Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Size: px
Start display at page:

Download "Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?"

Transcription

1 E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit must stal or nxt input an an. Clk D B S How os it work? How was it sin? E-Trir D Flip-lop Intuitiv xplanation: lok=0 => R=S=1, CL=PR=1, an - ar l. itr D=1 => A=1, B=0 or D=0 => A=0, B=1 D an an ut an - ar l. Lt lok an 0->1 Eitr B=1, A=0 => R=1, S=0 => =0, -=1 or B=0, A=1 => R=0, S=1 => =1, -=0 Wat i D ans wil lok=1? a) D was 0 an ans to 1 A=0, B=1 => R=1, S=0 as S=0, an in D os not an B. ) D was 1 an ans to 0 A=1, B=0 => R=0, S=1 B ans rom 0 to 1, ut A os not an. Fallin lok as no t. Funamntal mo rstrition applis. D E Formal Analysis Y D lat: + Y To analys tis iruit, rak t ak loop. It is onvnint to prtn tat all t ats av 0 lays an tat tr is a init ut small lay in t ak loop.

2 Analysis o D lat Y + an tout o as t nxt stat. Y + = D.E + Y.(D + E) Transition Tal Y 0 1 DE Y + Stat Tal S 00 DE S0 S0 S0 S1 S0 S1 S1 S0 S1 S1 S* Stal stats - nxt stat is t sam as prsnt stat (irl). Stat & Output Tal Stat Tal DE S 00 S0 S0, S0, S1, S0, S1 S1, S0, S1, S1, S*, = D.E + Y.E + Y.D = D.E + Y S 00 DE S0 S0 S0 S1 S0 S1 S1 S0 S1 S1 D ans to 1 E ans to 1 S* Can tra wat appns wn inputs an rom DE = 00, S= S0. D os to 1 ollow y Eto1.

3 Stat Tal PR E-Trir D Flip-Flop S 00 DE Y1 Y1 + S0 S0 S0 S1 S0 S1 S1 S0 S1 S1 Clk Y3 Y3 + S* Wat appns i D&E now an almost simultanously? Exat squn is unprital. Final rsult is unprital. D Y2 Y2 + Multipl Fak Loops Assum PR an CL ar at 1 - n inor. + Y1 = Y2.D + Y1.Clk + Y2 = Y2.D + Y1.Clk + Clk + Y3 = Y1.Clk + Y3.(Y2.D + Y1.Clk + Clk) = Y1.Clk + Y3.(Y2.D + Y1.Clk + Clk) = Y3 + Y1. Y2.Clk + Y1.Clk. D Transition Tal Y1 Y2 Y3 00 ClkD Y2 000 tn Y Y3 tn Y2 Y1* Y2* Y3*

4 Ras Suppos startin stat is Y1,Y2,Y3 =1, Clk,D=00 an Clk ans to 1 Exat orr o stat ans pns on t orr o an o intrnal varials Ra - Multipl intrnal varials an stat as a rsult o ONE input anin stat I inal stat os not pn on orr o intrnal stat ans: non-ritial ra Suppos t transition tal look lik: Transition Tal Y1 Y2 Y3 00 ClkD Y2 000 tn Y Y1* Y2* Y3* Critial Ra to avoi! Stat & Output Tal S 00 ClkD S0 S2, S2, S0, S0, S1 S3, S3, S0, S0, S2 S2, S6, S6, S0, S3 S3, S7, S7, S0, S4 S2, S2, S7, S7, S5 S3, S3, S7, S7, S6 S2, S6, S7, S7, S7 S3, S7, S7, S7, S1,S4,S5 ar unstal S2,, S3,, S6, annot S*, - ra Flow Tal S 00 ClkD S0 S2, S6, S0, S0, S2 S2, S6, -,- S0, S3 S3, S7, -,- S0, S6 S2, S6, S7, -,- S7 S3, S7, S7, S7, S*, - Eliminat unstal stats, multipl ops an unraal stats

5 Flow Tal S 00 ClkD SM SM, S6, SM, SM, S3 S3, S7, -,- SM, S6 SM, S6, S7, -,- S7 S3, S7, S7, S7, S*, - S0 an S2 ar ompatil an may mr Funamntal Mo Dsin Stat Dsin Spiiations Driv a primitiv low tal Ru t low tal Mak a ra-r stat assinmnt Otain t transition tal an output map Otain azar-r stat quations Stat Minimisation Two stats an onsir quivalnt i tir outputs an nxt stats ar t sam (or all ominations o inputs). i.. ty ar inistinuisal rom outsi. Stats&karquivalnt (t two rows ar t sam). Rpla all instans o k y (only applis to row j). Nowstats&jarquivalnt. Stat Minimisation Prsnt stat s 00 xy a,0,0 a,0 a,0,0,0 a,0 a,0,0 i,0 a,0,1,1,0,0,1,1 i,0 a,0,1,0,0 a,0 a,0,1 j,0 a,0,1,0,0,0 a,0 i i,0 i,0 a,0 a,0 j,0 k,0 a,0 a,0 k,0 i,0 a,0,1 s*,z

6 Stat Minimisation Prsnt stat s 00 xy a,0,0 a,0 a,0,0,0 a,0 a,0,0 i,0 a,0,1,1,0,0,1,1 i,0 a,0,1,0,0 a,0 a,0,1,0 a,0,1,0,0,0 a,0 i i,0 i,0 a,0 a,0 Stat Minimisation Not tat tis is an inormal approa. W av ru t numr o stats rom to 9. W an ru t numr o stats to 6. Tis an on y onstrutin quivaln lasss. Can also on usin an impliation tal. Impliation tal an also us or inompltly spii systms. Impliation tal ontains all possil ominations o stats: s*,z i a -i -i Impliation Tal -i i- - a I outputs ar irnt, put X. I outputs ar sam, list nxt stats tat must quivalnt. (I nxt stats ar t sam as prsnt stats, put a tik.) i a -i -i Impliation Tal -i a Now o rit to lt pass trou t tal, puttin in Xs wr impliations av alray n isount...&i annot quivalnt as -i as an X. 1st pass sown. i- -

7 i a -i -i Impliation Tal -i 2n pass. i- - a Impliation Tal Tr ar now tr squars lt unross. In tis as, w an u tat stats (,i), (a,), (,) ar quivalnt. Tus t stats n to implmnt t systm ar (,i), (a,), (,), (), (), (). Can av mor omplx ass: i i -i - a- a i -i - a- a- a- Impliation Tal - -i - -i - a- - a- a- Atr all passs a Equivaln Classs Start at Rit o impliation tal. In olumn, t squar (,) is not ross out so w list t pair (,). In olumn, w in (,i). In olumn, w in ot (,i) an (,), so w an a to (,i). Similarly, w an a to (,) an a to (,,i). i (,) (,i) (,) (,i) (,) (,,i) (,) (,,i) (,,) a (a,,,i) (,,) Equivaln Classs: (a,,,i) (,,) () ()

8 Inompltly Spii Systm Suppos tat w o not ar wat t output is in rtain stats. Furtr, rtain nxt stat transitions may not in. Tis an xploit to minimis stats. W on't ar aout intrnal stats, only aout outputs! W now talk aout ompatil stats. Two stats ar ompatil i (an only i) tir outputs, i spii, ar t sam atr t sam squn o inputs... onsir a systm wit 4 inputs an 2 outputs spii y t ollowin stat an output tal. (N.B. w av not onsir all ominations o inputs - only on input is tru at any tim.) Inompltly spii systm s Input K L M N a a,- a,- a,-,00,-,-,- -,- -,-,-,- -,-,- -,-,- -,-,-,- -,- -,- -,- -,-,- a,,- -,- -,- a,,-,-,- a,00 s*,yz a- a- a- a- a- a Impliation Tal a Dtrmination o maximum ompatils Sam pross as or inin quivaln lasss. Start at rit o tal an list ompatils. - - (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) a (,) (,) (,) (,) (,) (,) (,) (a) Not tat, unlik a ully spii systm, (,) ar ompatil, (,) ar ompatil, ut (,) ar not ompatil. Tus w av two ompatil pairs, insta o on lass.

9 Maximal Compatils Not tat w now av 8 ompatil sts. W start wit 8 stats, so tis osn't appar to av ain us anytin! But w o not n all t sts. W ar tryin to in ompatil stats, tus o not n to us a st. W n t ollowin sts: (a) (,) ut all t otr stats our in two sts. Tis is analoous to runany in K-maps. Tror, w slt suiint sts to ovr all t stats.. (a) (,) (,) (,) (,) or (a) (,) (,) (,) (,) Stat Assinmnt m stats an r stat varials ivs 2r! /(2 r - m)! possil assinmnts. No way o trminin wi is st. Can assin to mak stat varials maninul. Can assin to minimis numr o its anin twn stats. Not rom t impliation tal, tat (,) implis (,) an (,) implis (,). Stat Dsin Exampl Nativ -trir T lip-lop Inputs T C Output Commnts a Initial stat Atr a Initial output Atr Atror Atraor 00 Nativ -trir T Flip-lop /0 a/0 /1 / /0 /0 /1 / Atror Atror

10 Primitiv Flow Tal Stat 00 TC Output a - a a 0-0 a a- Impliation Tal a Compatil stats From Impliation tal, ompatil stats ar: (a,) (,) (,) (,) (,) (,) (,) (,) Ts an mr - on tniqu is: a Ru Flow Tal Stat 00 TC Output (a,) A D A A B 0 (,,) B B B C B 1 (,) C B C C D 1 (,,) D D D A D 0

11 Stat Assinmnt Ru Flow Tal A=00 B= Y1 Y2 00 TC Output D= C= Y1* Y2* -v -trir T lip-lop K-maps (Entris orrsponin to stal stats in rn): TC Y1 Y TC Y1 Y2 00 Y2*: Y1*: Y1* T.C.Y2 C.Y1.Y2 T.Y1.Y2 C.Y1.Y2 T.C.Y2 T.Y1.Y2 T.C.Y1 Tr ar 8 prout trms in Y1*. Not tat a 1 to 0 an in T or C an aus a azar, vn twn stal stats. Tror all prout trms ar n, xpt T.C.Y1 aus tat ovrs two stal stats, wit t sam inputs. Altou Y2 is 1 in on stat an 0 in t otr, t transition an t appn Y2* T.Y2 C.Y2 Y1.Y2 T.C.Y1 W n n Y1.Y2 or Y2* aus it ovrs a transition twn stal stats wn T ans rom 1 to 0. T rul is: inlu all prout trms xpt tos tat ovr stal pairs in t sam olumn (i.. wit t sam inputs) an tos wr a transition rom a stal stat to an unstal stat (in t sam row) an only our as a rsult o a 0 to 1 transition.

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,... Warmup: Lt b 2 c 3 d 1 12 6 4 5 10 9 7 a 8 11 (i) Vriy tat G is connctd by ivin an xampl o a walk rom vrtx a to ac o t vrtics b. (ii) Wat is t sortst pat rom a to c? to? (iii) Wat is t lonst pat rom a

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

N1.1 Homework Answers

N1.1 Homework Answers Camrig Essntials Mathmatis Cor 8 N. Homwork Answrs N. Homwork Answrs a i 6 ii i 0 ii 3 2 Any pairs of numrs whih satisfy th alulation. For xampl a 4 = 3 3 6 3 = 3 4 6 2 2 8 2 3 3 2 8 5 5 20 30 4 a 5 a

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14 Univrsity of Wasinton Dpartmnt of Cmistry Cmistry 453 Wintr Quartr 04 Lctur 0: Transition Stat Tory. ERD: 5.4. Transition Stat Tory Transition Stat Tory (TST) or ctivatd Complx Tory (CT) is a raction mcanism

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Internet Algorithms. (Oblivious) Routing. Lecture 10 06/24/11. Wereferto. demands(requirements), forall vertex pairs,,

Internet Algorithms. (Oblivious) Routing. Lecture 10 06/24/11. Wereferto. demands(requirements), forall vertex pairs,, Intrnt Algoritms Ltur 10 06/24/11 (Olivious) Routing Givn a ntwork, witdglngtsl and dmands(rquirmnts), forall vrtx pairs,, afasilroutingisa multiommodityflow, satisfying t rquirmnts, i..,,,,, Wrfrto,,,,,

More information

Exponential Functions

Exponential Functions Eponntial Functions Dinition: An Eponntial Function is an unction tat as t orm a, wr a > 0. T numbr a is calld t bas. Eampl: Lt i.. at intgrs. It is clar wat t unction mans or som valus o. 0 0,,, 8,,.,.

More information

CS553 Lecture Register Allocation I 3

CS553 Lecture Register Allocation I 3 Low-Lvl Issus Last ltur Intrproural analysis Toay Start low-lvl issus Rgistr alloation Latr Mor rgistr alloation Instrution shuling CS553 Ltur Rgistr Alloation I 2 Rgistr Alloation Prolm Assign an unoun

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT 0 NOTS: VI UNSS OTRWIS SPII IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION. NR: a. PPITION SPIITION S: S--00 b. PROUT SPIITION S: PS--00 c. PIN SPIITION

More information

Design and Analysis of Algorithms (Autumn 2017)

Design and Analysis of Algorithms (Autumn 2017) Din an Analyi o Alorim (Auumn 2017) Exri 3 Soluion 1. Sor pa Ain om poiiv an naiv o o ar o rap own low, o a Bllman-For in a or pa. Simula ir alorim a ru prolm o a layr DAG ( li), or on a an riv rom rurrn.

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

CS150 Sp 98 R. Newton & K. Pister 1

CS150 Sp 98 R. Newton & K. Pister 1 Outin Cok Synronous Finit- Mins Lst tim: Introution to numr systms: sin/mnitu, ons ompmnt, twos ompmnt Rviw o ts, ip ops, ountrs Tis tur: Rviw Ts & Trnsition Dirms Impmnttion Usin D Fip-Fops Min Equivn

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

AP Calculus Multiple-Choice Question Collection

AP Calculus Multiple-Choice Question Collection AP Calculus Multipl-Coic Qustion Collction 985 998 . f is a continuous function dfind for all ral numbrs and if t maimum valu of f () is 5 and t minimum valu of f () is 7, tn wic of t following must b

More information

ENGR 7181 LECTURE NOTES WEEK 5 Dr. Amir G. Aghdam Concordia University

ENGR 7181 LECTURE NOTES WEEK 5 Dr. Amir G. Aghdam Concordia University ENGR 78 LETURE NOTES WEEK 5 r. mir G. dam onordia Univrity ilinar Tranformation - W will now introdu anotr mtod of tranformation from -plan to t - plan and vi vra. - Ti tranformation i bad on t trapoidal

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06 Cas Study Qustion. A 3 yar old, 5 kg patint was brougt in for surgry and was givn a /kg iv bolus injction of a muscl rlaxant. T plasma concntrations wr masurd post injction and notd in t tabl blow: Tim

More information

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode Unit 2 : Software Process O b j ec t i ve This unit introduces software systems engineering through a discussion of software processes and their principal characteristics. In order to achieve the desireable

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

TP A.31 The physics of squirt

TP A.31 The physics of squirt thnial proof TP A. Th physis of squirt supporting: Th Illustratd Prinipls of Pool and Billiards http://illiards.olostat.du y David G. Aliator, PhD, PE ("Dr. Dav") thnial proof originally postd: 8//7 last

More information

ROSEMOUNT 3051SAM SCALABLE PRESSURE TRANSMITTER COPLANAR FLANGE PROCESS CONNECTION

ROSEMOUNT 3051SAM SCALABLE PRESSURE TRANSMITTER COPLANAR FLANGE PROCESS CONNECTION ROSOUNT 3051S S PRSSUR TRNSITTR OPNR N PROSS ONNTION RVISION T RVISION O NO. PP' T RT1066757 N. STOS 10/21/2016 SRIPTION IN-IN V S PNTW OUSIN SOWN WIT OPTION IIT ISPY (PRIRY) PNTW OUSIN (PRIRY) RTIITION

More information

Evans, Lipson, Wallace, Greenwood

Evans, Lipson, Wallace, Greenwood Camrig Snior Mathmatial Mthos AC/VCE Units 1& Chaptr Quaratis: Skillsht C 1 Solv ah o th ollowing or x: a (x )(x + 1) = 0 x(5x 1) = 0 x(1 x) = 0 x = 9x Solv ah o th ollowing or x: a x + x 10 = 0 x 8x +

More information

ENGR 323 BHW 15 Van Bonn 1/7

ENGR 323 BHW 15 Van Bonn 1/7 ENGR 33 BHW 5 Van Bonn /7 4.4 In Eriss and 3 as wll as man othr situations on has th PDF o X and wishs th PDF o Yh. Assum that h is an invrtibl untion so that h an b solvd or to ild. Thn it an b shown

More information

Synthesis of asynchronous control circuits with automatically generated relative timing assumptions

Synthesis of asynchronous control circuits with automatically generated relative timing assumptions Syntsis o asynronous ontrol iruits wit automatially gnrat rlativ timing assumptions 1 Jori Cortalla, 2 Mial Kisinvsky, 2 Stvn M. Burns an 2 Kn Stvns 1 Univ. Politènia Catalunya, Barlona, Spain an 2 Stratgi

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem.

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem. Outlins: Graps Part-4 Applications o DFS Elmntary Grap Aloritms Topoloical Sort o Dirctd Acyclic Grap Stronly Connctd Componnts PART-4 1 2 Applications o Dpt-First Sarc Topoloical Sort: Usin dpt-irst sarc

More information

Designing A Uniformly Loaded Arch Or Cable

Designing A Uniformly Loaded Arch Or Cable Dsinin A Unirmy Ar Or C T pr wit tis ssn, i n t Nxt uttn r r t t tp ny p. Wn yu r n wit tis ssn, i n t Cntnts uttn r r t t tp ny p t rturn t t ist ssns. Tis is t Mx Eyt Bri in Stuttrt, Grmny, sin y Si

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand Onlin Supplmnt Avanc Slling in a Supply Cain unr Uncrtain Supply an Dman. Proos o Analytical sults Proo o Lmma. Using a = minl 0 ; x g; w can rwrit () as ollows (x ; w ; x ; w ) = a +(m0 w )a +( +" x w

More information

CPS 616 W2017 MIDTERM SOLUTIONS 1

CPS 616 W2017 MIDTERM SOLUTIONS 1 CPS 616 W2017 MIDTERM SOLUTIONS 1 PART 1 20 MARKS - MULTIPLE CHOICE Instructions Plas ntr your answrs on t bubbl st wit your nam unlss you ar writin tis xam at t Tst Cntr, in wic cas you sould just circl

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Schematic of a mixed flow reactor (both advection and dispersion must be accounted for)

Schematic of a mixed flow reactor (both advection and dispersion must be accounted for) Cas stuy 6.1, R: Chapra an Canal, p. 769. Th quation scribin th concntration o any tracr in an lonat ractor is known as th avction-isprsion quation an may b writtn as: Schmatic o a mi low ractor (both

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Physics 43 HW #9 Chapter 40 Key

Physics 43 HW #9 Chapter 40 Key Pysics 43 HW #9 Captr 4 Ky Captr 4 1 Aftr many ours of dilignt rsarc, you obtain t following data on t potolctric ffct for a crtain matrial: Wavlngt of Ligt (nm) Stopping Potntial (V) 36 3 4 14 31 a) Plot

More information

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A Ήχος α H ris to os s n ș t slă ă ă vi i i i i ți'l Hris to o os di in c ru u uri, în tâm pi i n ți i'l Hris

More information

AP Calculus BC AP Exam Problems Chapters 1 3

AP Calculus BC AP Exam Problems Chapters 1 3 AP Eam Problms Captrs Prcalculus Rviw. If f is a continuous function dfind for all ral numbrs and if t maimum valu of f() is 5 and t minimum valu of f() is 7, tn wic of t following must b tru? I. T maimum

More information

Atomic Physics. Final Mon. May 12, 12:25-2:25, Ingraham B10 Get prepared for the Final!

Atomic Physics. Final Mon. May 12, 12:25-2:25, Ingraham B10 Get prepared for the Final! # SCORES 50 40 30 0 10 MTE 3 Rsults P08 Exam 3 0 30 40 50 60 70 80 90 100 SCORE Avrag 79.75/100 std 1.30/100 A 19.9% AB 0.8% B 6.3% BC 17.4% C 13.1% D.1% F 0.4% Final Mon. Ma 1, 1:5-:5, Ingraam B10 Gt

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

LR(0) Analysis. LR(0) Analysis

LR(0) Analysis. LR(0) Analysis LR() Analysis LR() Conlicts: Introuction Whn constructing th LR() analysis tal scri in th prvious stps, it has not n possil to gt a trministic analysr, caus thr ar svral possil actions in th sam cll. I

More information

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b)

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b) Outlin MULTIPLE-LEVEL LOGIC OPTIMIZATION Gionni D Mihli Stnfor Unirsit Rprsnttions. Tonom of optimition mthos: { Gols: r/l. { Algorithms: lgri/booln. { Rul-s mthos. Empls of trnsformtions. Booln n lgri

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

PHY 410. Final Examination, Spring May 4, 2009 (5:45-7:45 p.m.)

PHY 410. Final Examination, Spring May 4, 2009 (5:45-7:45 p.m.) PHY ina amination, Spring 9 May, 9 5:5-7:5 p.m. PLAS WAIT UTIL YOU AR TOLD TO BGI TH XAM. Wi waiting, carfuy fi in t information rqustd bow Your am: Your Studnt umbr: DO OT TUR THIS PAG UTIL TH XAM STARTS

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

3-2-1 ANN Architecture

3-2-1 ANN Architecture ARTIFICIAL NEURAL NETWORKS (ANNs) Profssor Tom Fomby Dpartmnt of Economics Soutrn Mtodist Univrsity Marc 008 Artificial Nural Ntworks (raftr ANNs) can b usd for itr prdiction or classification problms.

More information

ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

ENGR 7181 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University ENGR 78 LECTURE NOTES WEEK Dr. ir G. ga Concoria Univrity DT Equivalnt Tranfr Function for SSO Syt - So far w av tui DT quivalnt tat pac ol uing tp-invariant tranforation. n t ca of SSO yt on can u t following

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

NOTE: ONLY RIGHT IDLER (CONFIGURATION A) ARM SHOWN IN VIEWS ON THIS PAGE

NOTE: ONLY RIGHT IDLER (CONFIGURATION A) ARM SHOWN IN VIEWS ON THIS PAGE 0 PP PP PP PP PP PP NOT: ONLY RIT ILR (ONIURTION ) RM SOWN IN VIWS ON TIS P ITM SRIPTION MTRIL QTY. IL RM - RIT / RIL LIN TUIN / O (0.0 WLL) ISI RT 0 ROMOLY LINR INS IL RM - LT / RIL LIN TUIN / O (0.0

More information

Chapter 3. Table of content Chapter 1: Switching Algebra Chapter 2: Logical Levels, Timing & Delays

Chapter 3. Table of content Chapter 1: Switching Algebra Chapter 2: Logical Levels, Timing & Delays hapter 3 Dr.-ng. Stefan Werner Tale of ontent hapter 1: Swithing lgera hapter 2: Logial Levels, Timing & Delays hapter 3: Karnaugh-Veith-Maps hapter 4: ominational iruit Design hapter 5: Lathes and Flip

More information

Chapter 7 Conformance Checking

Chapter 7 Conformance Checking Cptr 7 Conormn Ckin pro.r.ir. Wil vn r Alst www.prossminin.or Ovrviw Cptr 1 Introution Prt I: Prliminris Cptr 2 Pross Molin n Anlysis Cptr 3 Dt Minin Prt II: From Evnt Los to Pross Mols Cptr 4 Gttin t

More information

Multiple RS-232 Drivers & Receivers

Multiple RS-232 Drivers & Receivers Multipl S232 rivrs & ivrs Produt sription Th ar monolithi dvi ontaining 3 indpndnt drivs and 5 rivrs. Ths ar dsignd to intrfa twn dat trminal quipmnt and dat ommuniation quipmnt as dsignd y I232. Faturs

More information

Experiment # 3 Introduction to Digital Logic Simulation and Xilinx Schematic Editor

Experiment # 3 Introduction to Digital Logic Simulation and Xilinx Schematic Editor EE2L - Introution to Diitl Ciruits Exprimnt # 3 Exprimnt # 3 Introution to Diitl Loi Simultion n Xilinx Smti Eitor. Synopsis: Tis l introus CAD tool (Computr Ai Dsin tool) ll Xilinx Smti Eitor, wi is us

More information

Final Exam Solutions

Final Exam Solutions CS 2 Advancd Data Structurs and Algorithms Final Exam Solutions Jonathan Turnr /8/20. (0 points) Suppos that r is a root of som tr in a Fionacci hap. Assum that just for a dltmin opration, r has no childrn

More information

METHOD OF DIFFERENTIATION

METHOD OF DIFFERENTIATION EXERCISE - 0 METHOD OF DIFFERENTIATION CHECK YOUR GRASP 5. m mn n ( m n )(n ) ( n )( m ) ( m )(m n ) 0 7. co y / y / loga m m n n (m n )(n )( m ) d () d 0 tan y y log a tan y tan log a Now diffrntiating

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h For t BWR oprating paramtrs givn blow, comput and plot: a) T clad surfac tmpratur assuming t Jns-Lotts Corrlation b) T clad surfac tmpratur assuming t Tom Corrlation c) T clad surfac tmpratur assuming

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

- Prefixes 'mono', 'uni', 'bi' and 'du' - Why are there no asprins in the jungle? Because the parrots ate them all.

- Prefixes 'mono', 'uni', 'bi' and 'du' - Why are there no asprins in the jungle? Because the parrots ate them all. - Prfs '', '', 'b' a '' - Na: Wrsar 27 Dat: W ar tr asrs t? Bas t arrts at t a. At t btt f t a s a st f wrs. Ts wrs ar t. T wrs av b a rta (ra arss), vrta (ra w) r aa (fr rr t rr). W f a wr, raw a at r

More information

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1 Hat Exangr April 8, 007 Hat Exangr Larry artt Manial Engrg 375 Hat ranfr April 8, 007 Outl Bai ida f at xangr Ovrall at tranfr ffiint Lg-man tmpratur diffrn mtd Efftivn NU mtd ratial nidratin Hat Exangr

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark. . (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

More information