Proof of Pumping Lemma. PL Use. Example. Since there are only n different states, two of q 0, must be the same say q i

Size: px
Start display at page:

Download "Proof of Pumping Lemma. PL Use. Example. Since there are only n different states, two of q 0, must be the same say q i"

Transcription

1 COSC 2B 22 Summr Proo o Pumpin Lmm Sin w lim L is rulr, tr must DFA A su tt L = L(A) Lt A v n stts; oos tis n or t pumpin lmm Lt w strin o lnt n in L, sy w = 2 m, wr m n Lt i t stt A is in tr rin t irst i symols o w = strt stt, = δ(, ), 2 = ˆ δ (, 2 ), t. 22 Summr COSC 2 Sin tr r only n irnt stts, two o,, n must t sm sy i = j, wr i < j n Lt x = i y = i+ j z = j+ m Tn y rptin loop rom i to j wit ll i+ j k tims, w n sow tt xy k z is pt y A y x j i+ j i 22 Summr COSC 2 2 i z j + m Pumpin Lmm us strin y is "pump" Not: ntur o FA's mns nnot ontrol numr o tims pump So, rulr lnu wit strins o lnt n is lwys ininit PL only intrstin or ininit lnus ut works or init lnus, wi r lwys rulr in tis s n is lrr tn t lonst strin so notin n pump T PL is n pplition o t "pion-ol prinipl" PL Us W us t PL to sow lnu L is not rulr Strt y ssumin L is rulr Tn tr must som n tt srvs s t PL onstnt W my not know wt n is, ut w n work t rst o t "m" wit n s prmtr W oos som w tt is known to in L Typilly, w pns on n 22 Summr COSC Summr COSC 2 4 Exmpl Applyin t PL, w know w n rokn into xyz, stisyin t PL proprtis Ain, w my not know ow to rk w, so w us x, y, z s prmtrs W riv ontrition y pikin i (wi mit pn on n, x, y, n/or z) su tt xy i z is not in L Consir t st o strins o 's wos lnt is prt sur; ormlly L = { i i is sur} W lim L is not rulr Suppos L is rulr. Tn tr is onstnt n stisyin t PL onitions Consirw = n2, wi is surly in L Tn w = xyz, wr xy n n y ε 22 Summr COSC Summr COSC 2 6

2 COSC 2B 22 Summr T PL "m" By PL,xyyz is in L. But t lnt o xyyz is rtr tn n 2 n no rtr tn n 2 + n (Wy?) Howvr, t nxt prt sur tr n 2 is (n+ ) 2 = n 2 + 2n + Tus,xyyz is not o sur lnt n is not in L Sin w v riv ontrition, t only unprov ssumption tt L is rulr must t ult, n w v "proo y ontrition" tt L is not rulr Gol: win t PL m inst our opponnt y stlisin ontrition o t PL, wil t opponnt tris to oil us. 22 Summr COSC Summr COSC 2 8 Four Stps. Numr o stts in utomton is n Not: w on't v to know wt n is, sin w us n to in our strin 2. Givn n, w pik strin w in L o lnt ul to or rtr tn n W r r to oos ny w, sujt to w L n w n W usully in t strin in trms o n Four Stps (II) 3. Our opponnt ooss t omposition xyz, sujt to xy n y 4. W try to pik i (t powr tor in xy i z) in su wy tt t pump strin w i is not in L. I w n o so, w win t m 22 Summr COSC Summr COSC 2 Exmpl Σ ={,}; onsir L = {ww R w Σ*}. Wtvr n t opponnt ooss in stp, w n lwys oos w s ollows: n n n n x y z Bus o tis oi n t ruirmnt tt xy n, t opponnt is rstrit in stp 3 to oosin y tt onsists ntirly o 's. In stp 4, w us i=2.t strin xy 2 z s mor 's on t lt tn on t rit, so it nnot o orm ww R. So L is not rulr. 22 Summr COSC 2 22 Summr COSC 2 2 2

3 COSC 2B 22 Summr Exmpl 2 Consir L = { i i i } Givn n, w oos t strin n n or our rumnt. I t lnu is rulr, our opponnt n rk tis strin into xyz wr or ny j xy j z is in L Bus xy n n y >, t strin y s to onsist o s only. So pumpin y s to t numr o s n n tr r mor s tn s 22 Summr COSC 2 3 Exmpl 3 Consir L = {w w s n ul numr o 's n 's} Givn n, w oos t strin () n W n to sow splittin tis strin into xyz wr xy i z is in L is impossil But it is possil! I x = ε, y =, n z = () n-, xy i z is in L or vry vlu o i. Ar w out o luk? 22 Summr COSC 2 4 First lw o PL us I your strin os not su, try notr! Lt's try n n. Ain, w n to sow splittin tis strin into xyz wr xy i z is in L is impossil But it is possil! I x n y r t mpty strin n y is n n, tn xy i z lwys s n ul numr o 's n 's. Ar w still in troul? Not tis tim t PL sys tt our strin s to ivi so tt xy n n y > I xy Qtn y must onsist only o 's, so xyyz L Contrition! W win! 22 Summr COSC Summr COSC 2 6 Exmpl 4 Consir L = {ww w Σ*} W oos t strin n n, wr n is t numr o stts in t FA. W now sow tt tr is no omposition o tis strin into xyz wr or ny j xy j z is in L. Ain, it is ruil tt t PL insists tt xy n, us witout it w oul oul pump t strin i w lt x n z t mpty strin. Wit tis onition, it's sy to sow tt t PL won't pply us y must onsist only o 's, so xyyz is not in L. As or, t oi o strin is ritil: w osn n n (wi is mmr o L) inst o n n, it wouln't work us it n pump n still stisy t PL. MORAL Coos your strins wisly. 22 Summr COSC Summr COSC 2 8 3

4 COSC 2B 22 Summr Exmpl 5 "Pumpin own" L = { i j i > j} Givn n, oos s = n+ n. Split into xyz t. Bus y t PL, xy n, y onsists only o 's. Is xyyz in L? T PL stts tt xy i z is in L vn wn i = So, onsir t strin xy z Rmovin strin y rss t numr o 's in s s s only on mor tn Tror, xz nnot v mor 's tn 's, n is not mmr o L. Contrition! 22 Summr COSC Summr COSC 2 2 Rmmr You n to in only on strin or wi t PL os not ol to prov lnu is not rulr But you must sow tt or ny omposition into xyz t PL ols Tis somtims mns onsirin svrl irnt ss Exmpl L = { 3 i i-3 i > 3} Assum L is rulr, PL ols. Coos w = 3 n n-3 wit n s t PL onstnt. Tr wys to prtition w into xyz:. y ontins only s 2. y ontins only s 3. y ontins s n s Hv to sow tt o ts prtitions ls to ontrition, i.. tt tr is no possil wy to ivi w into xyz so tt t PL ols 22 Summr COSC Summr COSC 2 22 Cs: y ontins only s Tn x ontins to 2 s, y ontins to 3 s, n z ontins to 2 s ontnt onto t rst o t strin n n-3, su tt tr r xtly 3 s. So t prtition is x = k y = j z = 3-k-j n n-3 wr k, j >, n k+j 3. It soul tru tt xy i z L or ll i. xy 2 z = (x)(y)(y)(z) = ( k )( j )( j )( 3-j-k n n-3 ) = 3+j n n-3 L sin j >, tr r too mny s CONTRADICTION! Cs 2: y ontins only s Tn x ontins 3 s ollow y or mor s, y ontins to n-3 s, n z ontins 3 to n-3 s ontnt onto t rst o t strin n-3. So t prtition is x = 3 k y = j z = n-k-j n-3 wr k, j >, n k+j Q-3. It soul tru tt xy i z L or ll i. xy z = 3 n-j n-3 L sin j >, tr r too w s CONTRADICTION! 22 Summr COSC Summr COSC

5 COSC 2B 22 Summr Cs 3: y ontins s n s Tn x ontins to 2 s, y ontins to 3 s n to n-3 s, n z ontins 3 to n- s ontnt onto t rst o t strin n-3. So t prtition is x = 3-k y = k j z = n-j n-3 wr 3 N, n n-3 M>. It soul tru tt xy i z L or ll i. xy 2 z = 3 j k n n-3 L sin j, k >, n tr r s or s Tr is no prtition o w L is not rulr! 22 Summr COSC 2 25 Closur Proprtis Crtin oprtions on rulr lnus r urnt to prou rulr lnus Exmpl: t union o rulr lnus is rulr: strt wit RE's, n pply + to t n RE or t union. 22 Summr COSC 2 26 Asi: Applitions FST: Finit Stt Trnsur Implmntin FSTs in Jv, C, Solvin prtil prolms wit FSTs FST: Finit Stt Trnsur Lik DFA, ut rs n writs Ars sow input n output: "in/out" I/O n omplx: "x in Σ-{}/x" / Strt x in Σ/x /ε 22 Summr COSC Summr COSC 2 28 FST Implmnttion Clmpin FST N to r/writ, trk stt: stt = ; Strt x in Σ/x until EOF: in = r() swit on stt: /ε s : writ(in); stt = ; n s s : i in=='' tn stt=; ls writ(''); stt=; n i n s n swit n until / riv rom FA: / strt / / /,/ 22 Summr COSC Summr COSC 2 3 5

6 COSC 2B 22 Summr Clmpin FST in Jv int stt = ; r inr, outr; wil (!in.o() ) { outr = inr = in.r(); swit( stt ) { s : swit( inr ) s '': stt = ; rk; s '': stt = ; rk; ult: // rror Solvin prtil prolms RE's us in: rp, rp lx lxil nlysr nrtor } rk; //... } print(outr); } 22 Summr COSC 2 32 initions ruls usr o Lx/Flx %{ #inlu %} %% [-9]+ print("int %s\n", yytxt); [-+*/] print("op %s\n", yytxt); [ \t\n]+ /* t up wit sp */. print("unk: %s\n", yytxt); %% int min(int r, r *rv[]) { yylx(); } Lx/Flx (II) nrts u il o tls lik: stti yyonst sort int yy_pt[2] = {,,, 6, 4, 3, 3, 2,, 3,, }; plus untions lik yylx, wi mults n utomton tls riv trnsitions m y yylx 22 Summr COSC Summr COSC 2 34 Sustitution o RLs into RL is Rulr Swp rulr lnus or vry symol in t lpt o rulr lnu, n t rsultin lnu is rulr: Σ (or in Σ), w in sustitution s: s() = L wr L is RL s( 2 n )= s( )s( 2 ) s( n ) xtn to strins = L L 2 L n s(m) = w in M s(w) xtn to lnus Tn s(l) is rulr 22 Summr COSC 2 35 Closur Unr Rvrsl Rvrs o strin w = 2... n is n... 2 Dnot w R Not ε R = ε Rvrs o lnu L is st ontinin rvrs o strin in L Dnot L R I L is rulr, so is L R Proo: us RE's, rursiv rvrsl s in txt 22 Summr COSC

7 COSC 2B 22 Summr Dision Proprtis o RLs Givn rprsnttion (.., RE, FA) o rulr lnu L, wt n w tll out L? Hv loritms to onvrt twn rprsnttions, so n oos rprsnttion tt mks tst sist Mmrsip: Is strin w in rulr lnu L? Us DFA rprsnttion or L & simult DFA on input w. Emptinss: Is L = φ? Us DFA rprsnttion + rp-rility loritm to tst i t lst on ptin stt is rl rom strt stt 22 Summr COSC 2 37 Finitnss Is L init lnu? Not vry init lnu is rulr (wy?), ut rulr lnu is not nssrily init DFA mto: Givn DFA or L, limint ll stts tt r not rl rom t strt stt n ll stts tt o not r n ptin stt Tst i tr r ny yls in t rminin DFA; i so, L is ininit, i not, tn L is init 22 Summr COSC 2 38 Finit L? RE Mto * in RE mns ininit lnu (lmost) Wt out ε* or *φ? Follow stps:. () Fin n () limint su-xprssions uivlnt to φ 2. Fin su-xprssions uivlnt to ε 3. L(R) is ininit i tr is non-ε su-xprssion E* Fin n Elimint φ ) Fin REs uivlnt to φ: E+F i E=F=φ EF i E=φ or F=φ But nvr: ε or or E* ) Rpl su-xprssions uivlnt to φ: E+φ E φ+e E φ* ε 22 Summr COSC Summr COSC 2 4 Look or non-ε E* Su-xprssions uivlnt to ε : E+F i E=F=ε EF i E=F=ε E* i E=ε Now, i L(R) s su-xprssion E* su tt E is not uivlnt to ε, tn L is ininit. 22 Summr COSC 2 4 Exmpl Consir ( + φ)* + φ* ) φ (twi) n φ r su-xprssions uivlnt to φ )Rmov ts su-xprssions ( + φ)* ( + φ)* * n φ* ε * + ε rmins 2) only su-xprssion ε is uivlnt to ε * + rmins Sin is strr, lnu is ininit. 22 Summr COSC

8 COSC 2B 22 Summr Minimiztion o Stts Rl ol is tstin uivln o (rprsnttions o) two rulr lnus. Intrstin t: DFA's v uniu (up to stt nms) minimum-stt uivlnts. Distinuisl Stts Ky i: in stts p n tt r istinuisl us tr is som input w tt tks xtly on o p n to n ptin stt. Bsis: ny non-ptin stt is istinuisl rom ny ptin stt (w = ε). Inution: p n r istinuisl i tr is som input symol su tt δ(p, ) is istinuisl rom δ(, ). All otr pirs o stts r inistinuisl, n n mr into on stt. 22 Summr COSC Summr COSC 2 44 Exmpl (vry simpl) Cn w istinuis rom r? Consir FA p is istinuisl rom n r y sis p r No strin innin wit works. ot stts o to p, n tror ny strin o t orm x tks n r to t sm stt. No strin innin wit works. Strtin in itr or r, s lon s w v input, w r in on o t ptin stts. Wn is r, w o to t sm stt (p) n tn rrlss o input, t sm stts orvr tr. p r 22 Summr COSC Summr COSC 2 46 Construtin Minimum-Stt DFA For roup o inistinuisl stts, pik "rprsnttiv." Not roup n lr,..,, 2,, k, i ll pirs r inistinuisl. Inistinuisility is trnsitiv (wy?) so inistinuisility prtitions stts. I p is rprsnttiv, n δ(p, ) =, in minimum-stt DFA t trnsition rom p on is t rprsnttiv o 's roup (or to itsl, i is itr lon in roup or rprsnttiv). 22 Summr COSC 2 47 Strt stt is rprsnttiv o t oriinl strt stt. Aptin stts r rprsnttivs o roups o ptin stts. Noti w oul not v "mix" (ptin + non-ptin) roup (wy?). Dlt ny stt tt is not rl rom t strt stt. 22 Summr COSC

9 COSC 2B 22 Summr Exmpl For t DFA ivn rlir, p is in roup y itsl; {, r} is t otr roup. p r p, Wy Cn't Bt Tis Minimiztion Proo y ontrition: suppos w minimiz DFA A, onstrutin DFA M suppos N is notr DFA tt pts sm lnu s A n M, yt s wr stts tn M Run stt-istinuisility pross on stts o M n N totr Strt stts o M n N r inistinuisl us L(M) = L(N) 22 Summr COSC Summr COSC 2 5 I {p,} r inistinuisl, tn tir sussors on ny on input symol r lso inistinuisl sin nitr M nor N oul v n inssil stt, vry stt o M is inistinuisl rom t lst on stt o N Sin N s wr stts tn M, tr r two stts o M tt r inistinuisl rom t sm stt o N, n tror inistinuisl rom otr But M ws sin so tt ll its stts r istinuisl rom otr Contrition! so ssumption tt N xists is wron, n M in t s s w stts s ny uivlnt DFA or A In t, tr must - orrsponn twn t stts o ny otr minimum-stt N n t DFA M, sowin tt t minimum-stt DFA or A is uniu up to rnmin o t stts. 22 Summr COSC Summr COSC 2 52 DFA Minimiztion: T I Bkroun: Hv sn tt sinl RL s mny DFAs. Hv sn tt n simpliy DFAs, REs, t., y uivlns. Qustions: Is tr uniu simplst DFA or RL? I so, n w onstrut it? DFA Minimiztion: T I Ys, tr is uniu miniml DFA & w n onstrut it. Miniml: Miniml numr o stts. Uniu: Uniu up to rnmin o stts. I.., s sm sp. Isomorpi. 22 Summr COSC Summr COSC

10 COSC 2B 22 Summr Aloritm I Intiy & ollps stts vin sm vior. Buil uivln rltion on stts: p z, δˆ (p,z) F δˆ (,z) F I.., i or vry strin z, on o t ollowin is tru: p z p z or z z 22 Summr COSC 2 55 DFA Minimiztion: Aloritm Buil tl to ompr unorr pir o istint stts p,. E tl ntry s mrk s to wtr p n r known to not uivlnt, n list o ntris, rorin pnnis: I tis ntry is ltr mrk, lso mrk ts. 22 Summr COSC 2 56 DFA Minimiztion: Aloritm DFA Minimiztion: Exmpl. Initiliz ll ntris s unmrk n wit no pnnis. 2. Mrk ll pirs o inl n non-inl stt. 3. For unmrk pir p, n input symol :. Lt r=δ(p,), s=δ(,). 2. I (r,s) unmrk, (p,) to (r,s) s pnnis, 3. Otrwis mrk (p,), n rursivly mrk ll pnnis o nwly-mrk ntris. 4. Cols unmrk pirs o stts. 5. Dlt inssil stts.. Initiliz tl ntris: Unmrk, mpty list 22 Summr COSC Summr COSC 2 58 DFA Minimiztion: Exmpl DFA Minimiztion: Exmpl δ(,)? δ(,) δ(,)? δ(,) 2. Mrk pirs o inl & non-inl stts 3. For unmrk pir & symol, 22 Summr COSC Summr COSC 2 6

11 COSC 2B 22 Summr DFA Minimiztion: Exmpl DFA Minimiztion: Exmpl?? My. No! 3. For unmrk pir & symol, 3. For unmrk pir & symol, 22 Summr COSC Summr COSC 2 62 DFA Minimiztion: Exmpl DFA Minimiztion: Exmpl δ(,)? δ(,) δ(,)? δ(,)?? My. Ys. 3. For unmrk pir & symol, 3. For unmrk pir & symol, (,) 22 Summr COSC Summr COSC 2 64 DFA Minimiztion: Exmpl DFA Minimiztion: Exmpl N to mrk. So, mrk (,) lso. 3. For unmrk pir & symol, (,) (,) 3. For unmrk pir & symol, (,) (,) (,) (,) 22 Summr COSC Summr COSC 2 66

12 COSC 2B 22 Summr DFA Minimiztion: Exmpl DFA Minimiztion: Exmpl 3. For unmrk pir & symol, (,) 22 Summr COSC 2 67 (,) 4. Cols unmrk pirs o stts. (,) 22 Summr COSC 2 68 DFA Minimiztion: Exmpl 5. Dlt unrl stts. Non. (,) 22 Summr COSC 2 69 Contxt-Fr Grmmrs Nottion or rursiv sription o lnus. Exmpl: Roll <ROLL> Clss Stus </ROLL> Clss <CLASS> Txt </CLASS> Txt Cr Txt Txt Cr Cr (otr rs) Stus Stu Stus Stus ε Stu <STUD> Txt </STUD> 22 Summr COSC 2 7 Exmpl (II) Gnrts "oumnts" su s: <ROLL><CLASS>s24</CLASS> <STUD>Slly</STUD> <STUD>Fr</STUD> </ROLL> Exmpl (III) Vrils (.., Stus) rprsnt sts o strins (i.., lnus). In snsil rmmrs, ts strins sr som ommon rtristi or roll. Trminls (.., or <ROLL>) = symols o wi strins r ompos <ROLL> oul onsir itr sinl trminl or t ontntion o 6 trminls 22 Summr COSC Summr COSC

13 COSC 2B 22 Summr CFG Nottion Proutions = ruls o t orm oy is vril. oy is strin o zro or mor vrils n/or trminls. Strt Symol = vril tt rprsnts "t lnu." Nottion: G = (V, Σ, P, S) V = vrils Σ = trminls P = proutions S = strt symol 22 Summr COSC 2 73 Exmpl A simpl xmpl nrts strins o 's n 's su tt lok o 's is ollow y t lst s mny 's S AS ε A A A Not vrtil r sprts irnt ois or t sm. 22 Summr COSC 2 74 Drivtions αaβ αγβ wnvr tr is proution A γ (Susript wit nm o rmmr,.., G, i n.) Exmpl: AS AS α * β mns strin n om β in zro or mor rivtion stps. Exmpls: AS * AS (zro stps) AS * AS (on stp) * AS (tr stps) Lnu o CFG L(G) = st o trminl strins w su tt S G w, wr S is t strt symol. Nottion,, r trminls; y, z r strins o trminls. Grk lttrs r strins o vrils n/or trminls, otn ll sntntil orms. A,B, r vrils., Y, Z r vrils or trminls. S is typilly t strt symol. 22 Summr COSC Summr COSC 2 76 Ltmost/Ritmost Drivtions oi o vril to rpl t stp Drivtions my ppr irnt only us w mk t sm rplmnts in irnt orr. To voi su irns, w my rstrit t oi. A ltmost rivtion lwys rpls t ltmost vril in sntntil orm. Yils lt-sntntil orms. Ritmost rivtion in nloously.,, t., us to init rivtions r lm rm ltmost or ritmost. Exmpl Ltmost rivtion: S AS AS S AS AS S Ritmost rivtion: S AS AAS AA AA A A Not w riv t sm strin 22 Summr COSC Summr COSC

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then: Assinmnts: DFA Minimiztion CMPU 24 Lnu Tory n Computtion Fll 28 Assinmnt 3 out toy. Prviously: Computtionl mols or t rulr lnus: DFAs, NFAs, rulr xprssions. Toy: How o w in t miniml DFA or lnu? Tis is t

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures 1 (4, )-oosility o plnr rps wit orin struturs 4 5 Znr Brikkyzy 1 Cristopr Cox Mil Diryko 1 Kirstn Honson 1 Moit Kumt 1 Brnr Liiký 1, Ky Mssrsmit 1 Kvin Moss 1 Ktln Nowk 1 Kvin F. Plmowski 1 Drrik Stol

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212,

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212, Inis Inis Curriulum Ry ACMNA: 09, 0,, 6 www.mtltis.om Inis INDICES Inis is t plurl or inx. An inx is us to writ prouts o numrs or pronumrls sily. For xmpl is tully sortr wy o writin #. T is t inx. Anotr

More information

CS150 Sp 98 R. Newton & K. Pister 1

CS150 Sp 98 R. Newton & K. Pister 1 Outin Cok Synronous Finit- Mins Lst tim: Introution to numr systms: sin/mnitu, ons ompmnt, twos ompmnt Rviw o ts, ip ops, ountrs Tis tur: Rviw Ts & Trnsition Dirms Impmnttion Usin D Fip-Fops Min Equivn

More information

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014 Grp Aloritms n Comintoril Optimiztion Dr. R. Cnrskrn Prsntrs: Bnjmin Frrll n K. Alx Mills My 7t, 0 Mtroi Intrstion In ts ltur nots, w mk us o som unonvntionl nottion or st union n irn to kp tins lnr. In

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

DFA (Deterministic Finite Automata) q a

DFA (Deterministic Finite Automata) q a Big pictur All lngugs Dcidl Turing mchins NP P Contxt-fr Contxt-fr grmmrs, push-down utomt Rgulr Automt, non-dtrministic utomt, rgulr xprssions DFA (Dtrministic Finit Automt) 0 q 0 0 0 0 q DFA (Dtrministic

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

MCS100. One can begin to reason only when a clear picture has been formed in the imagination.

MCS100. One can begin to reason only when a clear picture has been formed in the imagination. 642 ptr 10 Grps n Trs 46. Imin tt t irmsown low is mp wit ountris ll. Is it possil to olor t mp wit only tr olors so tt no two jnt ountris v t sm olor? To nswr tis qustion, rw n nlyz rp in wi ountry is

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

EXAMPLE 87.5" APPROVAL SHEET APPROVED BY /150HP DUAL VFD CONTROL ASSEMBLY CUSTOMER NAME: CAL POLY SLO FINISH: F 20

EXAMPLE 87.5 APPROVAL SHEET APPROVED BY /150HP DUAL VFD CONTROL ASSEMBLY CUSTOMER NAME: CAL POLY SLO FINISH: F 20 XMPL XMPL RVISIONS ZON RV. SRIPTION T PPROV 0.00 THIS IS N PPROVL RWING OR YOUR ORR. OR MNUTURING N GIN, THIS RWING MUST SIGN N RTURN TO MOTION INUSTRIS. NY HNGS M TO THIS RWING, TR MNUTURING HS GUN WILL

More information

UNCORRECTED SAMPLE PAGES

UNCORRECTED SAMPLE PAGES Numrs n surs Aritmti is t stuy o numrs n oprtions on tm. Tis sort ptr rviws wol numrs, intrs, rtionl numrs n rl numrs, wit prtiulr ttntion to t ritmti o surs n tir pproximtions. Most o tis mtril will milir

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b)

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b) Outlin MULTIPLE-LEVEL LOGIC OPTIMIZATION Gionni D Mihli Stnfor Unirsit Rprsnttions. Tonom of optimition mthos: { Gols: r/l. { Algorithms: lgri/booln. { Rul-s mthos. Empls of trnsformtions. Booln n lgri

More information

Combinatorial Optimization

Combinatorial Optimization Cominoril Opimizion Prolm : oluion. Suppo impl unir rp mor n on minimum pnnin r. Cn Prim lorim (or Krukl lorim) u o in ll o m? Explin wy or wy no, n iv n xmpl. Soluion. Y, Prim lorim (or Krukl lorim) n

More information

Instruction Scheduling

Instruction Scheduling Instrution Sulin Not y Bris Aktmur: Our slis r pt from Coopr n Torzon s slis tt ty prpr for COMP 412 t Ri. Copyrit 20, Kit D. Coopr & Lin Torzon, ll rits rsrv. Stunts nroll in Comp 412 t Ri Univrsity v

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

Decimals DECIMALS.

Decimals DECIMALS. Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information