrls (onvx or not) til th pln. It is lso known tht thr r xtly 3 lsss of onvx hxgons tht til th pln [5]. Figur 1 shows how th onvx hxgons tht mit tilings of th pln r lssifi in trms of rltionships mong thir ngls n sis. 3

4 F f () ll hxgon () + + = 2π; = () + + = 2π; = ; = () = = = 2π/3; = ; = ; = f Figur 1: Th thr lsss of onvx hxgons tht mit tilings of th pln. It hs lso n shown tht onvx n-gons with n 7 mit no tilings of th pln [3, 8]. Prvious to this rtil, thr wr 14 known istint lsss of onvx pntgons tht til th pln (Figur 2). Th lling systm for pntgons is th sm s tht of th hxgons in Figur 1. Th first 5 typs mit til-trnsitiv tilings of th pln; it ws shown y K. Rinhrt tht ny onvx pntgon mitting til-trnsitiv tiling of th pln is on of ths 5 typs. Typs 6-8 wr isovr y Krshnr [7], Typ 9 n wr isovr y M. Ri, n Typ 10 y R. Jms [10]. In [10],. Shttshnir givs n intrsting history (up to 1978) of th prolm of lssifying onvx pntgons tht mit tilings of th pln. Sin tht tim, th 14th typ of pntgon ws isovr in 1985 y R. Stin, n lrg tgoris of pntgons hv n shown to mit only tilings from mong th knows 14 typs; this inlus quiltrl pntgons ([1, 6]) n pntgons tht mit g-to-g tilings [2]. In this rtil w will prsnt nw typ of pntgon (Typ 15), s wll s th rsults of our xhustiv omputr srh for onvx pntgons tht mit i-lok trnstiv tilings for i = 1, 2, n 3. 4

5 Typ 1 + = π Typ 2 + = π; = Typ 3 = = = 2π/3; =, = + Typ 4 = = π/2; =, = Typ 5 = 2 = π/2; =, = Typ 6 + = π, = 2; = =, = Typ = 2π, 2 + = 2π; = = = Typ = 2π, 2 + = 2π; = = = Typ = 2π, 2 + = 2π; = = = Typ 10 = π/2, + = π, 2 = π,2 + = 2π; = = + Typ 11 = π/2, + = π, 2 + = 2π; = = 2 + Typ 12 = π/2, + = π, 2 + = 2π; 2 = + = Typ 13 = = π/2, 2 = 2 = 2π ; =, 2 = Typ 14 = π/2, 2 + = 2π, + = π; = = 2 = 2 Figur 2: Pntgon Typs

6 n i-lok trnsitiv tiling T is monohrl tiling y onvx pntgons tht ontins pth onisting of i pntgons suh tht (1) T onsists of ongrunt imgs of, n (2) this orrsponing tiling y opis of is n isohrl tiling, n (3) i is th minimum numr of pntgons for whih suh pth xists. Suh pth will ll n i-lok, n th orrsponing isohrl tiling will not y I v v 3 3 () typ 7 tiling T () orrsponing tiling I tiling y 2-loks. Figur 3: pntgon tiling T n orrsoning 2-lok tiling I If v is vrtx of oth T n I, thn lt V T (v) not th vln of v in T n lt V I (v) not th vln of v in I. For xmpl, for th signt vrtx v in Figur 3, w s tht V T (v) = 4, whil V I (v) = 3. Not tht ny prioi tiling y onvx pntgons is nssrily i-lok trnsitiv for som i (onsir th pntgons omprising funmntl rgion of th prioi tiling). It woul rsonl to onjtur tht ny unmrk onvx pntgon tht mits tiling of th pln mits t lst on prioi tiling; tht is, it woul rsonl to onjtur tht thr r no prioi onvx pntgons. If this onjtur is tru, thn ll onvx pntgons tht mit tilings of th pln lso mit t lst on i-lok trnsitiv tiling. Thus, th lss of pntgons ing stui in this rtil my wll nompss ll possil pntgons tht mit tilings of th pln. 2. omintoril Rsults onrning i-lok Trnsitiv Tilings Suppos tht onvx pntgon mits n i-lok trnsitiv tiling T, lt n i-lok of T, n lt P ny pntgon in. fin no of P to ny vrtx of T tht lis on P. Not tht th ornrs of P r 6

7 nssrily nos, ut P my hv nos t othr points sis its ornrs if th tiling is not g-to-g. Thorm 3. For n i-lok trnsitiv tiling T with i-lok, suppos hs xtly n nos, ount with multpliity t nos shr y multipl pntgons of, n lt α j not th vln in T of th j-th no of. Thn T is ln with v(t ) = 1 i n j=1 1 α j (3) n (T ) = n 2i. (4) Proof. ll til-trnsitiv tilings r prioi, n from this it follows tht T is prioi s wll. itionlly, ll prioi tilings r ln [3], n so T is ln, n so th limits v(t ) n (T ) xist. To fin formul for v(t ), lt P ny point of th pln n lt r > 0. In th pth (r, P ), v(r, P ) t(r, P ) i n j=1 1 α j. Th rson this stimt is not xt is u to i-loks n prtil i-loks on th ounry of (r, P ) whos pntgons r not ompltly surroun y othr pntgons in th pth. Osrv tht for lrg r, t(r 2iU, P ) i n j=1 1 α j v(r, P ) t(r + 2iU, P ) i n j=1 1 α j, (5) whr U is th irumprmtr of T. Th lowr oun on v(r, P ) hols sin no i-lok of (r 2iU) mts ny i-lok on th ounry of (r, P ), n similrly th uppr oun follows from th ft tht no i-lok of (r, P ) mts ounry i-lok of (r+2iu). Upon iviing Inqulity 5 through y t(r, P ), ltting r, n pplying th Normlity Lmm, w rriv t th sir rsult. similr rgumnt stlishs qution 4. 7

8 Sustituting qutions 3 n 4 in to qution 2 yils th following rsult. orollry 1. For n i-lok trnsitiv tiling whos i-loks h hv n nos (ount with multipliity), w hv th following iophntin qution. n j=1 1 = n 2i α j 2 (6) Not tht sin h pntgon hs t lst 5 nos, w hv n 5i. lso, not tht th lft-hn si of qution 6 is mximiz whn α j = 3 for vry j, whih implis tht n 6i. orollry 2. For n i-lok trnsitiv tiling whos i-loks h hv n nos (ount with multipliity), w hv 5i n 6i. (7) Inqulity 7 is ni s it stlishs n uppr oun on just how ly non-g-to-g n i-lok trnsitiv tiling n. onsquntly, for h positiv intgr i, thr r only finit numr of typs of onvx pntgon tht mit i-lok trnsitiv tilings. W not fw othr intrsting onsquns of Thorm 3. Lt 3 min n 3 mx not th minimum n mximum numr of 3-vlnt nos of n i-lok with n nos (ount with multipliity). Noti tht th lft-hn si of qution 6 is minimiz whn s fw s possil of th α j s r 3 s, so 3 min is trmin y solving th qution for 3 min, otining n 2i 2 = 3 min 3 + n 3 min 4 3 min = 3n 12i. (8) Similrly, sin th numr k of 3-vlnt nos in n i-lok must stisfy w s tht k 3 n 2i, 2 3n 6i 3 mx =. (9) 2 8

9 W my mk nothr osrvtion onrning qution 6: If p is th vrg vrtx vln, thn so n y Inqulity 7, w s tht n p = n 2i, 2 p = 2n 2n i, 3 p (10) p = 3 orrspons to th s tht pntgons of T hv on vrg 6 nos (llowing for stright ngls in non-g-to-g tilings y pntgons), n p = 10/3 orrspons to th s tht th tiling is g-to-g (orrsponing to rsult in [1]). This mks it lr tht in ny i-lok trnsitiv tiling, thr will som 3-vlnt nos n (xpt whn p = 3) som nos with vln k 4. For spifi vlus of n n i, ll solutions (for th α j ) of qution 6 n foun. If α 1, α 2,..., α n is solution, w will not tht solution y α 1.α α n n ll it n (i, n)-lok spis. W will us xponnts to init rpt vlus of α i. For xmpl, in Figur 3, th 2-lok is of spis = In Tl 1, ll (i, n)-lok spis r list for n Possil Topologil Typs for (i, n)-lok Spis Lt T n i-lok trnstiv tiling y ongrunt onvx pntgons n lt I th orrsponing isohrl tiling y i-lok. Sin I is isohrl, thn it is on of 11 topologil typs, n from mong ths 11 topologil typs, th mximum vrtx vln is 12 [4]. Furthr, sin t most i pntgons mt t ny no of, thn in qution 6, w must hv α j 12i (11) for ll j. Inqulity 11 nsurs tht qution 6 hs finitly mny solutions for ny i n tht ths solutions n, for smll vlus of i, quikly foun using simpl omputr lgorithm. Th numrs in {V I (v) v is vrtx of I T } r xtly th numrs ppring in th topologil typ for I, n this osrvtion givs ris to th following fts. 9

10 Lmm 1. vrtx v of oth I n T stisfis 1. V I (v) V T (v) 2. V T (v) 3i if I hs topologil typ [3 6 ] 3. V T (v) 4i if I hs topologil typs [ ], [ ], or [4 4 ] 4. V T (v) 6i if I hs topologil typs [3 4.6], [ ], [6 3 ], or [ ] 5. V T (v) 8i if I hs topologil typ [4.8 2 ] 6. V T (v) 12i if I hs topologil typ [ ] Rfrring to Figur 3, w s tht th inqulity of Lmm 1, Prt 1 n not n qulity. Th nxt rsults onrns thos vrtis of T tht r not lso vrtis of I ; ths vrtis r in th intrior of gs in I, n s suh, ths vrtis ply ky rol in how opis of i-loks n mt in I jny onitions for i-loks Lt n i-lok for n i-lok trnsitiv tiling T, n lt β 1, β 2,..., β n th vrtis of T on th ounry of, tkn in orr with rspt to n orinttion on. Lt i not th numr of pntgons of tht r inint with β i. Thn th ounry o of is th finit squn () = n. For xmpl, th 2-lok of Figur 3 hs ounry o () = us is prototil for isohrl tiling I, thn hs n ssoit inin symol tht prsris th mnnr in whih opis of r surroun y inint opis of. For xmpl, if I is of isohrl typ IH12, whih hs topologil typ [3 6 ] n inin symol [ + + ; ], thn tils th pln s topologil hxgon, n its ounry is prtition into 6 rs tht must mth on nothr oring to th inin symol (w rfr th rr to [3] or [4] for n xplntion of inin symols). vli prtition of th ounry of must omptil with this inin symol. Th npoints of th rs forming th prtition of th ounry of will init y pling ovr rs on th orrsponing ntris of (); w will ll ounry o so mrk prtition ounry o n not it y (). For xmpl, th 3-lok of Figur 3 hs prtition ounry o () =

11 Th unmrk lmnts in () orrspon to th vrtis of T on th ounry of tht r not vrtis of I. Thus, n g of of lngth k orrspons to susqun of () of th form = i i+1 i+2 i+k 1 i+k. s in th inin symols for th isohrl typs, w will us suprsripts to init th orinttion of gs with rspt to thir mothr tils. Lmm 2 (Th Mthing Lmm). Lt 1 = i i+1 i+2... i+k 1 i+k n 2 = j j+1 j+2... j+k 1 j+k two lngth k gs on th ounry of, llowing for th possiility tht 1 = my mt + 2 (or 1 my mt 2 ) if i+t + j+k t = V T (β i+t ) = V T (β j+k t ) for h intgr t, 1 t k my mt 2 if i+t + j+t = V T (β i+t ) for h intgr t, 1 t k my mt 2 if oth of th prvious two onitions hol. 4. (1s nnot mt 1s) In prtiulr, in th s tht + 1 mts + 2, w must hv i+t + j+k t 3, so it n nvr th s tht i+t = 1 = j+k t. Similrly, in th s tht + 1 mts 2, it nvr hppn tht i+t = 1 = j+t. 5. (Intrior vrtis nnot too lrg) For h vrtx β in th intrior of n g on th ounry of, V T (β) 2i. us ny vrtx of th ounry of must mth with t lst on othr vrtx on n jnt opy of, th Mthing Lmm implis th following rsult, whih n us to limint possil topologil typs for givn (i, n)-lok spis. Lmm 3. Lt of (i, m 1 +m 2 + +m k )-lok spis typ α m 1 1.α m α m k k. 1. If th ounry of ontins vrtx v i with V T (v i ) = α p > 2i n m p = 1, thn th topologil typ of I must ontin th numr α p. 2. If th ounry of ontins vrtis v i v j with α p = V T (v i ) = V T (v j ) > 2i n m p = 2, thn th topologil typ of I must ontin th numr α p twi. 11

12 3. If th ounry of ontins vrtx v i tht is inint with 2 pntgons of, α p = V T (v i ) > 2i, n m p = 2, thn th topologil typ of I must ontin th numr α p /2. Lmms 1, 2, n 3 n us to limint svrl topologil typs for givn (i, n)-lok spis. For xmpl, for th (1, 5)-lok spis , Lmm 1 Prt 1 sys possil topologil typs for I ontin t most thr 3s, t most two 4s, n no othr numrs. This lvs only [ ] n [ ]. For th (1, 5)-lok spis 3 4.6, th only possil topologil typ for I is [3 4.6]. In similr wy, w n limint possil topologil typs orrsponing to lrgr vlus of i. onsir th (3, 15)-lok spis Th vrtx of vln 24 vry muh rstrits th possil topologil typs for I ; sin 24 > 6 3, Lmm 1 sys tht no vrtx of T n hv vln 24 n simultnously vrtx of I unlss th topologil typ of I hs vrtx of vln 8 or grtr. Furthr, sin 24 > 2 3, Lmm 2 Prt 5 gurnts tht no vrtx in T ut not in I n hv vln 24. Thus, I nnot of topologil typs [3 6 ], [ ], [ ], [4 4 ], [3 4.6], [ ], [6 3 ], or [ ]. Thus, in ny 3-lok trnsitiv tiling of spis typ , th only possil topologil typs r [4.8 2 ] n [ ]. ut, using Lmm 3 Prt 1, w n limint oth of ths two rmining topologil typs sin nithr of ths topologil typs ontins 24. s nothr xmpl, onsir th (4, 20)-lok spis Sin 15 > 2 4, Lmm 3 Prts 2 n 3 implis tht th prmissil topologil typs for I must ontin 15 twi or 15/2. Noti tht thr r no topologil typs stisfying ths onitions. W provi on lst lmm tht rlts prtitions of th ounry of n i-lok to orrsponing possil topologil typs for th i-lok. Lmm 4. Lt = #1 s #non-1 s in (). 1. If > 6, os not mit til-trnsitiv tiling of th pln. 2. If = 6, mits only til-trnsitiv tilings of topologil typ [3 6 ], n vry mrk lmnt of () is If = 5, mits only til-trnsitiv tilings of hxgonl or pntgonl topologil typs, n vry mrk lmnt of () is If = 4, mits only til-trnsitiv tilings of hxgonl, pntgonl, or quriltrl topologil typs. For pntgonl n quriltrl 12

13 typs, vry mrk lmnt of () is 1, n for hxgonl typs, fiv 1 s of () must mrk. Lmm 4 is usful in fw wys. First, for prtiulr gnrliz (i, n)- lok, w my (t gln) limint rtin possil topologil typs from onsirtion. Sonly, this lmm rstilly limits th numr of wys tht () n prtition. In Tl 1, w hv orgniz th (i, n)-lok spis n th orrsponing possil topologil typs for i 3. (i, n) (i, n)-lok spis possil topologil typs for I (1, 5) [ ], [ ] [3 4.6] (1, 6) 3 6 [3 6 ] (2, 10) [3 6 ], [3 4.6], [ ] [3 4.6] [3 6 ], [ ], [ ], [4 4 ] (2, 11) [3 4.6] [3 6 ], [ ], [ ] (2, 12) 3 12 [3 6 ] (3, 15) , , , , , [3 4.6], [ ] [4.6.12] [ ], [ ], [4.8 2 ] [3 6 ], [ ], [ ], [3 4.6], [ ], [6 3 ] [3 6 ], [ ], [ ], [4 4 ], [3 4.6], [ ], [ ] [3 6 ], [ ], [ ], [4 4 ], [3 4.6] [3 6 ], [ ], [ ], [4 4 ] (3, 16) [3 6 ], [ ], [ ], [3 4.6], [ ] [3 6 ], [ ], [ ], [3 4.6], [ ] [3 6 ], [ ], [ ], [4 4 ] (3, 17) [3 6 ], [3 4.6] [3 6 ], [ ], [ ] (3, 18) 3 18 [3 6 ] Tl 1: ll (i, n)-lok spis for 1 i 3 4. n lgorithm for numrting ll pntgons miting i-lok trnsitiv tilings. For fix i, th following prour will trmin ll possil systms of qutions orrsponing to i-lok trnsitiv tilings. 13

14 1. numrt ll topologil i-lok forms with n nos (sujt to th rstrition tht 5i n 6i from Inqulity 7. This prt of th prour ws on y hn for i = 1, 2, 3, n For h topologil i-lok with ssign flt nos, gnrt vry possil lling of th onsitunt pntgons ngls n sis with,..., n,...,. 3. In vry wy possil, ssign th vlu of π to nos in th pntgons of th i-lok form hving mor thn 5 nos, lving h pntgon with xtly 5 unll nos. 4. For h i-lok form, gnrt vry prtition of th ounry into 3, 4, 5, or 6 onsutiv rs. 5. For h suh ounry prtition, trmin ll omptil isohrl typs. 6. For h fully-ll topologil i-lok, pply th jny symol of h omptil isohrl typ to th prtition in vry wy possil. 7. For h pplition of th jny symol, gnrt th orrsponing st of linr qutions rlting th sis n ngls of th pntgons of th i-lok n trmin if this systm of qutions is onsistnt. ny inonsistnt linr systms r isr. 8. For h onsistnt systm, trmin whthr or not th rsulting systm of qutions implis tht th pntgon is of prviously known typ. 9. For ny systm of qutions not intifi s prviously osrv typ, trmin if pntgon stisfying ths qutions is gomtrilly rlizl. Tht is, trmin whthr or not suh pntgon n itionlly stisfy th systm of qutions onsponing to 0 vtor sum for th sis unr th onstrint of positiv si lngths n ngl msur stritly twn 0 n π. W will illustrt pross for smpl 2-lok n, sprtly, smpl 3-lok. Whil ll of our rsults for numrting pntgons mitting 1-, 2-, n 3-lok trnsitiv wr trmin y singl utomt systm (xpt prts orrsponing to stps 1 n 9 ov), s oul-hk on our utomt lgorithm, w sprtly numrt th pntgons mitting 1-lok trnsitiv tilings ompltly y hn (ppnix ), n w sprtly numrt th pntgons mitting 2-lok trnstiv tilings prtilly y hn n prtilly using Mthmti o to utomt th ll pplitions n th linr systm solving. 14

15 4.1. Illustrting th lgorithm with 2-lok xmpl To filitt isussion of 2-loks in gnrl, w will us rgulr shps to rprsnt th pntgons omprising th 2-loks, vn though in ny tul 2- lok, th two (ongrunt) pntgons r irrgulr. In rprsnting 2-loks in gnrliz wy mks spotting flt nos visully pprnt, w will rprsnt pntgons hving 5 nos s rgulr pntgons, pntgons hving 6 nos (1 flt no) will rprsnt y rgulr hxgons, n pntgons hving 7 nos (2 flt nos) will rprsnt y rgulr hptgons. y Inqulity 7 th numr of nos n (ount with multipliity) in 2-lok stisfis 10 n 12, so thr r 4 wys to rprsnt 2-loks in trms of th numrs of nos; ths r pit in Figur 4. In ths topologil 2- loks forms, it is importnt to not tht in ny hxgon, on of th ornrs must rprsnt flt no, n in ny hptgon, 2 of th ornrs must rprsnt flt nos. () n = 10 () = () n = 11 () = () n = 12 () = () n = 12 () = Figur 4: ll possil topologil 2-loks forms Now, to illustrt th lgorithm outlin ov, for stp 1, lt us pik th topologil i-lok form ov rprsnt in Figur 4. For stps 2 n 3, without loss of gnrlity, ll th vrtis of th lft pntgon of Figur 5 with,,,, n. Th right pntgon, howvr, my in svrl iffrnt orinttions with rspt to th hoi of lling of th first pntgon. W hoos vril lls T, U, V, W, X, Y, n Z for th nos of this son pntgon (Figur 5). 15

16 T t Z z Y y u X U v V w W x Figur 5: Prtilly ll 2-lok Ths vrils my ssum th vlus,,,,, or π (two of th nos on th hptgon is flt no). For xmpl, th sustitution T =, U =, V =, W =, X =, Y = π, n Z = π yils th lling of nos in Figur 6. For stp 4, noti tht th ounry o for th 2-lok in this s is , for whih from Lmm 4 is = 6. y Lmm 4, suh 2- lok n mit isohrl tilings of hxgonl typs only, n vry mrk lmnt of () must 1. Not lso tht two onsutiv 1 s nnot our in th intrior of ounry g of. ftr using Lmm 4 n our prvious osrvtion to filtr out unusl ounry prtitions, w r lft with th ounry prtitions in Tl 2, omplting stp 4 of th lgorithm. 16

17 Tl 2: ounry prtitions for pntgon-hptgon (2, 12)-loks For our xmpl, lt us pik th prtition ounry o () = In Figur 5 w hv init this prtition y putting whit ots on th nos mrking th n points of th prtition gs. For stp 5, w must trmin whih isohrl typs r omptil with this prtition. Th omptil isohrl typs r trmin y ompring th g lngths in () to th g trnsitivity lsss rquir for th isohrl typs, s wll s y pplying th Mthing Lmm. In oing this, w fin tht th omptil isohrl typs r IH4, IH5, n IH6. h omptil isohrl typ will in turn hk, ut to illustrt our mtho, lt us suppos our loks form n IH6 tiling. Th jny symol for IH6 is [ f + ; + + f ]. For stp 6, w pply th IH6 jny symol in vry possil wy to this ll 2-lok, s init y th r rs ll with Grk hrtrs in Figur 6. In this s, thr is only on wy to pply th jny symol. 17

18 π φ - t δ + γ + y γ + ε + β - π t z π π z φ + δ - β + ε - π y + + Figur 6: IH6 lling of 2-lok ftr sustitutions For stp 7, from Figur 6, th following systm of qutions r gln. 2 + = 2π 2 + π = 2π 2 + = 2π + + π = 2π = + = y + z 2 + = t + y + z = t + y + z Finlly, for stp 8, upon simplfying th qutions n liminting th vri- 18

19 ls t, u,..., z, w rriv t th st of qutions 2 + = 2π = π/2 = 3π/2 = = 2. ny pntgon mitting suh 2-lok is thn quikly intifi s Typ 11 pntgon Illustrting th lgorithm with 3-lok xmpl For stp 1 of our lgorithm for fining ll onvx pntgons mitting 3-lok trnsitiv tilings, w trmin ll of th possil topologil 3-lok forms. This prt of th pross ws on y hn. In Figur 7, w show ll possil topologil 3-lok forms (up to rottion n rfltion). 19

20 Figur 7: ll topologil 3-lok forms. Th numr lling polygon rprsnts th numr of nos of tht polygon. To illustrt susqunt stps of th lgorithm, lt us hoos th 3-lok form of Figur 8 whih hs ounry o (strting t th top no n going ountrlokwis). For stps 2 n 3, w must ssign lls n π nos in vry possil wy to th nos of this lok. On suh wy of oing so is shown in Figur 8. 20

21 π Figur 8: ll 3-lok form. For stp 4, w must prtition th ounry of this 3-lok form, in vry possil wy, into 3, 4, 5, n 6 rs. Sin thr r 10 sis on th ounry of this 3-lok form, prtitioning th ounry orrspons to fining ll ylilly quivlnt intgr prtitions of th intgr 10 into 3, 4, 5, n 6 intgrs. For xmpl, onsir th intgr prtition {1, 1, 2, 2, 2, 2} of 10; this intgr prtition givs th numr of sis pr ounry g in prtition of th ounry into 6 rs. pplying this intgr prtition, w otin th prtition ounry o In Figur 8, th vrtis ll with whit ots init th npoints of th gs forming this prtition of th ounry tht w will us to illustrt susqunt stps of th lgorithm. For stp 5, w trmin tht th isohrl typs omptil with this prtition r IH2, IH5, IH7, IH15, n IH16. Prforming stp 6, w hoos isohrl typ IH5 n pply th jny symol, [ f + ; f + ], in vry possil wy. In this prtiulr xmpl, thr is uniqu wy to pply th jny symol (up to symmtry), s shown in Figur 9. 21

22 ε + + β + γ + π + φ + φ + δ - ε + β + π δ + π γ - Figur 9: ll IH5 3-lok. For stp 7, w simply r off th qutions for th ngls n sis from Figur 9 to gt th following systm of qutions = 2p 2 + = 2π 2 + π = 2π 2 + = 2π 2 + = 2π = = = + 22

23 Upon simplifying this systm, w otin = π/3 = 3π/4 = 7π/12 = π/2 = 5π/6 = 2 = 2 = 2 For stp 8, upon ompring this systm to th prviously known 14 typs n ny sts of qutions w hv prviously intifi s impossil, w o not fin mth. This ls us to stp 9: W must trmin if this st of qutions n rliz y onvx pntgon, n if nw informtion is lrn out th si n ngl rltions in th pross, w must hk if this nw informtion yils known typ of pntgon. To tst if ths qutions n rliz y pntgon, w viw th gs of hypothtil pntgon stisyfing ths qutions s vtors n rquir tht th sum of ths vtors 0. This rsults in systm of two qutions: os + os( + ) os( + + ) + os( ) = 0 (12) sin sin( + ) + sin( + + ) sin( ) = 0 (13) Upon stting = 1 (w my st th sl ftor of th pntgon s w lik) n sustituting th known ngls n sis into qutions 12 n 13, w fin tht 1 = 2( 3 1) stisfis oth qutions. Upon insption, w s tht this pntgon still os not mth known typ. Thus, th pntgon with ths si lngths n ngls msurs is nw typ of pntgon (Typ 15). This til n orrsponing 3-lok-tiling y this til r shwon in Figur

24 () = 60 = 1 = 135 = 1/2 = 105 = 1 2( 3 1) = 90 = 1/2 = 150 = 1/2 () 3-lok trnsitiv tiling y th Typ 15 pntgon. Th thik whit lins outlin th 3-lok, n th olors of th tils init th trnsitivity lsss of pntgons. Figur 10: Th Typ 15 pntgon 4.3. Untyp Solutions Our omputr o gnrt svrl sts of qutions whos solutions i not utomtilly fll into Typs 1-14 n lso oul not immitly ismiss s impossil. Initilly, ths solutions wr of xtrm intrst, for thy might hv rprsnt nw typs of pntgons! Howvr, it turn out tht ths solutions nnot stisfi y ny onvx pntgon, or gomtri onstrints will gnrt itionl informtion so tht suh pntgon must of known typ. W ll solutions suh s ths untyp. Our omputriz numrtion gnrt svrl untyp solutions. To kp this rtil to rsonl lngth, w will not provi th tils for how h of ths untyp solutions ws ronil, ut w mntion tht it rquir svrl sprt nontrivil rgumnts to show tht ths untyp solutions r ithr impossil or n tgoriz into th known 14 typs. Th following ss giv goo rprsnttion of th typs of rgumnts w gv for thm ll. 1. = 2π/3, = 2π/3, = π/2, = 2π/3, = π/2, = 2, =. 2. = π /2, = 2π 2, = /2, = = = 3. = π, =, =, =, n = 4. = π /2, = /2 + π/2, = π, = π/2, = 2 +, = + 5. = π /2, = /2 + π/2, = π, = π/2, + = 2, = 24

25 Untyp Solution 1 s is, this prtiulr systm looks vry similr to th qutions for Typ 3 pntgon, ut it os not quit mth. Howvr, upon stting th sl ftor of = 1 (so = 2), sustituting into qutions 12 n 13, n solving for n, w otin = 1 n = 3. With this nw informtion, tht = 1 =, w n positivly typ this st of qutions s Typ Untyp Solution 2 Using th rltions in this systm, w n ru qution 13 (with 1 = ) to ( ) + 4 sin(/2) sin + sin( + ) sin = 0. 2 Upon pplying th sum-to-prout intity for sin to th 1st n 4th trms n th 2n n 3r trms of this sum n ftoring, w rriv t th qution ( ) os [ sin + sin(/2)] = 0. 2 Solving this qution for (with th rstrition 0 <, < π) givs = /2 + π/2, = /2, or = /2 + π. Howvr, h of ths solutions for is impossil. If = /2 + π/2, thn sustitution into qution 12 givs = 2 os(/2) + 2 sin(/2), n so in orr tht positiv w must hv > π/2. ut this implis = /2 = + π/2 < 0. If = /2, sustitution into qution 12 rvls tht = 0. Lstly, if = /2 + π, thn sustitution into qution 12 gin implis = 0. Thus, this systm of qutions nnot rliz y onvx pntgon Untyp Solution 3 For th untyp solution 3, qution 13 long with th ft tht = 3π givs ( )[sin(/2) + sin()] = 0. Not tht for 0 < < π thr r no solutions for 0 = sin(/2) + sin() = sin(/2) + 2 sin(/2) os(/2) = sin(/2)[1 + 2 os(/2)]. Hn = so tht = = =. Sin + = π n =, ny pntgon stisfying ths qutions is Typ 2. 25

26 Untyp Solution 4 For untyp solution 4, without loss of gnrlity, ssum = 1. qution 13 givs sin() + sin(/2) + ( 1 os() + sin()) = 0. Not tht 1 os() + sin() = 0 if n only if = π/2. In tht s, + = π n th pntgon is Typ I. Othrwis, suppos 1 os() + sin() 0. Solving for w gt = 1 sin(/2) 2 sin(). 1 os() + sin() Sustitution into qution 12 yils 1 + ( 2 os(/2 + sin(/2)) 1 + os() sin() = 0, from whih w fin tht = 1 2 os(/2) + sin(/2). Using tht > 0, w n 2 os(/2)+sin(/2) > 0 or tn(/2) > 2. Sin th tngnt funtion is inrsing on (0, π/2), w gt rtn(2) < /2 < π/2 or rtn(2) < < π. Osrv tht 1 os() + sin() > 0 for rtn(2) < < π. Th rquirmnt tht > 0 givs 1 sin(/2) 2 sin() > 0 so tht < 1 2 sin() sin(/2) 1 2 os(/2) + sin(/2) < 1 2 sin(). sin(/2) Sin th nomintors r positiv w must hv. This inqulity implis sin(/2) < (1 2 sin())( 2 os(/2) + sin(/2)). This inqulity is nvr stisfi for ngls stisfying rtn(2) < < π. 26

27 Untyp Solution 5 For th 5th untyp solution, without loss of gnrlity, ssum = 1. qution 13 givs 1 2 os() + (os() + sin()) + sin(/2) = 0. Not tht os()+sin() = 0 if n only if = 3π/4. In this s, qution 13 rus to os(3π/8) = 0, yiling ngtiv vlu for. Thus, w my suppos os() + sin() 0. Solving for in th qution 13 givs = os() sin(/2). os() + sin() Sustitution into qution 12 givs 2 2 sin() + (os(/2) + sin(/2)) os() + sin() = 0, n solving for yils = 2( 1 + sin()) os(/2) + sin(/2). From this w s tht < 0, n so this untyp solution is impossil Summry of rsults otin vi omputr for pntgons mitting 1-, 2-, n 3-lok trnsitiv tilings Numr of nos Pntgon Typs Foun n = 5 1, 2, 4, 5 n = 6 1, 2, 3 n = 10 1, 2, 4, 5, 6, 7, 8, 9 n = 11 1, 2, 4, 13 n = 12 1, 2, 4, 11, 12 n = 15 1, 2, 5, 6, 7, 9 n = 16 1, 2, 3, 4, 5, 6, 15 n = 17 1, 2, 10 n = 18 1, 2, 3, 10, 14 Tl 3: Typs of pntgons mitting i-lok trnsitiv tilings for i = 1, 2, n 3. 27

28 5. Futur Work: i 4 s i gts lrgr, th numrtion pross outlin rlir grows rpily in omplxity. For rltivly smll i, th mtho outlin in this rtil is pplil with th i of lustr of omputrs. W r urrntly in th pross of prossing th pntgons tht mit i-lok tilings whn i 4, n will upt this rtil with furthr rsults s w otin thm. Th min hllng in xtning this srh is in ffiintly unrstning untyp solutions tht ris. For givn untyp solution, on wy to tt if th solution n rliz y onvx pntgon involvs solving th systm of qutions givn y qutions 12 n 13. Howvr, for mny untyp solutions this systm hs 3 or mor vrils. Unrstning th solution st for suh systm is hllng. In, s sn in Stion 4.3, thr is no ovious wy to utomt th pross of whthr or not givn untyp solution n rliz y onvx pntgon, n if so, whthr or not itionl onitions will mrg tht for suh pntgon to mong th known typs. 6. Rfrns Rfrns [1] gin, O. (2004). Tiling th pln with ongrunt quiltrl onvx pntgons. J. omin. Thory Sr., 105(2): [2] gin, O. G. (2012). onvx pntgons tht til th pln (typs: 11112, 11122). Si. Èlktron. Mt. Izv., 9: [3] Grünum,. n Shphr, G.. (1977). Th ighty-on typs of isohrl tilings in th pln. Mth. Pro. mrig Philos. So., 82(2): [4] Grünum,. n Shphr, G.. (1987). Tilings n pttrns. W. H. Frmn n ompny, Nw York. [5] Hsh, H. n Kinzl, O. (1963). Flähnshluss. Systm r Formn lüknlos ninnrshlissnr Flhtil. Springr-Vrlg, rlin- Göttingn-Hilrg. [6] Hirshhorn, M.. n Hunt,.. (1985). quiltrl onvx pntgons whih til th pln. J. omin. Thory Sr., 39(1):

29 [7] Krshnr, R.. (1968). On pving th pln. mr. Mth. Monthly, 75: [8] Nivn, I. (1978). onvx polygons tht nnot til th pln. mr. Mth. Monthly, 85(10): [9] Rinhrt, K. (1918). Ür i Zrlgung r n in Polygon. Ph thsis, Univ. Frnkfurt.M. Nosk. [10] Shttshnir,. (1978). Tiling th pln with ongrunt pntgons. Mth. Mg., 51(1):

30 ppnix. Pntgons tht mit til-trnstiv tilings Pntgons tht mit til-trnsitiv tilings hv lry n lssifi [5], ut for th sk of illustrting our mthos, w will offr our own vrifition hr. ppnix.1. n = 5: tilings Pntgons tht mit g-to-g til-trnsitiv Suppos pntgon P mits til-trnstiv tiling T in whih h pntgon hs xtly 5 vrtis (i = 1, n = 5). From Tl 1, T must of topologil typ [ ] or [ ], or [3 4.6]. Ths topologil typs orrspons to isohrl typs IH21-IH29. For onvnin w list th inin symols of isohrl typs IH21-IH29 in Tl.4. Th gol is to xmin h possil isohrl typ for T to trmin onitions on th ngls n sis of P. Topologil Typ Isohrl Typ Inin Symol g lsss [3 4.6] IH21 [ ; ] αββγα [ ] IH22 [ ; + + ] αβγγβ IH23 [ ; ] αβγδβ IH24 [ ; ] αβγδβ IH25 [ ; ] αβγγβ IH26 [ + + ; + ] αβγγβ [ ] IH27 [ ; + ] αβγβγ IH28 [ ; ] αββγγ IH29 [ + + ; + + ] αββββ Tl.4: Isohrl typs IH21 - IH29 with g trnsitivity lsss For xmpl, if T is of spis typ , suppos T is typ IH22. Th first tsk is to trmin th llings of P with tht r omptil with th inin symol for IH22. For xmpl, in Figur.11, pntgon in tiling of topologil typ [ ] hs n ssign lling onsistnt with isohrl typ IH22. 30

31 Figur.11: omptil lling of pntgon of typ IH22 (symol [ ; + + ]). It is sily hk tht th only lling omptil with this symol pls th twn th two 4-vlnt vrtis. Nxt, lls,,,, n r ssign to th ornr ngls of P n lls,,,, n r ssign to th sis s in Figur.12. Figur.12: pntgon of typ IH22 with ll ngls. Th si lngth lls orrspon to th inin lls in this s. With this lling, th rquir rltionships mong th ngls n th 31

32 sis my r off, yiling + + = 2π + = π = = In prtiulr, us two onsutiv ngls of P must supplmntry, w s tht if P mits n isohrl tiling of typ IH22, thn P must Typ 1 pntgon. In similr mnnr, it n trmin tht th only omptil lling for IH23-IH26 pls th twn th two 4-vlnt vrtis s wll. This in turn fors, + = π for ny pntgon mitting isohrl tilings of typs IH23-IH26, n so ny suh pntgon is of Typ 1. If P mits tilings of isohrl typs IH27, IH28, or IH29 th only omptil lling rquirs tht pl twn th two 3-vlnt vrtis. This fors uniqu lling for pntgons of ths isohrl typs, s in Figur.13. From ths uniqu llings, th qutions orrsponing to pntgons of typs IH27, IH28, n IH29 r trmin (Tl.5), from whih w s it is sn tht ny pntgon mitting typs IH27, IH28, or IH29 r pntgons of Typs 2, 4, or 4 (rsptivly). IH27 IH28 IH29 Figur.13: IH27, IH28, n IH29 pntgons with n = 5. 32

33 IH27 IH28 IH29 + = π = = π/2 = π/2 = = 2 + = π = = = Tl.5: ngl/si qutions for pntgons with n = 5 of typs IH27, IH28, n IH29 IH21 is th only isohrl typ for topologil typ [3 4.6]. Thr r only two vil llings of n IH21 pntgon orrsponing to th inin symol for IH21 in Tl.4. Ths llings r sn in Figur.14, n th rquir qutions rlting ngls n sis r givn in Tl.6. oth IH21 pntgons with n = 5 must Typ 5 if thy r to til th pln. IH21(1) IH21(2) Figur.14: IH21 pntgons with n = 5. IH21(1) IH21(2) = π/3 = π/3 = 2π/3 = 2π/3 =, = =, = Tl.6: ngl/si qutions for pntgons with n = 5 of typs IH21 Othr llings of IH21 pntgons with n = 5 yil impossil rltionships mong th ngls of th pntgon. For xmpl, in Figur.15, th lling rquirs + + = 2( + + ). 33

34 Figur.15: n impossil lling of n IH21 pntgon with n = 5. Th rsults for isohrl pntgons with n = 5 r summriz in Tl.7. ppnix.2. n = 6: Pntgons tht mit non-g-to-g til-trnsitiv tilings For i = 1 n n = 6, th only possil topologil typ is [3 6 ]. In this s, h pntgon of T hs xtly on flt not ppring twn two of th ornrs of th pntgon. Mny isohrl typs unr topologil typ [3 6 ] r impossil for suh pntgon. If pntgon P with n = 6 is ll oring to [3 6 ] isohrl typ, onsir n g ll x from th inin symol tht is jnt to this flt no. In isohrl typs IH8- IH11, IH18, n IH20, w s tht h ll must ppr t lst twi in P n in nonjnt lotions. For ths typs, nothr si of P tht is not jnt to th flt no must ll with x. This fors on of th ornrs of P to hv ngl msur π, whih nnot (s Figur.16. In similr mnnr, ll x in th ll tht is jnt to flt no nnot unsign (s Figur.16. This osrvtion in omintion with th prvious osrvtion limints IH12 n IH13. For isohrl typs IH17 n IH19, if in lling P w ttmpt to voi lling inonsistnis, w fin tht th symols jnt to th flt no must of th form x + x or x x +. Howvr, in ths two isohrl typs, th gs jnt to ornr of P woul nssrily ll x + x or x x +, foring tht ornr to flt. 34

35 π x π x π x π () () Figur.16: Symols tht for flt ornrs in P. ftr liminting thos isohrl typs tht r for P to hv flt ornr, typs IH1-IH7 n IH14-IH16 rmin to hk. ny 6-no pntgon of isohrl typ IH1-IH7 n ll in 6 wys (h lling orrsponing to th hoi of symols surrouning th flt no). nlyzing h possil lling is mttr of routin, n from mong ths 42 llings, 5 typs of pntgons r foun. Typ 1 pntgons Typ 2 pntgons Typ 3 pntgons Oviously impossil pntgons Non-oviously impossil pntgons xmpls of llings ling to ths 5 outoms will prsnt nxt. In Figur.17, w s lling of pntgon P whih fors two jnt ngls of P to supplmntry, n so suh pntgon is of Typ 1. In ny IH2 lling of 6-no pntgon yils Typ 1 pntgon. In Figur.17, 6-no pntgon hs n givn n IH3 lling, n it is quikly trmin suh pntgon is of Typ 2. In Figur.17, 6-no pntgon is ll s n IH7 til. This lling givs Typ 3 pntgon. 35

36 F f F f f F F f f F () () () Figur.17: [3 6 ] 6-no pntgons of Typs 1, 2,n 3 Most of th IH1-IH7 llings of 6-no pntgons r sily tgoriz into th known 14 typs, ut two kins of llings ris tht nnot rliz y n tul onvx pntgon. W will rfr to suh llings s impossil. Th first impossil lling, whih pprs in only thr of th IH7 llings, is impossil sin thr flt ngls nnot surroun vrtx (s Figur.18). Th son typ of impossil lling is not oviously impossil. This lling pprs in quivlnt forms in ll six IH1 llings n in two of th IH3 llings. onsir th lling of th 6-no pntgon of typ IH1 in Figur.18. This lling implis gomtrilly impossil pntgon: routin lultion rvls tht th istn from th intrior vrtx ll to th intrior vrtx ll must grtr thn +. In, if th g is pl on horizontl with t th origin, thn = ( + + os(π ), sin(π )) n = ( os, sin ). Thn 2 =[ + + os(π ) os )] 2 + [ sin(π ) sin ] 2 =( + ) 2 + 2( + )[os(π ) os ] + 2 [os(π ) os ] [sin(π ) sin ] 2 ( + ) 2 + 2( + )[os(π ) os ] >( + ) 2 Sin + + = 2π n ll intrior ngls of onvx pntgon r lss thn π, thn + > π, so π > > π > 0 n os is rsing on th intrvl [0, π], whih justifis th finl inqulity. 36

37 F f f () = π F F F f f () F = π Figur.18: Two inonsistnt llings of [3 6 ] 6-no pntgons from typs IH1-IH7 Nxt onsir th IH14-IH16 llings of 6-no pntgons. Ths thr isohrl typs r similr in tht th inin symols rquir, for th sm rsons prviously isuss prtining to lling of gs jnt to th flt no, tht th gs jnt th th flt no must mrk + or +, so thr r only two vil llings for h of ths thr isohrl typs. Th two vil llings for IH14 prou pntgons lik th on of Figur.18, so thr r no possil tilings y 6-no pntgons of isohrl typ IH14. Th two vil IH15 llings r shown in Figur.19, n th rsulting pntgons r of Typ 1. Isohrl typ IH16 yils th two llings of Figur.20. Figur.20 givs Typ 3 pntgon, n Figur.20 is impossil. π π π () π π π () Figur.19: 6-no IH15 pntgons 37

38 π π π π π π () () Figur.20: 6-no IH16 pntgons i n Vrtx Vlns Topolgil Typ Isohrl Typ Possil Pntgon Typ(s) [3 4.6] IH [ ] IH22 1 [ ] IH23 1 [ ] IH24 1 [ ] IH25 1 [ ] IH26 1 [ ] IH27 2 [ ] IH28 4 [ ] IH [3 6 ] IH1 - [3 6 ] IH2 1 [3 6 ] IH3 2 [3 6 ] IH4 1 [3 6 ] IH5 1 [3 6 ] IH6 1,2 [3 6 ] IH7 3 [3 6 ] IH [3 6 ] IH15 1 [3 6 ] IH16 3 [3 6 ] IH Tl.7: Typs of Isohrl Pntgons In summry, w s from Tl.7 tht ny pntgon tht mits til trnsitiv tiling of th pln must of th known typs 1-5, onfirming th rsult in [5]. 38

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

UNCORRECTED PAGE PROOFS

UNCORRECTED PAGE PROOFS 7 Shps 9 Unrstning lngth isovr n ojts Msurmnt n gomtry Wht informtion n w gthr from 2 shps n 3 ojts? 7 7 7 7 7E 7F 7G 7H 7I Tringl proprtis Quriltrl proprtis 2 shps n 3 ojts Isomtri rwings n plns Nts n

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Module 2 Motion Instructions

Module 2 Motion Instructions Moul 2 Motion Instrutions CAUTION: Bor you strt this xprimnt, unrstn tht you r xpt to ollow irtions EXPLICITLY! Tk your tim n r th irtions or h stp n or h prt o th xprimnt. You will rquir to ntr t in prtiulr

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA Astrt. Givn st of flxil rnh juntion DNA moluls with stiky-ns (uiling loks), ll hr tils, w onsir

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information