(4, 2)-choosability of planar graphs with forbidden structures

Size: px
Start display at page:

Download "(4, 2)-choosability of planar graphs with forbidden structures"

Transcription

1 1 (4, )-oosility o plnr rps wit orin struturs 4 5 Znr Brikkyzy 1 Cristopr Cox Mil Diryko 1 Kirstn Honson 1 Moit Kumt 1 Brnr Liiký 1, Ky Mssrsmit 1 Kvin Moss 1 Ktln Nowk 1 Kvin F. Plmowski 1 Drrik Stol 1,4 July 7, Astrt All plnr rps r 4-olorl n 5-oosl, wil som plnr rps r not 4- oosl. Dtrminin wi proprtis urnt tt plnr rp n olor usin lists o siz our s riv siniint ttntion. In trms o onstrinin t strutur o t rp, or ny l {, 4, 5, 6, 7}, plnr rp is 4-oosl i it is l-yl-r. In trms o onstrinin t list ssinmnt, on rinmnt o k-oosility is oosility wit sprtion. A rp is (k, s)-oosl i t rp is olorl rom lists o siz k wr jnt vrtis v t most s ommon olors in tir lists. Evry plnr rp is (4, 1)-oosl, ut tr xist plnr rps tt r not (4, )-oosl. It is n opn qustion wtr plnr rps r lwys (4, )-oosl. A or l-yl is n l-yl wit on itionl. W monstrt or l {5, 6, 7} tt plnr rp is (4, )-oosl i it os not ontin or l-yls Introution A propr olorin is n ssinmnt o olors to t vrtis o rp G su tt jnt vrtis r ssin istint olors. A (k, s)-list ssinmnt L is untion tt ssins list L(v) o k olors to vrtx v so tt L(v) L(u) s wnvr uv E(G). A propr olorin φ o G su tt φ(v) L(v) or ll v V (G) is ll n L-olorin. W sy tt rp G is (k, s)-oosl i, or ny (k, s)-list ssinmnt L, tr xists n L-olorin o G. W ll tis vrition o rp olorin oosility wit sprtion. Not tt wn rp is (k, k)-oosl, w simply sy it is k-oosl. Osrv tt i G is (k, t)-oosl, tn G is (k, s)-oosl or ll s t. A notl rsult rom Tomssn [11] stts tt vry plnr rp is 5-oosl, so it ollows tt ll plnr rps r (5, s)-oosl or ll s 5. Foriin rtin struturs witin plnr rp is ommon rstrition us in rp olorin. Torm 1. summrizs t urrnt knowl on (, 1)-oosility o plnr rps. Škrkovski [1] onjtur tt ll plnr rps r (, 1)-oosl; tis qustion is still opn n is prsnt low s Conjtur Dprtmnt o Mtmtis, Iow Stt Univrsity, Ams, IA, U.S.A. {znr,miryko,kons,mkumt,liiky,kymss,kmoss,knowk,kplmow,stol}@istt.u Dprtmnt o Mtmtil Sins, Crni Mllon Univrsity, Pittsur, PA, U.S.A. oox@nrw.mu.u Support y NSF rnt DMS n DMS Dprtmnt o Computr Sin, Iow Stt Univrsity, Ams, IA, U.S.A. 1

2 Conjtur 1.1 (Škrkovski [1]). I G is plnr rp, tn G is (, 1)-oosl. Torm 1.. A plnr rp G is (, 1)-oosl i G vois ny o t ollowin struturs: - -yls (Krtovíl, Tuz, Voit [9]). - 4-yls (Coi, Liiký, Stol [4]). - 5-yls n 6-yls (Coi, Liiký, Stol [4]). In tis ppr, w ous on 4-oosility wit sprtion. Krtovíl, Tuz, n Voit [9] prov tt ll plnr rps r (4, 1)-oosl, wil Voit [1] monstrt tt tr xist plnr rps tt r not (4, )-oosl. It is not known i ll plnr rps r (4, )-oosl. Conjtur 1. (Krtovíl, t l. [9]). I G is plnr rp, tn G is (4, )-oosl. Torm 1.4 (Krtovíl, t l. [9]). I G is plnr rp, tn G is (4, 1)-oosl. Torm 1.4 ws strntn y Kirst n Liiký [8], wr it is sown tt w n llow n inpnnt st o vrtis to v lists o siz rtr tn 4. Torm 1.5 (Kirst n Liiký [8]). Lt G plnr rp n I V (G) n inpnnt st. I L ssins lists o olors to V (G) su tt L(v) or vry v I, n L(v) = 4 or vry v V (G) \ I, n L(u) L(v) 1 or ll uv E(G), tn G s n L-olorin. In ition to t work summriz ov, tr r svrl rsults rrin 4-oosility. A rp is k-nrt i o its surps s vrtx o r t most k. Eulr s ormul implis plnr rp wit no -yls is -nrt n n 4-oosl. Tis n otr similr rsults r list low in Torm 1.6. For t lst rsult in Torm 1.6, not tt or l-yl is n l-yl wit n itionl onntin two o its non-onsutiv vrtis. Torm 1.6. A plnr rp G is 4-oosl i G vois ny o t ollowin struturs: 5 - -yls (olklor) yls (Lm, Xu, Liu, [10]) yls (Wn n Li [14]) yls (Fijvz, Juvn, Mor, n Škrkovski [7]) yls (Frz [6]) Cor 4-yls n or 5-yls (Boroin n Ivnov []) Our min rsults in tis ppr r list low in Torm 1.7. Torm 1.7. A plnr rp G is (4, )-oosl i G vois ny o t ollowin struturs: - Cor 5-yls. - Cor 6-yls. - Cor 7-yls. W prov s o Torm 1.7 sprtly. In Stion 4, w ori or 5-yls (s Torm 4.1). In Stion 5, w ori or 6-yls (s Torm 5.1). In Stion 6, w ori or 7-yls (s Torm 6.). Tr r mny turs ommon to ll o ts proos, wi w til in Stions n.

3 Prliminris n Nottion Rr to [15] or stnr rp tory trminoloy n nottion. Lt G rp wit vrtx st V (G) n n st E(G); lt n(g) = V (G). W us K n, C n, n P n to not t omplt rp, yl rp, n pt rp, rsptivly, on n vrtis. T opn nioroo o vrtx, not N(v), is t st o vrtis jnt to v in G; t los nioroo, not N[v], is t st N(v) {v}. T r o vrtx v, not G (v), is t numr o vrtis jnt to v in G; w writ (v) wn t rp G is lr rom t ontxt. I t r o vrtx v is k, w ll v k-vrtx; i t r o v is t lst k (t most k), w ll v k + -vrtx (k -vrtx rsptivly). T lnt o, not l(), is t lnt o t ounry wlk. I t lnt o is k, w ll k-; i t lnt o is t lst k, w ll k + -. Ovrviw o Mto All o our min rsults us t isrin mto. W rr t rr to t survys y Boroin [] 81 n Crnston n Wst [5] or n introution to isrin, wi is mto ommonly us 8 to otin rsults on plnr rps. For rl numrs v,,, w in initil r vlus 8 µ 0 (v) = v (v) or vry vrtx v n µ 0 () = l() or vry. I v > 0, > 0, > 0, n v + =, tn Eulr s ormul implis tt v µ 0(v) + 84 µ 0() =, n 85 t totl r on t ntir rp is ntiv. W tn in isrin ruls tt sri 86 mto or movin r vlu mon vrtis n s wil onsrvin t totl r vlu. 87 W monstrt tt i G is miniml ountrxmpl to our torm, tn vry vrtx n 88 ns wit nonntiv r tr t isrin pross, wi is ontrition. Intuitivly, 89 tis pross works wll wn oriin strutur (su s sort or yl) wit low r. 90 In Stion, w onrtly in ruil oniurtions. Loosly, ruil oniurtion is 91 strutur C in rp G wit (4, )-list ssinmnt L wr ny L-olorin o G C xtns to n 9 L-olorin o G. I w r lookin or miniml xmpl o rp tt is not (4, )-oosl, tn 9 non o ts ruil oniurtions ppr in t rp. W in lr list o oniurtions, 94 (C1) (C1) (s Fiur ), n prov ty r ruil usin vrious nri onstrutions. T 95 oniurtions (C1) (C10) r us wn oriin or 6- or 7-yls, wil t oniurtions 96 (C9) (C1) r us wn oriin or 5-yls. T us o irnt oniurtions is u 97 to irns in our isrin rumnts. 98 In Stion 4, w ori or 5-yls n vry - is jnt to t most on otr Morovr, -s r not jnt to 4-s. Tus, our initil r untion in tis s 100 urnts tt t only ojts wit ntiv initil r r 4- n 5-vrtis. 101 In Stions 5 n 6, w us irnt isrin strty. Our initil r vlus urnt 10 tt t only ojts o ntiv r r -s. Tus, our isrin ruls r sin to 10 sn r rom 5 + -s n 4 + -vrtis to -s. Howvr, s w ori or 6-yls or 104 or 7-yls, tr my not mny -s vry los to otr. I G is pln rp n G is its ul, tn lt F t st o -s o G n lt G 106 t inu surp o G wit vrtx st F. A lustr is mximl st o -s tt r onnt in G, i.., onnt omponnt o G. Not tt two -s srin n r 108 jnt in G, n two -s srin only vrtx r not jnt in G. S Fiur 1 or list 109 o t lustrs wit mximum yl lnt six n vry intrnl vrtx o r t lst our. In 110 ts iurs, t outr yl is not nssrily il yl, ny r ill wit ry is not,

4 v v 1 v u 4 u (K) (K4) (K5) (K5) u 1 u u u 4 v u u v u 5 u 4 1 u 1 u 1 u u 1 u 6 1 u 4 u 5 u 4 u (K5) (K6) (K6) (K6) u u u 5 v w 4 5 v u u 1 u 4 u 4 1 u 1 u u z 1 u (K6) (K6) (K6) (K6) w (K6) (K6i) (K6j) (K6k) (K6l) (K6m) (K6n) (K6o) (K6p) (K6q) (K6r) Ts r ll o t possil lustrs wit lonst yl t most six n minimum r our. Bol s monstrt sprtin -yls. Gry rions sint yls tt r not s. W roup our lustrs y t lnt o t lonst yl in t lustr. Tus oniurtion (Kni) s mximum yl lnt o n. Fiur 1: Clustrs wit mximum yl lnt t most six. 4

5 n pir o squr vrtis rprsnt sinl vrtx. Aitionlly, ol s sri sprtin -yls, wi r yls in pln rp wos xtrior n intrior rions ot ontin vrtis not on t yl. Ts iurs r s on t list o lustrs us y Frz [6] in t proo tt 7-yl-r plnr rps r 4-oosl. For k {1, }, tr is xtly on wy to rrn k -s in lustr. A trinl is lustr ontinin xtly on -; s (K). A imon is lustr ontinin xtly two -s; s (K4). For k, tr r multipl wys to rrn k il trinls in lustr. A k-n is lustr o k -s ll inint to ommon vrtx o r t lst k +1; s (K5) n (K6). A k-wl is lustr o k -s ll inint to ommon vrtx o r xtly k; s (K5) n (K6). Not tt t vrtx inint to ll s o -wl s r. A k-strip is lustr o k -s 1,..., k wr t ounris o t -s r isjoint xpt tt i n i+1 sr n or i {1,..., k 1} n i n i+ sr vrtx or i {1,..., k }; s (K5) n (K6). I 1,..., k r t -s in lustr, tn w will prov tt t totl r on 1,..., k tr isrin is nonntiv. Tus, som o t -s my v ntiv r, ut tis is ln y otr -s in t lustr vin positiv r. Hn, our proos n wit list o ll possil lustr typs n vriyin tt s nonntiv totl r. Wil tr r totl lustrs tt voi or 7-yls, w o not v tt mny ss to k. T lustrs (K5) n (K6) (K6r) v tr ol s, monstrtin sprtin - yl. W voi kin ts ss y usin strntn olorin sttmnt (s Torm 6.) tt llows our miniml ountrxmpl to not ontin ny sprtin -yls. Ruil Coniurtions In tis stion, w sri struturs tt nnot ppr in miniml ountrxmpl to Torm 1.7. Lt G rp, : V (G) N, n s nonntiv intr. A rp is -oosl i G is L-oosl or vry list ssinmnt L wr L(v) (v). An (, s)-list-ssinmnt is list ssinmnt L on G su tt L(v) (v) or ll v V (G), L(v) L(u) s or ll s uv E(G), n L(u) L(v) = i uv E(G) n (u) = (v) = 1. A rp G is (, s)-oosl i G is L-olorl or vry (, s)-list-ssinmnt L. Dinition.1. A oniurtion is tripl (C, X, x) wr C is pln rp, X V (C), n x : V (C) {0, 1,, } is n xtrnl r untion. A rp G ontins t oniurtion (C, X, x) i C pprs s n inu surp C o G, n or vrtx v V (C), tr r t most x(v) s in G rom t opy o v to vrtis not in C. For tripl (C, X, x), in t list-siz untion : V (C) N s { 4 x(v) v X (v) = 1 v / X. A oniurtion (C, X, x) is ruil i C is (, )-oosl. Not tt i rp G wit (4, )-list ssinmnt L ontins opy o ruil oniurtion (C, X, x) n G X is L-oosl, tn G is L-oosl. First, w not tt i (C, X, x) is ruil oniurtion, tn ny wy to n twn istint vrtis o X n lowr tir xtrnl r y on rsults in notr ruil oniurtion. 5

6 (C1) (C) (C) (C4) (C5) (C6) (C7) (C8) (C9) (C10) (C11) (C1) (C1) (C14) (C15) (C16) (C17) (C18) (C19) (C0) (C1) In ts oniurtions, s wit only on npoint r xtrnl s. Vrtis in X r ill wit wit. Fiur : Ruil oniurtions. 6

7 (C1) (C) (C4) (C5) (C10) (C11) (C1) (C1) (C14) (C15) (C16) Fiur : Alon-Trsi Orinttions Lmm.. Lt (C, X, x) ruil oniurtion, n suppos tt x, y X r nonjnt vrtis wit { x(x), x(y) 1. Lt (C, X, x ) t oniurtion wr C = C + xy, X = X, n x x(v) v / {x, y} (v) = x(v) 1 v {x, y},. Tn t oniurtion (C, X, x ) is ruil. Proo. Lt t list-siz untion or C n not tt C is (, )-oosl. Similrly lt t list-siz untion on t oniurtion (C, X, x ), n lt L n (, )-list ssinmnt on V (C ). Not tt (x) = (x) + 1 n (y) = (y) + 1. Lt S = L (x) L (y). I S <, tn t most on lmnt rom o L (x) n L (y) to S until S =. Now lt S = {, } su tt L (x) n L (y), n in list ssinmnt L on C y rmovin rom L (x) n rmovin rom L (y). Osrv tt L is n (, )-list ssinmnt n n tr xists n L-olorin o C. Sin L(x) L(y) =, tis propr L-olorin o C is lso n L -olorin o C. W will us Lmm. impliitly y ssumin tt C[X] pprs s n inu surp in our miniml ountrxmpl G..1 Ruiility Proos In tis stion, w prov tt oniurtions (C1) (C1) sown in Fiur r ruil..1.1 Alon-Trsi Torm 166 W will us t lrt Alon-Trsi Torm [1] to quikly prov tt mny o our oniur- 167 tions r ruil. In t, oniurtions tt r monstrt in tis wy r ruil or oosility, not just (4, )-oosility. 169 A irp D is n orinttion o rp G i G is t unrlyin unirt rp o D n D s no -yls; lt + D (v) n D (v) t out- n in-r o vrtx v in D. An Eulrin 171 surp o irp D is sust S E(D) su tt, or vry vrtx v V (D), t numr 17 o outoin s o v in S is qul to t numr o inomin s o v in S. Lt EE(D) 17 t numr o Eulrin surps o vn siz n EO(D) t numr o Eulrin surps 174 o o siz. 7

8 175 Torm. (Alon-Trsi Torm [1]). Lt G rp n : V (G) N untion. Suppos tt tr xists n orinttion D o G su tt D (v) (v) 1 or vry vrtx v V (G) n 177 EE(D) EO(D). Tn G is -oosl W ll n orinttion n Alon-Trsi orinttion i it stisis t ypotss o Torm.. For oniurtion (C, X, x) n t ssoit list-siz untion, it suis to monstrt n Alon-Trsi orinttion o C wit rspt to. S Fiur or list o Alon-Trsi orinttions o svrl oniurtions. On oul tink tt or vrtx v, t outniors r vrtis tt oul olor or v n v oul still pik olor not onlitin wit tm. I tr wr no yls in t orinttion, t orinttion woul iv n orr suitl or t ry loritm. Corollry.4. T ollowin oniurtions v Alon-Trsi orinttions n n r ruil: (C1), (C), (C4), (C5), (C10), (C11), (C1), (C1), (C14), (C15), (C16)..1. Dirt Proos In t proos low, w onsir oniurtion (C, X, x) wit list-siz untion n ssum tt n (, )-list-ssinmnt L is ivn or C. W will monstrt tt C is L-olorl. Rr to Fiur or rwins o t oniurtions. First rll t ollowin t out list-olorin o yls. Ft.5. I L is -list ssinmnt o n o yl, tn tr os not xist n L-olorin o t yl i n only i ll o t lists r intil. In t proo in tis sustion, w us sortn nottion wr or vrtx v i w not olor (v i ) y i n list L(v i ) y L i or ll i. Lmm.6. (C) is ruil oniurtion. Proo. Lt v 1,..., v 4 t vrtis o 4-yl wit or v v 4 n lt v n v 4 v xtrnl r 1; t olors 1 n r ix. E o v n v 4 v t lst on olor in tir lists otr tn 1 n. Sin L i or i {, 4}, itr on o ts vrtis s t lst two olors vill, or L L 4 = { 1, }. In itr s, w n xtn t olorin. For t oniurtions (C6), (C7), n (C8), ll t vrtis s in Fiur 4: ll t ntr vrtx v 0 n t outr vrtis v 1,..., v 5, strtin wit t vrtx irtly ov v 0, movin lokwis. v 1 v 1 v 1 v 5 v v 5 v v 5 v v 0 v 0 v 0 v 4 v v 4 v v 4 v (C6) (C7) (C8) Fiur 4: Vrtx lls or oniurtions (C6), (C7), n (C8). 0 Lmm.7. (C6) is ruil oniurtion. 8

9 04 Proo. T olors 1 n 4 r trmin. I 1 n 4 r ot in L 0, tn slt 5 rom 05 L 5 \ (L 0 { 1, 4 }); otrwis, slt 5 L 5 \ { 1, 4 } ritrrily. Din L 0 = L 0 \ { 1, 4, 5 }, 06 L = L \ { 1 }, n L = L \ { 4 } n not tt L i or ll i {0,, }. I L 0 = L =, 07 tn L 0 L, so t -yl v 0v v s n L -olorin y Ft Lmm.8. (C7) is ruil oniurtion. Proo. I L 1 L =, tn rily olor v n v ; wt rmins is (C4) n t olorin xtns. A similr rumnt works i L L =. I L 1 L =, tn L 1 L = L L = 1. Slt 1 L 1 \ L, L \ L. Din L 0 = L 0 \ { 1, }, L 4 = L 4 \ { }, n L 5 = L 5 \ { 1 }. Osrv tt w n L -olor t -yl v 0 v 4 v 5 y Ft.5 n tn slt L \ { 0 }. I tr xists olor L 1 L, strt y ssinin 1 = = n tn ssin L \ {}. Din L 0 = L 0 \ {, }, L 4 = L 4 \ {}, n L 5 = L 5 \ {}. Osrv tt t -yl v 0 v 4 v 5 s n L -olorin y Ft.5. Lmm.9. (C8) is ruil oniurtion. 18 Proo. I tr xists olor L 1 L 4, strt y ssinin 1 = 4 = ; tn rily olor t 19 rminin vrtis in t ollowin orr: v, v, v 0, v 5. Otrwis, L 4 L 1 =. 0 Suppos tt L 1 L 5 =. Slt olor 4 L 4. Consirin v 4 s n xtrnl vrtx n 1 inorin t s v 1 v 5 n v 0 v 5, t 4-yl v 0 v 1 v v orms opy o (C4), wi is ruil y Corollry.4. Tus, tr xists n L-olorin o v 0,..., v 4 ; tis olorin xtns to v 5 sin L 1 L 5 =. I L 4 L 5 =, tn tr xists n L-olorin y symmtri rumnt. 4 Otrwis, tr xist olors L 1 \ L 5 n L 4 \ L 5 ; ssin 1 = n 4 =. Slt 5 L \ {}. Din L 0 = L 0 \ { 1,, 4 } n L = L \ {, 4 }. Not tt i L 0 = L = 1, 6 tn L 0 L = {, 4 } n n L 0 L =. Tus, t olorin xtns y rily olorin v, 7 v 0, n v Lmm.10. (C9) is ruil oniurtion. Proo. Consir t vrtx v o ritrry xtrnl r n lt (v) t olor ssin to v. Lt u 1 n u t two niors o v in t oniurtion. I w rmov (v) rom t lists on u 1 n u, osrv tt t lst two olors rmin in vry list or vry vrtx o t 5-yl. I tr is no L-olorin o t oniurtion, tn Ft.5 ssrts tt ll lists v siz two n ontin t sm olors; owvr, tis implis tt L(u 1 ) = L(u ) n L(u 1 ) L(u ) =, ontrition..1. Tmplt Coniurtions T oniurtions (C17) (C1) r spil ss o nrl onstrutions ll tmplt onstrutions. Lt (C, X, x) oniurtion wit vrtis u, v X. A uv-pt P is ll spil uv-pt i ll intrnl vrtis o P v r two in C n xtrnl r two. A uv-pt P is ll n xtr-spil uv-pt i ll intrnl vrtis v o P v xtrnl r x(v) = n r in C, not y (v), two, xpt or onsutiv pir xy wr x(x) = x(y) = 1, (x) = (y) =, n tr is vrtx z / X su tt z is ommon nior to x n y, n z is not jnt to ny otr vrtis in C. Usin ts spil n xtr-spil pts, w n sri svrl oniurtions y t ollowin tmplts (s Fiur 5), onsistin o 9

10 (B1) trinl uvw, wr x(u) = x(w) =, x(v) = 0, n xtr-spil uv-pt P 1, n spil vw-pt P, n (B) trinl vwr, wr x(r) =, x(w) = 1, x(v) = 0, vrtx u jnt to v wr x(u) =, n xtr-spil uv-pt P 1, n spil vw-pt P. z y v x u w P 1 P (B1) P 1 r u w v x y z (B) Dott lins init spil pts or xtr-spil pts. Vrtis in X r ill wit wit. Fiur 5: Tmplts or ruil oniurtions. 49 W mk som si osrvtions out spil n xtr-spil pts tt will us to 50 prov tt ts tmplts orrspon to ruil oniurtions. 51 Lt P spil uv-pt or n xtr-spil uv-pt. For vry olor L(u), lt P u () 5 t st ontinin olor L(v) su tt ssinin (u) = n (v) = os not xtn 5 to n L-olorin o P. Sin w n rily olor P strtin t u until rin v, tr is t most 54 on olor in P u (). Furtr, u P () i n only i tis ry olorin pross s xtly on 55 oi or vrtx in P. Tus, i P u P () = {}. 56 Sin L is n (, )-list ssinmnt, jnt vrtis v t most two olors in ommon. Tus, 57 tr r t most two olors 1, L(u) su tt P u ( i). Morovr, osrv tt i tr 58 r two istint olors 1, L(u) su tt P u ( i), tn ot 1 n r in vry list 59 lon P n n { 1, } L(v). 60 I P is n xtr-spil uv-pt wit -yl xyz wr xy is in t pt P, tn tr olor 61 is ssin to z (s x(z) = ) itr on o x or y s tr olors vill or L(x) L(y) 1. 6 Tror, i P is n xtr-spil uv-pt, tn tr is t most on olor L(u) su tt 6 (). u P P Lmm.11. All oniurtions mtin t tmplt (B1) r ruil. Proo. Lt (C, X, x) oniurtion mtin t tmplt (B1) n lt L n (, )-list ssinmnt. Lt L(u) = { 1, }. Sin P 1 is n xtr-spil pt, tr is t lst on i {1, } su tt P u 1 ( i ) =. Assin (u) = i, slt (w) L(w)\{ i } n (v) L(v)\ ( {(u), (w)} P w 1 ((w)) ) ; t olorin xtns to P 1 n P. Corollry.1. T oniurtions (C17), (C18), n (C19) mt t tmplt (B1), n n ty r ruil. Lmm.1. All oniurtions mtin t tmplt (B) r ruil. 10

11 Proo. Lt (C, X, x) oniurtion mtin t tmplt (B) n lt L n (, )-list ssinmnt. Lt (r) t uniqu olor in t list L(r). Lt L(u) = { 1, }. Sin P 1 is n xtr-spil pt, tr is t lst on i {1, } su tt P u 1 ( i ) =. Assin (u) = i. I (r) / L(v), tn slt (w) L(w), n L(v) L(v) \ ( {(u), (w)} P w ((w)) ) ; t olorin xtns to P 1 n P. I (r) L(v), tn slt (w) L(w) \ L(v); osrv (w) (r). Tr xists olor (v) L(v) \ ( {(r), (u)} P w ((w)) ) ; t olorin xtns to P 1 n P. Corollry.14. Usin Lmm., t oniurtions (C0) n (C1) mt t tmplt (B), n n ty r ruil. 4 No Cor 5-Cyl In tis stion w sow t s o oriin or 5-yls rom Torm 1.7. Torm 4.1. I G is pln rp not ontinin or 5-yl, tn G is (4, )-oosl. Proo. Lt G ountrxmpl minimizin n(g) mon ll pln rps voiin or 5- yls wit (4, )-list ssinmnt L su tt G is not L-oosl. Osrv tt n(g) 4; in t, δ(g) 4. Sin G is miniml ountrxmpl, G os not ontin ny o t ruil oniurtions (C9) (C1). I (C, X, x) is ruil oniurtion, tn y Lmm. C os not ppr s surp o G wr G (x) C (x) + x(x) or ll x V (C). Furtr, t oniurtions (C1) (C1) r lr nou tt w must onsir oniurtions tt r orm y intiyin rtin pirs o vrtis in ts oniurtions. In Appnix A, w onrtly k ll vrtx pirs tt voi rtin or 5-yl n in tt ll rsultin oniurtions r ruil. For v V (G) n F (G) in initil rs µ 0 (v) = (v) 6 n µ 0 µ 0 () = l() 6. By Eulr s Formul, t sum o initil rs is 1. Atr rs r initilly ssin, t only lmnts wit ntiv initil r r 4-vrtis n 5-vrtis. Sin or 5-yls r orin, tr is no -n in G n vry 4- is jnt to only 4 + -s. T possil rrnmnts o -, 4 + -, or 5 + -s inint to 4- n 5-vrtis r sown in Fiur 6. Squntilly pply t ollowin isrin ruls. Not tt, or vrtx v n, w in µ i (v) n µ i () to t r on v n, rsptivly, tr pplyin rul (Ri). (R1) Lt v 4-vrtx n inint to v. I is jnt to - tt is lso inint to v, tn sns r 1 to v; otrwis, sns r 1 to v (R) Lt v 5-vrtx. I is inint to v, tn sns r 1 A is ny i µ () < 0; otrwis, is non-ny. to v (R) I v is 5-vrtx inint to ny 5-, tn v sns r 1 A vrtx v is ny vrtx i µ (v) < 0; otrwis, v is non-ny. to. 07 (R4) I is non-ny inint to ny 5-vrtx v, tn sns r 1 to v. 11

12 v v v v () () () () v v v v v () () () () (i) Fiur 6: Possil yli rrnmnts o -, 4 + -, n 5 + -s inint to 4- n 5-vrtis 08 W sow tt µ 4 (v) 0 or vrtx v n µ 4 () 0 or. Sin t totl r 09 ws prsrv urin t isrin ruls, tis ontrits t ntiv r sum rom t initil 10 r vlus. W in y onsirin t r istriution tr pplyin (R1) n (R). 11 Lt v vrtx. I v is 4-vrtx, tn µ 0 (v) = n v rivs totl r t lst rom 1 its niorin s y (R1). Furtrmor, v is not t y ny ruls tr (R1), so µ 4 (v) 0. 1 I v is 6 + -vrtx, tn µ 0 (v) 0 n v is not t y ny otr ruls, so µ 4 (v) 0. I v is 14 5-vrtx, tn µ 0 (v) = 1 n v rivs totl r t lst 1 rom its niorin s y (R). 15 Tror, or ny vrtx v, µ (v) Lt. I is -, tn µ 0 () = 0 n is not t y ny rul, so µ 4 () = I is 4-, tn µ 0 () =. In (R1) n (R), t only s tt sn r 1 to sinl 18 vrtx r jnt to -. A 4- jnt to - is or 5-yl, wi is orin y ssumption, so sns r t most 1 to vrtx. Sin 4-s r not t y ruls 0 (R) (R4), µ 4 () 0. I is 6 + -, tn s t lst s mu initil r s it s inint 1 vrtis. I v is 4-vrtx inint to, tn sns r t most 1 to v y (R1) n os not sn ny r to v y ruls (R) (R4). I v is 5-vrtx inint to, tn sns r 1 to v y (R1), n possily notr r 1 y (R4), n os not sn r to v y (R1) or (R). 4 Tus sns r t most 1 to inint vrtx, n µ 4 () 0. 5 I is 5-, tn µ 0 () = 4 n sns r t most 1 to inint vrtx y (R1) 6 n (R). Osrv tt i µ () = 1, tn is inint to iv 4-vrtis n is jnt to t 7 lst on -; tis orms (C9), ontrition. Tror, w v t ollowin lim out t 8 strutur o ny 5-vrtx. Clim 4.. I is ny 5-, tn µ () = 1 9 n is jnt to xtly on 5-vrtx. W now onsir t r istriution tr pplyin (R). I is ny 5-, tn µ () = 1 n is jnt to xtly on 5-vrtx, so µ () = 0. No s los r in (R), tror µ () 0 or ny. Clim 4.. I v is ny 5-vrtx, tn v is inint to tr -s, two 4 + -s, n xtly on ny 5-; n µ (v) = 1. 1

13 Proo. Suppos tt v is vrtx su tt µ (v) < 0, n onsir t yli rrnmnt o - n 4 + -s out v. Cs 1: v is inint to t lst our 4 + -s (Fiurs 6() n 6()). Sin µ (v) 1 n µ (v) < 0, v is inint to t lst tr ny 5-s. Hn two o t ny 5-s r jnt, ormin (C1), ontrition. Cs : v is inint to two non-jnt -s n tr 4 + -s (Fiur 6()). Sin µ (v) = 1 n µ (v) < 0, v is inint to two ny 5-s, 1 n. I ts two s r jnt, tn ty orm (C1), ontrition. Otrwis, ty sr - t s nior n ll vrtis inint to 1,, n t otr tn v r 4-vrtis, so t vrtis inint to 1 n t orm (C10), ontrition. Cs : v is inint to two jnt -s n tr 4 + -s (Fiur 6()). Sin µ (v) = 1 n µ (v) < 0, v is inint to two ny 5-s, 1 n. I 1 n r jnt tn ty orm (C1), ontrition. Tus, 1 n r not jnt, ut ty r jnt to - inint to v. Sin i is ny or i {1, }, i snt r 1 to vry 4-vrtx inint to i. By (R1), vry 4-vrtx inint to i is inint to - jnt to i. Tror, 1 is jnt to - tt os not sr ny vrtis wit t t two -s inint to v, ormin on o (C0) or (C1), ontrition. Cs 4: v is inint to tr -s n two 4 + -s (Fiur 6(i)). I v is inint to two ny 5-s 1 n, tn t - t jnt to ot 1 n is inint to two 4-vrtis, n t vrtis inint to 1 n t orm (C10), ontrition. Tror, v is inint to xtly on ny 5-, s lim. By (R4), vry ny 5-vrtx rivs r 1 rom its uniqu inint non-ny 5+ -, so µ 4 (v) 0 or vry vrtx v. E ny 5- s nonntiv r tr (R), so i µ 4 () < 0 or som 5-, tn sns r y (R4), n tus is non-ny. 1 t 1 t v 1 t v 5 v 4 v v i+1 v i+1 u t v i i i+1 u t v i+1 v i w i () A 5- wit µ 4() < 0. () Clim 4.5, Cs 1. () Clim 4.5, Cs. Fiur 7: Spil ss or 5- wit µ 4 () < Consir t Fiur 7(), wr is 5- wit µ 4 () < 0, is inint to vrtis v 1,..., v 5, v 1 is ny 5-vrtx, n 1 is t ny 5- inint to v 1. Lt t 1 n t t jnt 1

14 pir o -s inint to v 1 wit t 1 jnt to 1 n t jnt to ; lt t t otr - inint to v 1. W mk two si lims out tis rrnmnt. Clim 4.4. T vrtx v jnt to v 1 n inint to t is 5 + -vrtx. Proo. I v is 4-vrtx, tn t vrtis inint to 1 n t orm (C10), ontrition. Clim 4.5. I v i n v i+1 r onsutiv vrtis on t orr o, tn t most on o v i n v i+1 is ny. Proo. Suppos tt two onsutiv vrtis v i n v i+1 r ny 5-vrtis. Lt i n i+1 t ny 5-s inint to v i n v i+1, rsptivly. Sin ot v i n v i+1 v tr inint -s, is jnt to - t ross t v i v i+1. Lt u t tir vrtx inint to t n onsir two ss. Cs 1: t is not in imon (Fiur 7()). Sin i is ny, t vrtx jnt to u n inint to i (wit v i ) is 4-vrtx n is inint to - t i su tt t i is jnt to i. T vrtis inint to i, i+1, t, n t i orm on o (C15) or (C19), ontrition. Cs : t is in imon (Fiur 7()). Lt w t ourt vrtx in t imon n ssum, witout loss o nrlity, tt v i is jnt to w. Lt t vrtx inint to i+1 tt is not jnt to u or v i+1 lon t ounry o i+1 ; sin i+1 is ny, tr is - t i+1 inint to n jnt to i+1. T vrtis v i n w n tos inint to i+1 n t i+1 orm on o (C17) or (C18), ontrition By Clim 4.5, is inint to t most two ny vrtis, n y Clim 4.4, v is non-ny. I 80 is inint to xtly on ny 5-vrtx, tn v, v 4, n v 5 r 4-vrtis sin µ () = 0, ut 81 tn t vrtis inint to n 1 orm (C14), ontrition. 8 Tror, is inint to two ny vrtis, n sin v is 5 + -vrtx y Clim 4.4, is inint to xtly two 4-vrtis. E o ts rivs r 1, so µ 4 () = 1. By Clim 4.5, 84 t ny vrtis inint to onsist o v 1 n xtly on o v or v 4. T ny 5-vrtx v i 85 otr tn v 1 is lso inint to tr -s t 4, t 5, n t 6, wr t 4 n t 5 orm imon wit t 4 86 jnt to. By Clim 4.4, t vrtx jnt to v i n inint to ot n t 6 is non-ny vrtx. T only non-ny 5 + -vrtx inint to is v, n n v is ny 5-vrtx n 88 t 4 is inint to v 4. I v is 6 + -vrtx, tn µ 4 () 0. Tror, tr is uniqu rrnmnt o 89 ny vrtis, 4-vrtis, n 5-vrtx out 5- wit µ 4 () < 0 (Fiur 8). For i {1, }, 90 lt i t ny 5- inint to t ny 5-vrtx v i. 91 T vrtis inint to, 1,, t, n t 6 orm (C16), so tis rrnmnt os not ppr 9 witin G; n µ 4 () 0 or ll 5-s. Tror, vry vrtx n s nonntiv 9 r tr (R4), ontritin t ntiv initil r sum. Tus, miniml ountrxmpl 94 os not xist n vry pln rp wit no or 5-yl is (4, )-oosl No Cor 6-Cyl In tis stion w sow t s o oriin or 6-yls rom Torm 1.7. Torm 5.1. I G is pln rp not ontinin ny or 6-yl, tn G is (4, )-oosl. 14

15 v 5 v 4 t t 4 t 1 t 5 v 1 v 1 v t t 6 Fiur 8: A non-ny 5-vrtx v inint to non-ny 5- wit µ 4 () < W prov t ollowin strntn sttmnt. Torm 5.. Lt G pln rp wit no or 6-yl, n lt P surp o G, wr P is isomorpi to on o P 1, P, P, or K, n ll vrtis in V (P ) r inint to ommon. Lt L (4, )-list ssinmnt o G P n lt propr olorin o P. Tr xists n xtnsion o to propr olorin o G su tt (v) L(v) or ll v V (G P ). 40 Proo. Suppos tt tr xists ountrxmpl. Slt ountrxmpl (G, P, L, ) y minimizin n(g) 1 4n(P ) n sujt to tt y minimizin t numr o s mon ll or yl r pln rps, G, wit surp P isomorpi to rp in {P 1, P, P, K }, propr 406 olorin o P, n (4, )-list ssinmnt L o G P su tt os not xtn to n L-olorin 407 o G. W will rr to t vrtis o P s prolor vrtis. 408 Clim 5.. G is -onnt Proo. I G is isonnt, tn onnt omponnt n olor sprtly y t minimlity o G. Suppos tt G s ut-vrtx v. Tn tr xist onnt surps G 1 n G wr G = G 1 G n V (G 1 ) V (G ) = {v}, n(g 1 ) < n(g), n n(g ) < n(g). W n ssum witout loss o nrlity tt G 1 ontins t lst on vrtx o P, so lt S 1 t surp o P ontin in G 1. Lt S = {v} (V (G ) V (P )). Sin (G, P, L, ) is miniml ountrxmpl, tr is n L-olorin 1 o G 1 tt xtns t olorin on S 1. Usin t olor prsri y 1 on v, tr xists n L-olorin o G tt xtns t olorin on S. T olorins 1 n orm n L-olorin o G, ontrition. Clim 5.4. G s no sprtin -yls. Proo. Suppos tt P = v 1 v v is sprtin -yl o G. Lt G 1 t surp o G ivn y t xtrior o P lon wit P, n lt G t surp o G ivn y t intrior o P lon wit P. Sin P is sprtin, n(g 1 ) < n(g) n n(g ) < n(g). Sin t vrtis in P sr ommon, w n ssum witout loss o nrlity tt V (P ) V (G 1 ). Sin (G, P, L, ) is miniml ountrxmpl, tr xists n L-olorin 1 o G 1. Assin t olors rom 1 to P. Tn tr xists n L-olorin o G xtnin t olors on P, n totr 1 n orm n L-olorin o G, ontrition. Clim 5.5. I v V (P ) su tt V (P ) N[v], tn t surp o G inu y N(v) is not isomorpi to ny rp in {P 1, P, P, K }. 15

16 Proo. Suppos tt tr xists vrtx v V (P ) wr ll prolor vrtis r in N[v] n t surp G[N(v)] is isomorpi to surp in {P 1, P, P, K }. Sin N G [v] 4, tr xists n L-olorin o G[N[v]]. Sin (G, P, L, ) is miniml ountrxmpl, xtns to n L-olorin o G, wi in turn xtns to n L-olorin o G, ontrition. Clim 5.6. I v V (P ) s G (v), tn G (v) = n P is isomorpi to P 1, P, or P. Proo. By Clim 5., G (v) 1. I G (v) = n P = K, tn G[N G (v)] is isomorpi to P, ontritin Clim 5.5. Clim 5.7. P is isomorpi to P. 45 Proo. Suppos tt P is not isomorpi to itr P or K. I P is isomorpi to P 1, tn t 46 vrtx v o P s two istint niors u 1 n u tt r on t sm s v; lt U = {u 1, u }. 47 I P is isomorpi to P, tn som vrtx v in P s nior u 1 not in P tt srs 48 wit t in P ; lt U = {u 1 }. Lt P inu y V (P ) V (U). Noti P = n it 49 is isomorpi to P or K. Tr xists propr olorin o P tt xtns t olorin on P. But tn (G, P, L, ) s n(g) 1 4 n(p ) < n(g) 1 4n(P ), so tr xists n L-olorin o G tt 441 xtns, ontrition. 44 I P is isomorpi to K, w n rmov ny wit ot vrtis in P. By minimlity 44 o G, tr xists n L-olorin xtnin in G ut it is lso n L-olorin o G sin ot 444 npoints o v irnt olor in, ontrition Clim 5.8. I v V (G P ), tn G (v) 4. Proo. Suppos tt v V (G P ) s r (v). Tn G v is plnr rp wit no or 7-yl ontinin prolor surp P n list ssinmnt L. Sin (G, P, L, ) is minimum ountrxmpl, G v s n L-olorin. Howvr, v s t most tr niors n t lst our olors in t list L(v). Tus, tr is n xtnsion o t L-olorin o G v to n L-olorin o G, ontrition. Clim 5.4 lps us to prov t ollowin jnis o s. Clim 5.9. I 5-5 is jnt to trinl tn tr is -vrtx inint to ot o tm. Morovr, vry 5- is jnt to t most on trinl. Proo. Lt 5 5- oun y yl v 1, v, v, v 4, v 5. Lt - wit vrtis v 1 v x. Sin G s no or 6-yl, x {v, v 4, v 5 }. I x = v 4, tn Clim 5.4 implis v 1 v 4 v 5 n v v v 4 r lso trinulr s n w otin ontrition wit Clim 5.8 sin G is rp on 5 vrtis n only on 4 + -vrtx. By symmtry twn v n v 5 suppos tt x = v. Tn v is t sir -vrtx n w r on. Suppos tt 5 is jnt to two trinl s. E o tm s -vrtx in ommon wit 5. By symmtry ssum ts -vrtis r v n v 5. Tn v 1 v 4 n v v 4 r s n v 1 v v 4 is trinl jnt to 5 not srin ny -vrtx wit 5, wi is ontrition. Clim I two 4-s r jnt tn ty r ot inint to t sm -vrtx 16

17 Proo. Lt 1 n jnt 4-s oun y yls v 1, v, v, v 4 n v 1, v, x, x 1 rsptivly. Sin G os not ontin or 6-yls, 1 n must sr t lst vrtis. I ty sr our vrtis, w t ontrition wit Clim 5.8. By symmtry w ssum x 1 is v or v 4. I x 1 = v tn v, x, v n v 1, v, v 4 r trinulr s n w otin ontrition wit Clim 5.8. Hn x 1 = v 4 n v 1 s r two. Clim I 4- srs two or mor s wit trinulr s, tn it srs s wit xtly two. Morovr, tr is -vrtx v V (P ) inint to ot trinulr s n to. Proo. Lt 4- oun y yl v 1, v, v, v 4 n ssum tt v 1, v, x is trinulr. I x {v, v 4 } tn G woul violt Clim 5.4 or Clim 5.8. Hn x is not vrtx o t yl. Suppos or ontrition v, v 4, y is lso trinulr. Sin G os not ontin or 6-yls, x = y. By Clim 5.4, G s only 5 vrtis n ontrits Clim 5.8. Hn is jnt to t most two trinls. Assum tt v 4, v 1, y is trinulr. Sin G os not ontin or 6-yls, x = y. Tn v 1 is t sir -vrtx sin y Clim 5.8, v 1 V (P ). Clim 5.1. Evry -vrtx is jnt to t most two trinulr s. Proo. Lt v -vrtx jnt to tr trinulr s. Not tt ts r ll t s ontinin v. Tis ontrits tt P = P. 481 Sin G is miniml ountrxmpl, G os not ontin ny o t ruil oniurtions. 48 Spiilly, w us t t tt G vois (C) n (C4) (s Fiur ), wr no rmov vrtx 48 is prolor. 484 For v V (G) V (P ), p V (P ), n F (G) in initil r µ 0 (v) = (v) 4, 485 µ 0 (p) = (p) n µ 0 () = l() 4. By Eulr s Formul, t initil r sum is 8 + =. Sin δ(g P ) 4, t only lmnts o ntiv r r -s. Sin 487 or 6-yl is orin, δ(g P ) 4, n Clim 5.4, t lustrs (s Fiur 1) r trinls 488 (K), imons (K4), -ns (K5), 4-wls (K5), n 4-ns wit n vrtis intii (K5). 489 Spiilly not tt t 4-n (K6) ontins or 6-yl, so t most tr -s in 490 lustr sr ommon vrtx, unlss ty orm 4-wl (K5) n t ommon vrtx is t vrtx in t ntr o t wl. 49 Apply t ollowin isrin ruls, s sown in Fiur (R1) I p is -vrtx inint wit two 4-s, tn p sns r 9 to o tm. 494 (R) I is - n is n inint, tn lt t jnt to ross. (R) I is 5 + -, tn pulls r rom trou t. (R) I is 4- jnt to on -, tn lt 1,, n t otr s inint to For i {1,, }, lt i t jnt to ross i. For i {1,, }, t pulls r 1 9 rom t i trou t s n i. (R) I is 4- jnt to two -s, tn lt 1 n s o not inint to -s. For i {1, }, lt i t jnt to ross i. For i {1, }, t pulls r 1 18 rom t i trou t s n i. Lt v t vrtx sr y, n t otr -. Tn v sn r 9 to trou. 17

18 50 (R) Lt v 5 + -vrtx or prolor, n lt n inint -. (R) I v is 5-vrtx tt is not prolor, tn v sns r (R) I v is 6 + -vrtx or prolor, tn v sns r to. 9 to (R4) I X is lustr, tn vry - in X is ssin t vr r o ll -s in X. Noti tt prolor vrtis v similrly to 6 + -vrtis (R) (R) (R) (R) v 1 v p v (R1) (R) Fiur 9: Disrin ruls in t proo o Torm Noti tt t ruls prsrv t sum o t rs. Lt µ i (v) n µ i () not t r 509 on vrtx v or tr rul (Ri). W lim tt µ 4 (v) 0 or vry vrtx v n µ 4 () or vry ; sin t totl r sum is prsrv y t isrin ruls, tis ontrits 511 t ntiv r sum rom t initil r vlus. I v is 6 + -vrtx, tn y (R) v loss r 4 9 to inint -. Sin G vois or 6-yls, v is inint to t most 51 4 (v) -s. Tus µ 4(v) stisis µ 4 (v) (v) (v) (v) (v) = (v) Lt v 5 -vrtx not in P. I v is 4-vrtx, tn v is not involv in ny rul, so t rsultin r is 0. I v is 5-vrtx, tn y (R) v loss r 1 to inint -. 18

19 Sin G vois or 6-yls, v is inint to t most tr -s, so µ 4 (v) (v) 4 1 = (v) 5 = 0. Tror, µ 4 (v) 0 or vry vrtx v not in P. Lt v 5 -vrtx in P. I v is 5-vrtx or 4-vrtx tn rul (R) pplis t most (v) tims n µ 4 (v) (v) (v) > 0. 9 I v is -vrtx tn y Clim 5.1 (R) n (R) pply t most twi n µ 4 (v) (v) > 0. I v is -vrtx, tn t most on o (R1) n (R) pply n i (R) pplis, it pplis only on. Hn µ 4 (v) (v) = 0. Tror ll vrtis v V (G) v µ 4 (v) 0. Lt 4-. I (R) or (R) pplis to tn it must jnt to notr 4- n y Clim 5.10 n ty sr -vrtx v. Hn (R1) pplis to n v n t r lost in (R) n (R) is t most t r in in (R1). Tus, µ 4 () 0 or vry 4-. I is 6 + -, tn loss r t most 1 trou y (R), (R), or (R), so µ 4 () l() 4 1 l() = l() 4 0. Tror, µ 4 () 0 or vry Lt 5-. I is not jnt to -, loss no r y (R), ut oul los r usin (R) n (R), so µ 4 () l() l() = 8 l() I is jnt to -, y Clim 5.9 it is jnt to t most on n it srs t most two s wit it, so (R) is pplis t most twi wil t most r is lost trou o t 540 rminin tr s y (R) n (R) n w otin µ 4 () l() = 0. Tror, µ 4 () 0 i is 5-. All ojts tt strt wit nonntiv r v nonntiv r tr t isrin pross. It rmins to sow tt lustr o -s rivs nou r to rsult in nonntiv r sum. Osrv tt t ruls (R), (R), n (R) urnt tt i trinl is srin n wit 4 + -, tn rivs totl r 1 trou Cs 1: (K) Lt n isolt -. T tr jnt s 1,, n r ll 4 + -s. By (R), rivs r 1 trou inint, so µ 4() = = 0. 19

20 Cs : (K4) Lt 1 n -s in imon lustr (K4). Tn 1 is jnt to two s 1 n, n is jnt to two 4 + -s 1 n. By (R), t lustr rivs r trou o t our s on t ounry o t imon. Sin µ 0( 1 ) + µ 0 ( ) =, t r vlu on t imon tr rul (R) is. Sin G ontins no (C), tr is vrtx v inint to ot 1 n. I v is 5-vrtx, tn y (R), 1 n riv 554 r 1, n t rsultin r on t imon is zro. I v is 6+ -vrtx, tn y (R), n riv r 4 9, n t rsultin r on t imon is positiv. 556 Cs : (K5) Lt 1,, n -s in -n lustr (K5), wr is jnt to ot n. T initil r on tis lustr is. Tr r iv s on t ounry o tis lustr, so y (R) t lustr rivs r 5, rsultin in r 4 tr (R). Not tt 559 t is jnt to ot 1 n. Sin G ontins no (C), tr xists 5 + -vrtx v 560 inint to ot 1 n, n tr xists 5 + -vrtx u inint to ot n. I v u, tn y (R) v sns r t lst 1 to o 1 n n u sns r t lst 1 to 56 o n, rsultin in nonntiv r on t -n. I v = u n v is 6 + -vrtx, tn 56 y (R) v sns r 4 9 to 1,, n, rsultin in nonntiv r on t 564 -n. Otrwis, suppos tt v = u n v is 5-vrtx. Sin G ontins no (C4), tr xists notr 5 + -vrtx w inint to t lst on o 1 n. By (R) v sns r 1 to o 566 1,, n, n y (R) w sns r t lst 1 to t lst on o 1 n, rsultin in 567 nonntiv r on t -n. 568 Cs 4: (K5) Lt 1,,, n 4 -s in 4-wl (K5). T initil r on tis 569 lustr is 4. Tr r our s on t ounry o tis lustr, so y (R) t lustr rivs r 4, rsultin in r 8 tr (R). Lt v t 4-vrtx inint to ll our -s. 571 Lt u 1, u, u, n u 4 t vrtis jnt to v, orr ylilly su tt vu i u i+1 is t 57 ounry o t - i or i {1,, } n vu 4 u 1 is t ounry o 4. Sin G ontins no (C) n (v) = 4, u i is 5 + -vrtx. By (R), u i sns r t lst to t 574 lustr, rsultin in nonntiv totl r. 575 Cs 5: (K5) Lt 1,,, n 4 -s in 4-strip wit intii vrtis s in (K5). T 576 initil r on tis lustr is 4. Lt v, u 1, u, u, n u 4 t vrtis in t 4-strip, wr 577 v is inint to only 1 n 4, u 1 is inint to only 1 n, u is inint to,, n 4, 578 u is inint to 1,, n, n u 4 is inint to only n 4. Tr r six s on t ounry o tis lustr, so y (R) t lustr rivs r 6, rsultin in r 6 = 580 tr (R) Sin n orm imon, n G ontins no (C), on o u n u is 5 + -vrtx. Witout loss o nrlity, ssum u is 5 + -vrtx. Sin n 4 orm imon, n G ontins no (C), on o u n u 4 is 5 + -vrtx. I u is 5 + -vrtx, tn y (R), t lustr rivs r t lst + rom u n u, wi rsults in nonntiv totl r. Otrwis, u is 4-vrtx n u 4 is 5 + -vrtx. I u is 6 + -vrtx, tn y (R), t lustr rivs r t lst 4 + rom u n u 4. I u is 5-vrtx, tn sin 1 n orm imon n G ontins no (C4), on o v n u 1 is 5 + -vrtx. By (R), t lustr rivs r t lst + + rom u n u 4 n on o v n u 1. In itr s, t inl r is nonntiv. W v vrii tt t totl r tr isrin is nonntiv, ontritin t ntiv initil r sum. Tus, miniml ountrxmpl os not xist n vry plnr rp 0

21 wit no or 6-yl is (4, )-oosl. 6 No Cor 7-Cyl Torm 6.1. I G is pln rp not ontinin or 7-yl, tn G is (4, )-oosl. W prov t ollowin strntn sttmnt: Torm 6.. Lt G pln rp wit no or 7-yl, n lt P surp o G, wr P is isomorpi to on o P 1, P, P, or K, n ll vrtis in V (P ) r inint to ommon. Lt L (4, )-list ssinmnt o G P n lt propr olorin o P. Tr xists n xtnsion o to propr olorin o G su tt (v) L(v) or ll v V (G P ). 600 Proo. Suppos tt tr xists ountrxmpl. Slt ountrxmpl (G, P, L, ) y minimizin n(g) 1 4n(P ) mon ll or 7-yl r pln rps, G, wit surp P isomorpi 60 to rp in {P 1, P, P, K }, propr olorin o P, n (4, )-list ssinmnt L o G P 60 su tt os not xtn to n L-olorin o G. W will rr to t vrtis o P s prolor 604 vrtis. 605 Clim 6.. G is -onnt Proo. I G is isonnt, tn onnt omponnt n olor sprtly. Suppos tt G s ut-vrtx v. Tn tr xist onnt surps G 1 n G wr G = G 1 G n V (G 1 ) V (G ) = {v}, n(g 1 ) < n(g), n n(g ) < n(g). W n ssum witout loss o nrlity tt G 1 ontins t lst on vrtx o P, so lt S 1 t surp o P ontin in G 1. Lt S = {v} (V (G ) V (P )). Sin (G, P, L, ) is miniml ountrxmpl, tr is n L-olorin 1 o G 1 tt xtns t olorin on S 1. Usin t olor prsri y 1 on v, tr xists n L-olorin o G tt xtns t olorin on S. T olorins 1 n orm n L-olorin o G, ontrition. Clim 6.4. G s no sprtin -yls. Proo. Suppos tt P = v 1 v v is sprtin -yl o G. Lt G 1 t surp o G ivn y t xtrior o P lon wit P, n lt G t surp o G ivn y t intrior o P lon wit P. Sin P is sprtin, n(g 1 ) < n(g) n n(g ) < n(g). Sin t vrtis in P sr ommon, w n ssum witout loss o nrlity tt V (P ) V (G 1 ). Sin (G, P, L, ) is miniml ountrxmpl, tr xists n L-olorin 1 o G 1. Assin t olors rom 1 to P. Tn tr xists n L-olorin o G xtnin t olors on P, n totr 1 n orm n L-olorin o G, ontrition. Clim 6.5. I v V (P ) su tt V (P ) N[v], tn t surp o G inu y N(v) is not isomorpi to ny rp in {P 1, P, P, K }. Proo. Suppos tt tr xists vrtx v V (P ) wr ll prolor vrtis r in N[v] n t surp G[N(v)] is isomorpi to surp in {P 1, P, P, K }. Tn onsir t rp G = G v. Sin N G [v] 4, tr xists n L-olorin o G[N[v]]. Sin (G, P, L, ) is miniml ountrxmpl, xtns to n L-olorin o G, wi in turn xtns to n L-olorin o G, ontrition. 1

22 Clim 6.6. I v V (P ) s G (v), tn G (v) = n P is isomorpi to P 1, P, or P. Proo. By Clim 6., G (v) 1. I G (v) = n P = K, tn G[N G (v)] is isomorpi to P, ontritin Clim 6.5. Clim 6.7. P is isomorpi to on o P or K. 6 Proo. Suppos tt P is not isomorpi to itr P or K. I P is isomorpi to P 1, tn t 64 vrtx p o P s two niors u 1 n u tt r on t sm s p; lt U = {u 1, u }. I P is 65 isomorpi to P, tn som vrtx v in P s nior u 1 not in P tt srs wit t 66 in P ; lt U = {u 1 }. Lt P inu y V (P ) V (U). Noti P = n it is isomorpi 67 to P or K. Tr xists propr olorin o P tt xtns t olorin on P. But tn (G, P, L, ) s n(g) 1 4 n(p ) < n(g) 1 4n(P ), so tr xists n L-olorin o G tt xtns 69, ontrition Clim 6.8. I v V (G P ), tn G (v) 4. Proo. Suppos tt v V (G P ) s r (v). Tn G v is plnr rp wit no or 7-yl ontinin prolor surp P n list ssinmnt L. Sin (G, P, L, ) is minimum ountrxmpl, G v s n L-olorin. Howvr, v s t most tr niors n t lst our olors in t list L(v). Tus, tr is n xtnsion o t L-olorin o G v to n L-olorin o G, ontrition. Osrv tt n(g) 4. Rll tt in oniurtion (C, X, x), n L-olorin o V (C) \ X xtns to ll o C. Bus o tis t, i G ontins ruil oniurtion (C, X, x), tn tr is prolor vrtx in t st X, or ls G X s n L-olorin tt xtns to ll o G. Spiilly, w will us t t tt G vois (C), (C), (C4), (C5), (C6), (C7), n (C8). For v V (G) n F (G) in µ 0 (v) = (v) 4 + δ(v) n µ 0 () = l() 4 + ε(), wr δ(v) {0, 1} s vlu 1 i n only i v V (P ), n ε() {0, 1} s vlu 1 i n only i t ounry o is t st o prolor vrtis, V (P ). By Eulr s Formul, t initil r sum is t most 1. Clims 6.6 n 6.8 ssrt tt t only ntivly-r ojts r -s. For vrtx v, lt t k (v) not t numr o k-s inint to v. Apply t ollowin isrin ruls. Lt µ i (v) n µ i () not t r on vrtx v or tr rul (Ri). (R0) I v is prolor vrtx n is n inint - wit ntiv initil r, tn v sns r 1 to. (R1) I is - n is n inint, tn lt t jnt to ross. (R1) I is 5 + -, tn pulls r rom trou t. (R1) I is 4- n is t only - jnt to, tn lt 1,, n t otr s inint to. For i {1,, }, lt i t jnt to ross i. For i {1,, }, t pulls r 1 8 rom t i trou t s n i.

23 8 v 1 v 4 9 (R1) (R) (R) (R1) (R1), Cs 1 (R1), Cs Fiur 10: Disrin ruls (R1) n (R) in t proo o Torm (R1) I is 4- n is jnt to two -s 1 n (sy 1 = ), tn lt 1 n t otr s inint to, wr t s 1 n srin ts s r 6 + -s. For i {1, }, t pulls r 16 rom t i trou t s n i. (R) Lt v 5 + -vrtx wit v / V (P ) n lt n inint -. (R) I v is 5-vrtx, tn v sns r 1 to, wn = mx{, t (v)}. (R) I v is 6 + -vrtx, tn v sns r 1 to. (R) I is 6- wit µ () < 0 n v is n inint 5 + -vrtx or n inint vrtx in V (P ) wit µ 0 (v) > 0, tn v sns r 1 4 to. W lim tt µ (v) 0 or vry vrtx v n µ () 0 or vry. Sin t totl r sum ws prsrv urin t isrin ruls, tis ontrits t ntiv r sum rom t initil r vlus. Not tt 6-s r not inint to -s sin G os not ontin or 7-yl n sprtin -yls. Osrv tt 6- s µ 1 () < 0 i n only i ll s jnt to r 4-s, n o tos 4-s s two jnt -s. Clim 6.9. Lt v vrtx in V (P ). Tn µ (v) 0. In ition, i v is inint to 6- wit µ 1 () < 0, tn µ 0 (v) > 0. Proo. By Clims 6.6 n 6.7, w v µ 0 (v) = (v) 0. Not tt i µ 0 (v) 1 t (v) t 6(v), tn t inl r µ (v) is nonntiv. Sin (v) t (v) + t 6 (v), it suis to sow tt µ 0 (v) 1 4 (v) t (v).

24 Cs 1: P = P. Lt v 1, v, n v t vrtis in t -pt P. For i {1,, }, µ 0 (v i ) = (v i ). Sin P is not isomorpi to K, ts vrtis o not orm yl, n t to wi ll vrtis r inint is not -. Hn t (v i ) (v i ) 1. I (v i ) 4, tn µ 0 (v i ) = (v i ) 1 (v i) > 1 4 (v i) t (v i ). I (v ) =, tn µ 0 (v i ) = 0. Vrtx v is not inint to ny -s sin v 1 n v r not jnt. Morovr, v is not inint to ny 6- wit µ 1 () < 0. I su xist, v woul inint lso to 4- tt is inint to two trinls. Tis oniurtion o s rsults in sprtin trinl, or 7-yl or ontrition wit Clim I (v i ) = or i {1, }, tn µ 0 (v i ) = 0. I v i is jnt to -, tn lt v i t 694 nior o v i not in V (P ). Lt P t surp inu y (V (P ) {v i })\{v i}, wi orms 695 opy o P or K in G v i. For ny olor (v i ) L(v i ) \ {(v i)}, tr xists n L-olorin o 696 G v i s (G v i, P, L, ) is not ountrxmpl; tis olorin xtns to n L-olorin o G. 697 Tus, t (v i ) = 0. I v i is inint to 6- wit µ 1 () < 0, tn t otr inint to 698 v i is 4- tt is jnt to two -s. Tis rsults in or 7-yl, ontrition; 699 tus (R) os not pply to v i I (v i ) =, Clim 6.4 ssrts tt G s no sprtin -yls, so tn v i loss r t most 1 in (R0). I v i is inint to 6- wit µ 1 () < 0, tn t otr two s inint to v i r 4-s n ts 4-s r jnt to two -s. Tis rts or 7-yl, ontrition, so (R) os not pply to v i n µ (v i ) Cs : P = K. Lt v 1, v, n v t vrtis in t -yl P, so µ 0 (v i ) = (v i ) or v i. By Clim 6.4, G s no sprtin -yl, so t tr vrtis r inint to ommon - wit µ 0 () = 0. Tror, vrtx v i sns r 1 to t most (v i) 1 inint -s y (R0). Rll tt (v i ) y Clim 6.6. Suppos tt (v i ) =. I t (v i ) > 1, t surp o G inu y t nioroo o v i is isomorpi to P or K, ontritin Clim 6.5. I (v i ) 4, tn µ 0 (v i ) = (v i ) 1 (v i) 1 4 (v i) t (v i ). Tror, µ (v i ) 0. Tus, in ll ss prolor vrtx v s µ (v) W will now sow tt ll ojts tt strt wit nonntiv r lso n wit nonntiv 71 r. 71 I is 4-, tn (R1) n (R1) o not pull r rom, sin tis woul rquir 714 to jnt to 4- tt is jnt to - t, ut tn,, n t ontin or yl. Tus, µ () = 0 or vry I is 5-, tn sin G ontins no or 7-yls, is not jnt to two -s n is not jnt to 4-. Tror, loss r t most 8 y (R1), ut loss no r 718 usin (R1), so µ () > 0 or vry I is 6-, tn is not jnt to - sin G ontins no or 7-yl. Osrv 70 tt y Clim 6. t ounry o is simpl 6-yl. So i sns r trou n urin (R1), it n sn r 1 8 trou y (R1), or it n sn r 8 trou y (R1). T only wy tt tis will rsult in ntiv r tr (R1) n (R) is or to sn r 7 trou o its six s y (R1); tis will us µ () = 6 8 = 1 4. I s prolor 74 vrtx v on its ounry, tn y Clim 6.9, v s positiv r tr (R0); y (R), rivs 75 r t lst 1 4, rsultin in µ () 0. I s no inint prolor vrtis, tn sin G 76 ontins no (C), som vrtx v on t ounry o is 5 + -vrtx. By (R) v sns r 1 4 to 8 4

25 n n µ () 0. Osrv t ollowin lim onrnin t strutur out vrtx tt loss r y (R). Clim Lt v 5 + -vrtx wit t tr inint s 1,, n, in yli orr. I v sns r to y (R), tn 1 n r 4-s n is 6-. I is 7 + -, tn y (R1) loss r t most 8 µ () l() 4 8 l() = 5 l() 4 > 0. 8 trou. Tus, 7 Tror, µ () > 0 or vry Nxt, w will onsir vrtx v not in V (P ). 75 I v is 4-vrtx, tn v os not los r y ny rul, so t rsultin r is I v is 5-vrtx, lt = mx{, t (v)} n v loss r 1 t (v) to inint -s y (R). 77 I (R) os not pply to v, tn v sns r t most 1 to inint -s n µ (v) 0. I 78 (R) pplis to v, tn v is inint to s 1,, n wr 1 n r 4-s n is Sin (v) = 5 n G s no or 7-yl, t rul (R) pplis t most on. In, i 740 (R) woul pply twi, tn v woul inint to two 4-s srin n n o ts 741 two 4-s srs two s wit trinls n tis ivs or 7-yl. I (R) pplis on, 74 tn t (v) n v loss r t most y (R) n r 1 4 y (R), so µ (v) I v is 6 + -vrtx, tn lt k = t (v) n l t numr o tims (R) pplis to v. Noti tt k 4 5(v) sin G vois or 7-yls. Furtr, noti tt k + l (v), sin tt ins r rom v y (R) is pr y 4- in t yli orr o s roun v. By (R), v n los r 1 to inint -, n v n los r t most 1 4 to 747 inint 6- y (R). Tn v ns wit r µ (v) (v) 4 1 k 1 4 l. I (v) = 6, tn osrv k + l 4 n n µ (v) 0. I (v) = 7, tn, k, n l stisy t ollowin linr prorm wit ul on vrils 1,, n : 751 min 1 k 1 4 l s.t k 0 k l 0, k, l 0 mx 7 1 s.t ,, 0 T ul-sil solution ( 1,, ) = ( 40, 1 0, 1 ) 4 monstrts tt 1 k 1 4 l 7 40 > 4, n 75 tus µ (v) > 0 or vry 7 + -vrtx. 754 It rmins to sown tt t lustrs riv nou r to om nonntiv. Sin G 755 ontins no sprtin -yl, G os not ontin t lustr (K5) or t lustrs (K6) (K6r). 756 Osrv tt tr is no prolor vrtx v o r t most tr wr ll s inint to 757 v v lnt tr. Finlly, it is wort notin in tt i G ontins ruil oniurtion 758 (C, X, x), tn tr is prolor vrtx in t st X. 759 I vrtx v is 5 + -vrtx or v V (P ), w sy v is ull; i v is 6 + -vrtx or v V (P ), tn v is vy. Not tt vy vrtx v sns r 1 to inint ntivly-r - y (R0) or (R). I P 761 = K, w ll P t prolor. 5

26 v 1 1 (K) (K4) (K5) Fiur 11: Clustrs (K), (K4), n (K5) 76 Cs 1: (K) Lt t isolt - in (K). I is t prolor, tn µ () = µ 0 () = 0. Otrwis, t initil r on is 1. By (R1), rivs r trou its ounry 764 s, rsultin in nonntiv inl r. 765 Cs : (K4) Lt 1 n -s in imon lustr (K4). First, suppos witout loss o 766 nrlity tt 1 is t prolor. T initil r o t lustr is 1. Tn rivs r 1 y (R0) n r 8 y (R1), rsultin in positiv inl r. Otrwis, t 8 trou o t two s on t ounry o t lustr, rsultin in r 1. I t lustr ontins prolor vrtx u, tn it rivs r y (R0). Otrwis, sin G ontins no (C), tr is 5+ -vrtx v inint to ot 1 n. By (R), tis vrtx sns r t lst 1 to o t 77 s, rsultin in nonntiv inl r. 77 Cs : (K5) Lt 1,, n -s in -n lustr (K5), wr is jnt to ot n. Suppos tt t lustr ontins prolor, so t initil r on t lustr 775 is. I is prolor, tn t lustr rivs r 4 1 y (R0); i 1 or is prolor, tn t lustr rivs r 1 y (R0) n r 8 y (R1). In itr s, t inl 777 r is nonntiv. 778 I P = K or t lustr os not ontin t prolor, tn t initil r on t lustr is. By (R1), t lustr rivs r 5 8, rsultin in r 9 8. Not tt t 780 s 1 n orm imon n t s n orm imon. Sin G ontins no 781 (C), tr xists ull vrtx v inint to ot 1 n. Similrly, tr xists ull vrtx 78 u inint to n. I u v, tn y (R0) or (R), v sns r t lst 1 to o 1 78 n n u sns r t lst 1 to o n, rsultin in nonntiv r on 784 t lustr. I u = v n v is vy vrtx, tn v sns r 1 to 1,, n, 785 rsultin in nonntiv r on t lustr. Otrwis, suppos tt u = v / V (P ) n v is vrtx. Sin G ontins no (C4), tr xists notr ull vrtx w tt is inint to t 787 lst on o 1 n. By (R), v sns r 1 to 1,, n, n y (R0) or (R), w 788 sns r t lst 1 to on o 1 n, rsultin in nonntiv r on t lustr. u 1 u 1 v u 4 v u 5 u 4 u u 1 u 1 (K5) (K6) (K6) Fiur 1: Clustrs (K5), (K6), n (K6) u 4 6

27 789 Cs 4: (K5) Lt 1,,, n 4 -s in 4-wl (K5). I t lustr ontins prolor, tn t initil r on t lustr is ; t lustr rivs r 5 1 y (R0) n r 8 y (R1), rsultin in positiv inl r. Otrwis, t initil r 8, rsultin in r 5. Lt v 79 t 4-vrtx inint to ll our -s. Lt u 1, u, u, n u 4 t vrtis jnt to v, 794 orr ylilly su tt vu i u i+1 is t ounry o t - i or i {1,, } n vu 4 u 1 is 795 t ounry o 4. Sin t lustr os not ontin t prolor, v is not prolor 796 vrtx. Sin G ontins no (C), u i is ull vrtx. Wn u i is 5-vrtx, it is inint to 797 two 7 + -s, so u i sns r 1 to inint - y (R). Tus, u i sns r 798 t lst 1 to t lustr y (R0) or (R), rsultin in nonntiv inl r. 799 Cs 5: (K6) Lt 1,,, n 4 -s in 4-strip lustr (K6). I t lustr ontins 800 t prolor, tn t initil r on t lustr is. I 1 or 4 is prolor, tn t lustr rivs r y (R0) n r 4 8 y (R1); i or is prolor, tn t lustr rivs r y (R0) n r 5 8 y (R1). In itr s, t rsultin 80 inl r is nonntiv. I t lustr os not ontin t prolor, tn t initil r on tis lustr is 4. By (R1), t lustr rivs r 6 8, rsultin in r Not tt or i {1,, }, t s i n i+1 orm imon. Sin G ontins no (C), 806 tr xists ull vrtx v inint to ot i n i+1. Lt u 1 ull vrtx inint to 807 n. Witout loss o nrlity, u 1 is not inint to 4, so tr is ull vrtx u inint to 1 n. I u 1 is vy vrtx, t lustr rivs r rom u 1 y (R0) or (R), n r t lst rom u y (R0) or (R), rsultin in positiv inl r. Otrwis, u 1 is 5-vrtx, so u 1 sns r 1 y (R), rsultin in r I u is inint to, tn u sns r t lst y (R0) or (R), rsultin in positiv inl r. Otrwis, u is inint wit 1 n ut not. I u is lr vrtx, it sns r y (R0) or (R). Otrwis, sin G ontins nitr (C) or (C4), tr is tir ull vrtx u. T lustr rivs r 1 rom u y (R) n r t lst 1 rom u y (R0) or (R). In s, t rsultin inl r is nonntiv. 816 Cs 6: (K6) Lt 1,,, n 4 -s in 4-n lustr (K6). Lt v t ntr o 817 t n, wit niors u 1, u, u, u 4, n u 5 wr or i {1,, }, i n i+1 r jnt on 818 t vu i+1. I t lustr ontins t prolor, tn t initil r on t lustr is. I 1 or 4 is prolor, tn t lustr rivs r 4 1 y (R0) n r 4 8 y (R1); i or is prolor, tn t lustr rivs r 5 1 y (R0) n r 5 8 y 81 (R1). In itr s, t rsultin inl r is positiv. 8 I t lustr os not ontin t prolor, tn t initil r on tis lustr is 4. By (R1), t lustr rivs r 6 8, rsultin in r I v is vy vrtx, tn y (R0) or (R) v sns r to t lustr, rsultin in positiv r. Otrwis, 85 v / V (P ) n v is 5-vrtx, so v sns r 1 to t lustr y (R), rsultin in r 4. I tr is vy vrtx in {u, u, u 4 }, tn tt vrtx ontriuts r 1 86 to t 87 lustr, rsultin in positiv r. I tr is no vy vrtx in {u, u, u 4 }, tn tr is 88 t lst on 5-vrtx in {u, u, u 4 } sin G ontins no (C4). I tr r multipl 5-vrtis in {u, u, u 4 }, tn sns r 1 89 to t lustr y (R), rsultin in positiv r. I 80 tr is only 5-vrtx w mon u, u, n u 4, tn tr is ull vrtx z {u 1, u 5 } sin G os not ontin (C4) or (C5); t lustr rivs r 1 rom w y (R) n t lst rom z y (R0) or (R), rsultin in positiv inl r. 7

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 0, No. 0, pp. 000 000 2009 Soity or Inustril n Appli Mtmtis THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS HAL KIERSTEAD, BOJAN MOHAR, SIMON ŠPACAPAN, DAQING

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures (4, )-ooslty o plnr rps wt orn struturs Znr Brkkyzy 1 Crstopr Cox Ml Dryko 1 Krstn Honson 1 Mot Kumt 1 Brnr Lký 1, Ky Mssrsmt 1 Kvn Moss 1 Ktln Nowk 1 Kvn F. Plmowsk 1 Drrk Stol 1,4 Dmr 11, 015 Astrt All

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

MCS100. One can begin to reason only when a clear picture has been formed in the imagination.

MCS100. One can begin to reason only when a clear picture has been formed in the imagination. 642 ptr 10 Grps n Trs 46. Imin tt t irmsown low is mp wit ountris ll. Is it possil to olor t mp wit only tr olors so tt no two jnt ountris v t sm olor? To nswr tis qustion, rw n nlyz rp in wi ountry is

More information

Physics 222 Midterm, Form: A

Physics 222 Midterm, Form: A Pysis 222 Mitrm, Form: A Nm: Dt: Hr r som usul onstnts. 1 4πɛ 0 = 9 10 9 Nm 2 /C 2 µ0 4π = 1 10 7 tsl s/c = 1.6 10 19 C Qustions 1 5: A ipol onsistin o two r point-lik prtils wit q = 1 µc, sprt y istn

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014 Grp Aloritms n Comintoril Optimiztion Dr. R. Cnrskrn Prsntrs: Bnjmin Frrll n K. Alx Mills My 7t, 0 Mtroi Intrstion In ts ltur nots, w mk us o som unonvntionl nottion or st union n irn to kp tins lnr. In

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Two Approaches to Analyzing the Permutations of the 15 Puzzle

Two Approaches to Analyzing the Permutations of the 15 Puzzle Two Approhs to Anlyzin th Prmuttions o th 15 Puzzl Tom How My 2017 Astrt Th prmuttions o th 15 puzzl hv n point o ous sin th 1880 s whn Sm Lloy sin spin-o o th puzzl tht ws impossil to solv. In this ppr,

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian)

Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian) msp INVOLVE 7:1 (2014) x.oi.or/10.2140/involv.2014.7.41 Sli-n-swp prmuttion roups Onyui Eknt, Hn Gil Jn n Jo A. Silr (Communit y Josp A. Gllin) W prsnt simpl til-sliin m tt n ply on ny 3-rulr rp, nrtin

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

CS150 Sp 98 R. Newton & K. Pister 1

CS150 Sp 98 R. Newton & K. Pister 1 Outin Cok Synronous Finit- Mins Lst tim: Introution to numr systms: sin/mnitu, ons ompmnt, twos ompmnt Rviw o ts, ip ops, ountrs Tis tur: Rviw Ts & Trnsition Dirms Impmnttion Usin D Fip-Fops Min Equivn

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then: Assinmnts: DFA Minimiztion CMPU 24 Lnu Tory n Computtion Fll 28 Assinmnt 3 out toy. Prviously: Computtionl mols or t rulr lnus: DFAs, NFAs, rulr xprssions. Toy: How o w in t miniml DFA or lnu? Tis is t

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212,

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212, Inis Inis Curriulum Ry ACMNA: 09, 0,, 6 www.mtltis.om Inis INDICES Inis is t plurl or inx. An inx is us to writ prouts o numrs or pronumrls sily. For xmpl is tully sortr wy o writin #. T is t inx. Anotr

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Continuous Flattening of Convex Polyhedra

Continuous Flattening of Convex Polyhedra Continuous Flttnin o Conv Polr Jin-ii Ito 1, Ci Nr 2, n Costin Vîlu 3 1 Fult o Eution, Kummoto Univrsit, Kummoto, 860-8555, Jpn. j-ito@kummoto-u..jp 2 Lirl Arts Eution Cntr, Aso Cmpus, Toki Univrsit, Aso,

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Combinatorial Optimization

Combinatorial Optimization Cominoril Opimizion Prolm : oluion. Suppo impl unir rp mor n on minimum pnnin r. Cn Prim lorim (or Krukl lorim) u o in ll o m? Explin wy or wy no, n iv n xmpl. Soluion. Y, Prim lorim (or Krukl lorim) n

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

24.1 Sex-Linked Inheritance. Chapter 24 Chromosomal Basis of Inheritance Sex-Linked Inheritance Sex-Linked Inheritance

24.1 Sex-Linked Inheritance. Chapter 24 Chromosomal Basis of Inheritance Sex-Linked Inheritance Sex-Linked Inheritance ptr 24 romosoml sis o Inritn 24. Sx-Link Inritn Normlly, ot mls n mls v 23 pirs o romosoms 22 pirs r ll utosoms On pir is t sx romosoms Mls r XY mls r XX opyrit T Mrw-Hill ompnis, In. Prmission rquir or

More information

Revisiting Decomposition Analysis of Geometric Constraint Graphs

Revisiting Decomposition Analysis of Geometric Constraint Graphs Rvisitin Domposition Anlysis o Gomtri Constrint Grps R. Jon-Arinyo A. Soto-Rir S. Vil-Mrt J. Vilpln-Pstó Univrsitt Politèni Ctluny Dprtmnt Llnuts i Sistms Inormàtis Av. Dionl 647, 8, E 08028 Brlon [rort,

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,... Warmup: Lt b 2 c 3 d 1 12 6 4 5 10 9 7 a 8 11 (i) Vriy tat G is connctd by ivin an xampl o a walk rom vrtx a to ac o t vrtics b. (ii) Wat is t sortst pat rom a to c? to? (iii) Wat is t lonst pat rom a

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

STRUCTURAL GENERAL NOTES

STRUCTURAL GENERAL NOTES UILIN OS: SIN LOS: RUTURL NRL NOTS NRL NOTS: US ROUP: - SSMLY USS INTN OR PRTIIPTION IN OR VIWIN OUTOOR TIVITIS PR MIIN UILIN O STION. SSONL. T UNTION O TIS ILITY IS NOT OR QUIPP OR OUPNY URIN WINTR/ TIN

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT 0 NOTS: VI UNSS OTRWIS SPII IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION. NR: a. PPITION SPIITION S: S--00 b. PROUT SPIITION S: PS--00 c. PIN SPIITION

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Proof of Pumping Lemma. PL Use. Example. Since there are only n different states, two of q 0, must be the same say q i

Proof of Pumping Lemma. PL Use. Example. Since there are only n different states, two of q 0, must be the same say q i COSC 2B 22 Summr Proo o Pumpin Lmm Sin w lim L is rulr, tr must DFA A su tt L = L(A) Lt A v n stts; oos tis n or t pumpin lmm Lt w strin o lnt n in L, sy w = 2 m, wr m n Lt i t stt A is in tr rin t irst

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information