Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Size: px
Start display at page:

Download "Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014"

Transcription

1 Grp Aloritms n Comintoril Optimiztion Dr. R. Cnrskrn Prsntrs: Bnjmin Frrll n K. Alx Mills My 7t, 0 Mtroi Intrstion In ts ltur nots, w mk us o som unonvntionl nottion or st union n irn to kp tins lnr. In prtiulr, lt A + B := A B, n A B := A \ B, n lt A + := A {} n A := A \ {}. W will lwys not sts y pitl romn lttrs (.. A, B, C) n lmnts o sts y lowr-s romn lttrs (..,, ) to nsur t prior nottion is unmiuous. W us t inpnnt st ormultion o mtroi. A init mtroi M = (E, I) is pir onsistin o roun st E n mily o susts o E, I E, ll t inpnnt sts o M wit t ollowin two proprtis: M. (Hrity Axiom) Susts o n inpnnt sts r inpnnt, i.. F I, F F = F I. M. (Exn Axiom) I A, B I, n A > B, tn tr is n lmnt o A B wi wn to B orms n inpnnt st. i.., A > B = A B : B + I. Mtrois v t proprty tt ty r mnl to usin ry loritm. Mny importnt prolms su s inin spnnin trs n ormult n solv s mtrois. In nrl sttin, tis is t prolm o inin mximum-siz inpnnt st in mtroi. Tt is, ivn mtroi M = (E, I), in F I su tt F is mximum. Givn two mtrois in ovr t sm roun st, w r intrst in inin mximum-siz st wi is inpnnt in ot mtrois. Tis is known s t mtroi intrstion prolm. As w will sow, it s polynomil tim loritm wi prous orrt solution. Furtrmor, t loritm w sri uss umntin pt tniqus wi r similr to tos us in loritms or mximum-low n mtin. Formlly, our prolm is in s ollows: Givn two mtrois, M = (E, I ), n M = (E, I ), in F I I su tt F is mximum. Krol Grps T loritm w sri mks us o iprtit rp onstrution u to S. Krol []. W will spn som tim motivtin its onstrution n xminin t proprtis o tis rp. Givn M n M, in ovr roun st E, suppos w r ivn som st I I I. In t ours o t loritm, w woul lik to lmnts rom E I to I in orr to otin som I o stritly lrr siz. W n lwys rily lmnts rom E I to I s lon s t rsult is inpnnt in ot mtrois, i.. i tr is n E I, su tt I + I I. Howvr, wn w nnot umnt I in ry mnnr, w must v som mnism or rmovin som lmnts rom I n rplin tm wit otr lmnts in su wy tt t siz o I inrss. W o tis y inin pt in t Krol rp. T pross w us is similr to inin n umntin pt in ntwork lows (wr w in n s t pt wi stritly inrss t mount o low w n sn) n in mtin (wr w in n ltrntin pt twn two r nos wi stritly inrss t siz o t mtin). To in t Krol rp ivn n inpnnt st I I I, w in irt iprtit rp G I = (I, E I, D I ) wit isjoint sts I n E I, n st D I, wr or i I n j E I, (i, j) D I I i + j I, n (j, i) D I I i + j I. Tt is to sy, or i I n j X I, i onnts to j vi irt i, rplin i wit j in I mintins inpnn in mtroi M. Likwis, j onnts to i i rplin i wit j mintins inpnn in M.

2 Potntil Pitll: B rul to not tt t orinttion o t os not init wi lmnt is to I n wi is rmov rom I. Rrlss o t orinttion o (i, j), t lmnt rom I is lwys rmov, n t lmnt rom E I is lwys. To unrstn ow umntin pts in t Krol rp inrs t siz o our inpnnt st, onsir ny pt in G I wi strts in E I n ns in E I. Sin t rp is iprtit, vry pir o jnt nos must on opposit sis o t rp. Lt Q = j, i, j, i,...j n, i n, j n+ t squn o nos on su pt, n lt Q j = {j,..., j n+ }, Q i = {i,..., i n }. Sin pt Q strts n ns in E I, vry no in Q j must in E I, n vry no in Q i must in st I, so w v Q j E I, n Q i E. I Q is simpl pt, (i.. no no is visit mor tn on) tn w v tt Q j = Q i +. Suppos w tn wr to orm I = I Q i + Q j, tn lrly, I = I +. Tis is tru or ny simpl pt rom E I k to E I. So y tkin simpl pt rom E I k to E I w n orm I wit stritly lrr siz. Howvr, w lso wnt I to inpnnt in ot mtrois. Tis n iv y sltin pt Q rom E I to E I wit t ollowin tr proprtis,. (Strt point) Q strts rom no in st X = {x E I I + x I }.. (En point) Q ns t no in st X = {x E I I + x I }.. (Sortst pt) Q is sortst simpl pt rom X to X. Any pt vin ts proprtis is ll n umntin pt in G I. T proo tt ny su umntin pt n us to yil st wi is inpnnt in ot M n M is non-trivil. W will lv tis proo until t n o t ltur nots. Mtroi Intrstion Aloritm T loritm or mtroi intrstion strts wit I = n rily s lmnts wi mintin mmrsip in I I. Wn no mor lmnts n, t loritm orms Krol rp G I, in wi it ins n umntin pt Q ( sortst pt rom X to X ). T loritm tn umnts I y Q, n in rily s lmnts until no mor lmnts n. T loritm ontinus in tis mnnr until no umntin pt n oun. Mor spiilly:. St I.. In ry mnnr, to I no z E I or wi I + z I I. Do tis until no otr z mtin ts ritri n oun.. Form Krol rp G I = (I, E I, D I ) s in ov. Lt X = {z E I I +z I }, X = {z E I I + z I }.. Fin sortst simpl pt Q rom X to X in G I. I non xists, stop n rturn I.. Aumnt I usin Q. Tt is, I I Q i + Q j. Goto stp n ontinu. Noti tt stp is not stritly n. Witout it, t loritm woul in pts o lnt zro onsistin o nos in X X. Howvr, inluin stp vois t wstul ronstrution o nw Krol rps vry tim su n lmnt is to I. Bus stp is inlu, y stp vry pt s t lst s, so w mk us o umntin pts in tis loritm only wn w n to. W provi proo o orrtnss in t nxt stion. T rst o tis stion is onrn wit iiny n trmintion o our loritm. Eiiny is lr s ollows. W strt wit I = n lrly I E t ny point, ivin totl o E = n itrtions. In t worst s, w orm t rp G I t stp. Givn I, w n to onsir I E I = O(n ) potntil s. But, ow o w know wtr to inlu ivn twn i

3 n j? To o so, w v to l to tst n s i I i + j is inpnnt in M n run sprt tst to s i it is inpnnt in M. Bus t siz o I n I oul xponntil in n, w ssum tt mtroi orls M n M r ivn. A mtroi orl or mtroi M = (E, I) is prorm wi n rspon to quris onsistin o susts U E. T qustion t orl nswrs is: is U I? As onrt xmpl, onsir t mtroi M G in on rp G = (V, E), wr t inpnnt sts r yl-r susts o E. For ny sust o s, E w n omput wtr or not E ontins yl, n nswr ys or no. Su prorm woul onstitut n orl or M G. Bk to t Krol rp, it soul lr tt w n to qury ot orls on or o G I. Spiilly, or (i, j), wit i I n j E I, w sk, is I i+j I? W n onstrut t rp in t most O(n ) su quris. I ot M n M v orls wit polynomil runnin tims, t runnin tim o t mtroi intrstion loritm will polynomil. Mor spiilly, i T (M ) n T (M ) r runnin tims or t orls or M n M, tn t mtroi intrstion loritm runs in tim O(n mx[t (M ), T (M )]). In orr to lt, w must l to tt wn no X X pt xists in G I. To o tis iintly, w n o t ollowin: In G I, onnt spil no r to vry no in X. Run rt-irst sr rom r, otinin rt-irst sr tr T. I T osn t r X, tn tr is no X X pt. Els, t sortst pt rom X to X n oun in T. Brt-irst sr runs in O( V + E ) tim, wi is omint y t O(n ) rp onstrution in stp. Exmpl Common Ll Spnnin Tr T ollowin is n xmpl o t mtroi intrstion loritm in tion. Our urrnt mtrois M = (V, I ) n M = (V, I ) r orst mtrois s on rps G n rsptivly. Tt is, I (rsptivly I )is t st o ll yl-r s in G (rsptivly, ). T rps r sown in Fiur. Essntilly, w will lookin or lrst ommon spnnin tr. Wn t loritm strts, our intrstin inpnnt st I is mpty. Any lmnt I I is tn rily to I su tt I rmins inpnnt in I n I. Wn no nw lmnt n to I, t loritm tn srs or n umntin pt to inrs I. Fiur sows t urrnt snrio. W rily os lmnts,, n to to I n now nnot ny mor lmnts. Noti tt in w n itr or to I n still rmin inpnnt in I. Howvr, or G tis will us I to los inpnn in I. Tis is wr t umntin pt oms in to lp rrrn tins to wr w n potntilly mor lmnts. W onstrut t Krol rp, G I. Alon wit G I, two sts (X n X ) r in. G I is sown in Fiur wit lmnts in X olor r n lmnts in X olor rn. At tis point sortst pt rom n lmnt in X to n lmnt in X is slt. T loritm tn upts I y rmovin ll y I n in ll z V I tt r lon t slt pt. Fiur ilits n ritrrily slt sortst pt (,, ). I will tn upt to I + + n inrs in siz y on. Fiur ilits t lmnts in t upt I. A nw Krol rp D I (Fiur ) is rt s on tis st. Sin tr r no lmnts in itr X or X, tis inits tr is no umntin pt to inrs I. T loritm trmints n rturns I = {,,, }. T nxt xmpl provis s snrio monstrtin t nssity o oosin sortst X X pt. Fiur 6 sows rps G n wit ommon inpnnt st ilit. T irt iprtit rp is onstrut n inst o oosin sortst pt, non-sortst pt is osn inst. Fiur 7 sows t slt pt n t rsultin umnttion. Noti tt t ommon st

4 G Fiur : Initil rps wr I = G Fiur : Hilit s in G n orm ommon inpnnt st. I = {,, }. is no lonr inpnnt. I w osn sortst pt su s in Fiur 8, t rsultin umnttion woul v yil lrr ommon inpnnt st. Aloritm Corrtnss To prov t orrtnss o t mtroi intrstion loritm, w n to sow two tins.. I is o mximum siz t t n o t loritm.. I I I t t n o t loritm. W n rin ts sttmnts mor ormlly into Torm n Torm. Noti tt ts sttmnts r slitly rminisnt o t umntin pt torms or mx-low. Torm. I tr is no X X pt in G I, tn I is o mximum siz. Torm. I tr is n X X pt, Q = j, i, j, i,..., j n, i n, j n+ wi is n umntin pt, tn I Q i + Q j I I. To prov Torm w will n t onpts o t rnk n sis o ny st U E. Givn st U E, wr E is t s st o mtroi M, w in t rnk r M (U) s t mximum siz inpnnt sust o U. I U is inpnnt tn r M (U) = U, otrwis w n rmov lmnts rom U wi us it to pnnt. Rmovin t wst numr o su lmnts yils mximum siz U U, wr U is inpnnt in M, n tror r M (U) = U. A sis o st U E, not B U, is

5 I E I D I Fiur : D I sows pts rom X (r) to X (rn). G Fiur : Hilit s in G n orm nw ommon inpnnt st tr in lmnts n n rmovin. I = {,,, }. I E I D I Fiur : No X X pt in D I.

6 G Fiur 6: Nssity o sortst pt I V I G I G Fiur 7: Non-sortst pt umnttion yils non-inpnnt st. mximum siz inpnnt sust o U. Not tt t sis o ivn sust n not uniqu, ut mtroi tory tlls us tt ll ss must v t sm rinlity. Tt is, or ny two ss B U, B U o st U, B U = B U = r M (U). Arm wit ts onpts, w n inlly iv t ollowin proo. Ts proos wr oriinlly xprss in mor onis orm, owvr rt r s n tkn to itionl tils to i t onus rr, wo my not v prviously sn mtroi tory ppli. W v rwn rom ll t rrns it t t n o tis stion, n s our proo primrily on tos in [, ]. Proo (Torm ). Givn tt tr is no X X pt, w n to sow tt I is o mximum siz. First, noti tt ivn ny J I I, n ny U E, w v J = J U + J (E U) r M (U) + r M (E U). () Wi sys rouly tt t portions o J on itr si o t prtition (U, E U) nnot x t mximum inpnnt sts on itr si o t ut. Tis is rsonly intuitiv, ut w must iv orml proo. To prov () not tt sin ny sust o J is inpnnt, tis must lso ol or J U J. So, or ny M sis o t suprst U w must v J U B U = r M (U). Similrly, sin J (E U) J, or ny M sis o E U, w must v J (E U) B E U = r M (E U). Tkin t sum o ts inqulitis yils (). W will sow tt i tr is no X X pt, tt w v qulity in (), wi implis tt w nnot inrs I ny urtr. To sow qulity or I w must prou suitl st U. Lt U t st o lmnts in E wi n r X. Mor ormlly, lt U = {z E tr is pt in G I rom z to X }. Clrly, ny no in X must in U, so X U. Furtrmor, sin tr is no pt rom X to X, X U =. W lim tt r M (U) = I U n r M (E U) = I (E U), wi provs tt w v I w oul inrs I wil qulity ols or (), tt woul imply tt () is invli, sin I woul x t rit-n si. But w just prov () so w must not l to inrs it urtr. 6

7 I V I G I G Fiur 8: Sortst pt umnttion yils lrr ommon inpnnt st. qulity in (). W will only sow tt r M (U) = I U, t proo tt r M (E U) = I (E U) is similr. W will sow I U = r M (U) y ontrition. Suppos tt I U < r M (U). Sin I U is inpnnt in M, w n xtn I U to sis o U, or wi I U < B U. But tis mns tt tr is suprst o I U wi is inpnnt in M, nmly B U. By t xn xiom, w must v som x B U (I U) su tt (I U) + x I. Not tt tis urnts tt x B U I. Sin X U =, it must tt I + x / I, (y inition o X ). Finlly, sin (I U) + x ws sown to inpnnt in M, n I + x is not, w v tt I U I; tror (I U) + x I. () W will sow tt () implis tt tr must som y I U su tt I y + x I, ut irst w will sow ow tis omplts t proo. Not tt sin I y + x I, w must v tt (y, x) D I, n tis is irt rom I to E I sin w v inpnn in M or I y + x. But w lry know tt tr s pt rom x to X, us x B U implis tt x U. Tror, sin tr is som no y wi is not in U, yt wi n r X (y wy o pt trou x), w otin ontrition. It rmins to sow tt () implis t xistn o y I U su tt I y + x I. W onsir two ss s ollows. Suppos tt (I U)+x = I. Sin ot sis v t sm siz, yt w som x / I to (I U), w must v tt (I U) + x = I y + x or som y I U. Suppos now inst tt (I U) + x < I. Sin ot sts r inpnnt in M w n pply t xn xiom. Tror w must v x I ((I U) + x) = I U su tt (I U) + x + x I. W n rpt tis y inution until w otin I y + x I or som y I U, just s or. Tis omplts t proo. To prov Torm w will n t onpt o t spn o st S E. T spn o ny st S E is in s spn M (S) = {x x E, r M (S + x) = r M (S)}. T spn is tos lmnts wi, wn to S os not us t rnk o S + x to ir rom tt o S. Tt is to sy, t mximum siz inpnnt st o S + x is t sm s tt o S. W will us t t tt, i x / spn M (S), tn S + x I. W will lso n t ollowin lmm. Lmm. Lt M = (E, I) mtroi. Lt I I, n lt j, i,..., j k, i k squn o istint lmnts o E su tt () j m / I, i m I or m k; () I + j m / I, (I + j m ) i m I or m k; () I + j m i l / I or i m < l k. Lt I = I {i,...i k } + {j,..., j k }. Tn I I n spn M (I ) = spn M (I). 7

8 Wi rouly sys tt or n umntin pt Q = j, i,..., j n, i n, (tt is, t oriinl umntin pt Q xluin j n+ ), tt umntin y Q yils n inpnnt st in I. Tis will om lr on w pply t lmm to prov Torm. Not tt onition () is quivlnt to rquirin Q to sortst pt, sin i I j m + i l wr inpnnt wit m < l, tis woul imply tt sortut xists in t Krol rp. W will prov Lmm t t n o tis stion. For now, w will sow ow it n us to prov Torm. Proo (Torm ). Consir t umntin X X pt Q = j, i,..., j n, i n, j n+ wi xists y t ssumption o Torm. W n to k t onitions o Lmm in orr to pply it. Sin Q strts in E I, n G I is iprtit, w v tt t squn j, i,..., j n, i n stisis onition (). Wn w onsir mtroi M, onition () ollows sin w v tt I + j m / I (otrwis tr is sortr X X pt), n tt I j m + i m I, sin (j m, i m ) is in t Krol rp. Conition () ollows sin Q is sortst pt. Tror, y Lmm, w v tt I = I {i,..., i n } + {j,..., j n } I, n urtrmor tt spn M (I ) = spn M (I). Sin j m+ X, n tror I + j m+ I, w know tt j m+ / spn M (I). Tror, w t tt j m+ / spn M (I ) = spn M (I), so w v tt I + j m+ I. It s sy to s tt t sm umntin pt yils similr squn i, j,..., i n, j n+ or wi t onitions o t lmm ol wit rr to mtroi M. Tt is, j m+ / I, ut i m I, or ny m n, stsiyin (); w know tt I + j m+ / I, yt (I + j m+ ) i m I or i m n, sin s (i m, j m+ ) r in G I, stisyin (); onition () ollows sin Q is sortst pt, s or. Lmm n tror ppli s or, n symmtri rumnt us to sow j / spn(i {i,...i n } + {j,..., j n }), implyin tt I {i,...i n } + {j,...j n } + j I. Tkn totr wit t prvious rsult, w v tt I Q i + Q j I I, s sir. As onsqun o vin orrt loritm or mtroi intrstion, w n sow t ollowin unmntl mx-min rltion ovr t intrstion o mtrois. Torm. T siz o t mximum inpnnt st ommon to M n M is qul to t siz o t mximum inpnnt sts on itr si o iprtition o E. Formlly, mx I = min [r M (U) + r M (E U)]. I I I U X Proo. Our proo rlis on t xistn o orrt loritm wi n prou n I n U su tt qulity ols. T mtroi intrstion loritm is su n loritm, s vin y Torms n. Furtrmor, w sow in t proo o Torm tt ols, so no otr I n x t siz o tt oun y our loritm. O ours, to l to pply Lmm in t proo o Torm, it must sown to orrt. W will sow tis t y inution in t ollowin proo. Proo (Lmm ). W prorm inution on k, l t lnt o t squn j, i,..., j k, i k. As our s s, onsir t sitution wn k =. W v squn j, i, wr t onitions o t Lmm ol. T lmm stts tt I = I j + i. By onition (), w v tt I I. W n to sow tt spn M (I ) = spn M (I). Suppos tt spn M (I ) spn M (I), n tt w v som spn M (I) or wi / spn M (I ). Tis mns tt I must sis o I + i +, ut I + orms sis o lrr siz. Sin sis o sust o X must v t sm siz, tis is ontrition. Similrly, i spn M (I ) ut / spn M (I) tn I orms sis o I + i +, n w t I + s sis o lrr siz, yilin ontrition. So in itr s, spn M (I) = spn M (I ). For t inutiv s, suppos k n t lmm ols or ll vlus smllr tn k. Fix I = I Q i + Q j or t rminr o t proo. W will pply t lmm to smllr siz squns in two wys. First, pply it to st I n t squn j, i,..., j k, i k, yilin tt I j k + i k I, n spn M (I j k + i k ) = spn M (I). () 8

9 (Not tt I j k + i k is just I umnt y t pt o lnt k wi xlus t lst pir (j k, i k )). W lso pply t lmm to st I i k n t sm squn (j, i,..., j k, i k ) yilin tt I j k I, n spn M (I j k ) = spn M (I i k ). () Not tt j k / spn M (I i k ), sin y onition (), I i k + j k is inpnnt. Sin t spns in () r t sm, j k / spn M (I j k ), so w v tt I j k + j k = I I, wi is t irst onsqun o t lmm tt w n to sow. Applyin (), it s lr tt in orr to sow tt spn M (I ) = spn M (I), it suis to sow spn M (I ) = spn M (I j k + i k ). To o tis, w pply inution wr k = to t st I n t squn i k, j k, yilin tt spn M (I ) = spn M (I j k + i k ). In orr to o tis, w must stisy t onitions o t Lmm. Conitions () n () r t only two onitions o onsqun, us o t smll siz o t squn. Clrly, () is stisi, sin i k / I, n j k I. To s tt () is stisi, w must v tt I j k + i k I, wi ollows sily rom (), n tt I + i k / I, wi lso ollows rom (), sin i k I, n I spn M (I) = spn M (I j k + i k ). Tror, ll t onitions r stisi, n w v tt spn M (I) = spn M (I ), provin t lmm. Rrns [] Cnr Ckuri. Ltur 6 on //00: Unrossin s proo o mtroi polytop intrlity, s xn proprtis. ttp://ourss.nr.illinois.u/s98s/sp00/, 00. [] Cnr Ckuri. Ltur 7 on /6/00: Mtroi intrstion. ttp://ourss.nr.illinois.u /s98s/sp00/, 00. [] Willim J. Cook, Willim H. Cunninm, Willim R. Pullylnk, n Alxnr Srijvr. Comintoril Optimiztion. Jon Wily & Sons, In., Nw York, NY, USA, 998. [] Stin Krol. A omintoril s or som optiml mtroi intrstion loritms. Tnil Rport STAN-CS-7-6, Computr Sin Dprtmnt, Stnor Univrsity, Stnor, Cliorni, 97. [] Jnos P. Mtroi intrstion. Ltur 7. ttp://.pl./p-8766-n.tml, 0. [6] Alxnr Srijvr. T ry loritm n t inpnnt st polytop. In Comintoril Optimiztion: Polyr n Eiiny, volum B. Sprinr, 00. [7] Alxnr Srijvr. Mtroi intrstion. In Comintoril Optimiztion: Polyr n Eiiny, volum B. Sprinr, 00. 9

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures 1 (4, )-oosility o plnr rps wit orin struturs 4 5 Znr Brikkyzy 1 Cristopr Cox Mil Diryko 1 Kirstn Honson 1 Moit Kumt 1 Brnr Liiký 1, Ky Mssrsmit 1 Kvin Moss 1 Ktln Nowk 1 Kvin F. Plmowski 1 Drrik Stol

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then: Assinmnts: DFA Minimiztion CMPU 24 Lnu Tory n Computtion Fll 28 Assinmnt 3 out toy. Prviously: Computtionl mols or t rulr lnus: DFAs, NFAs, rulr xprssions. Toy: How o w in t miniml DFA or lnu? Tis is t

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 0, No. 0, pp. 000 000 2009 Soity or Inustril n Appli Mtmtis THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS HAL KIERSTEAD, BOJAN MOHAR, SIMON ŠPACAPAN, DAQING

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

MCS100. One can begin to reason only when a clear picture has been formed in the imagination.

MCS100. One can begin to reason only when a clear picture has been formed in the imagination. 642 ptr 10 Grps n Trs 46. Imin tt t irmsown low is mp wit ountris ll. Is it possil to olor t mp wit only tr olors so tt no two jnt ountris v t sm olor? To nswr tis qustion, rw n nlyz rp in wi ountry is

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212,

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212, Inis Inis Curriulum Ry ACMNA: 09, 0,, 6 www.mtltis.om Inis INDICES Inis is t plurl or inx. An inx is us to writ prouts o numrs or pronumrls sily. For xmpl is tully sortr wy o writin #. T is t inx. Anotr

More information

Combinatorial Optimization

Combinatorial Optimization Cominoril Opimizion Prolm : oluion. Suppo impl unir rp mor n on minimum pnnin r. Cn Prim lorim (or Krukl lorim) u o in ll o m? Explin wy or wy no, n iv n xmpl. Soluion. Y, Prim lorim (or Krukl lorim) n

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Rll t nton o spnnn tr: Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Any unrt, onnt rp s spnnn tr. Atully, rp

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Extnsions: Mtin Rsints to Hospitls CS 580: Aloritm Dsin n Anlysis Ex: Mn ospitls, Womn m sool rsints. Vrint 1. Som prtiipnts lr otrs s unptl. 1.2 Fiv Rprsnttiv Prolms Vrint 2. Unqul numr o mn n womn. rsint

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian)

Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian) msp INVOLVE 7:1 (2014) x.oi.or/10.2140/involv.2014.7.41 Sli-n-swp prmuttion roups Onyui Eknt, Hn Gil Jn n Jo A. Silr (Communit y Josp A. Gllin) W prsnt simpl til-sliin m tt n ply on ny 3-rulr rp, nrtin

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Applications: The problem has several applications, for example, to compute periods of maximum net expenses for a design department.

Applications: The problem has several applications, for example, to compute periods of maximum net expenses for a design department. A Gntl Introution to Aloritms: Prt III Contnts o Prt I: 1. Mr: (to mr two sort lists into sinl sort list.). Bul Sort 3. Mr Sort: 4. T Bi-O, Bi-Θ, Bi-Ω nottions: symptoti ouns Contnts o Prt II: 5. Bsis

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Physics 222 Midterm, Form: A

Physics 222 Midterm, Form: A Pysis 222 Mitrm, Form: A Nm: Dt: Hr r som usul onstnts. 1 4πɛ 0 = 9 10 9 Nm 2 /C 2 µ0 4π = 1 10 7 tsl s/c = 1.6 10 19 C Qustions 1 5: A ipol onsistin o two r point-lik prtils wit q = 1 µc, sprt y istn

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

STRUCTURAL GENERAL NOTES

STRUCTURAL GENERAL NOTES UILIN OS: SIN LOS: RUTURL NRL NOTS NRL NOTS: US ROUP: - SSMLY USS INTN OR PRTIIPTION IN OR VIWIN OUTOOR TIVITIS PR MIIN UILIN O STION. SSONL. T UNTION O TIS ILITY IS NOT OR QUIPP OR OUPNY URIN WINTR/ TIN

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,... Warmup: Lt b 2 c 3 d 1 12 6 4 5 10 9 7 a 8 11 (i) Vriy tat G is connctd by ivin an xampl o a walk rom vrtx a to ac o t vrtics b. (ii) Wat is t sortst pat rom a to c? to? (iii) Wat is t lonst pat rom a

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information