Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian)

Size: px
Start display at page:

Download "Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian)"

Transcription

1 msp INVOLVE 7:1 (2014) x.oi.or/ /involv Sli-n-swp prmuttion roups Onyui Eknt, Hn Gil Jn n Jo A. Silr (Communit y Josp A. Gllin) W prsnt simpl til-sliin m tt n ply on ny 3-rulr rp, nrtin prmuttion roup on t vrtis. W lssiy t rsultin prmuttion roups n otin novl prsnttion or t simpl roup o 168 lmnts. From sliin tils to simpl roups T sliin tils o t notorious itn puzzl (rrn in 4 4 rry wit on squr missin) r n ojt lsson in prity: Wi prmuttions o t numr tils n iv? Prisly t vn prmuttions. Put notr wy, t movs o t itn puzzl nrt t ltrntin roup A 15. Aron Arr [1999] ivs us tiy proo o tis olklori t. R. M. Wilson [1974] onsirs til-sliin ms on ritrry rps s nrliztion o t itn puzzl, n lssiis t prmuttion roups wi n nrt y ts ms. Brily, t prmuttion roup or til-sliin m on rp wit k vrtis is nrlly itr t ltrntin roup A k 1 i t rp is iprtit or t ull symmtri roup S k 1 i it is not. Tr is only on intrstin xption, 7-vrtx rp wi nrts roup o just 120 prmuttions. Wilson prsnts tis roup s PGL(2, F 5 ), t roup o Möius trnsormtions ovr t il o iv lmnts, ut it is isomorpi to t symmtri roup S 5. Fink n Guy [2009] iv torou isussion o tis intrstin, xptionl s, wi ty rr to s t triky six puzzl. Jon Conwy [1997; 2006] uss til-sliin m on 13-point projtiv pln to nrt t Mtiu roup M 12. Tis m is u M 13. In M 13, movin til to t opn point lso rquirs swppin two otr tils t t sm tim. Howvr, t ruls o t m r spii to t projtiv pln on wi it is ply, n it os not nrliz in ny ovious wy to mily o ms on lrr projtiv plns or otr omintoril struturs. MSC2010: 20B15, 91A43. Kywors: simpl roup, prmuttion roup, primitiv roup, rp tory. 41

2 42 ONYEBUCHI EKENTA, HAN GIL JANG AND JACOB A. SIEHLER Hr, w onsir prmuttion m wi n ply on ny 3-rulr rp, usin sli-n-swp rul inspir y Conwy s M 13. W lssiy t rsultin prmuttion roups n otin nrl rsult similr to Wilson s torm, wit just on intrstin xptionl s. T xption ivs novl n lmntry prsnttion or t simpl roup o 168 lmnts. Lik Ruik s u n t otr prmuttion ms w v mntion, ours n trt purly s puzzl, wr you srml pis y movin tm out n tn try to rturn tm to tir initil oniurtion or, prps, try to iv som otr ol oniurtion tt s n pos s prolm. W v m plyl vrsion o t m [Silr 2011] s n i to unrstnin t ruls. In tis rtil, w o not iv ny loritms or unsrmlin t pis on ivn rp, so solvin t puzzl in tt sns soul rmin n njoyl lln i you r so inlin. Ruls o t sli-n-swp m Lt 0 3-rulr rp (wi w my s wll ssum to onnt) wit ll vrtis. T m on 0 ins wit on vrtx unovr n o t rminin vrtis ovr y til wit t sm ll. At ny st in t m, you mk mov s ollows: Coos vrtx v jnt to t urrnt unovr vrtx n sli t til on v into t unovr position (unovrin v in t pross); n, t t sm tim, swp t tils on t otr two niors o v. S t irst two irms in Fiur 1, rprsntin sinl mov wr til slis rom vrtx into t unovr vrtx n t tils on t otr two niors o vrtx r swpp. W not t mov o sliin til rom vrtx to vrtx y [, ]. I tis sms ountrintuitiv, tink o t ol itsl s spil lnk til wi movs lon t vrtis in t orr tt ty r list wn t mov is ply. Lonr mov squns r xprss similrly: [,,,...] is t mov squn wi strts wit t ol on vrtx, movs it to vrtx, rom tr to vrtx, n so on. Fiur 1 sows squn o our movs ply on t 8-vrtx u rp. T rsultin prmuttion o tils n xprss in yl orm s ( ) wn tis squn is ply, t til wi ins on vrtx movs to vrtx ; t til on vrtx movs to vrtx ; n so on. I P =,,,... is pt in 0, tn plyin P mns plyin t mov squn [,,,...]. In trms o til movmnts, tt mns irst movin t til on vrtx to t vnt vrtx, tn movin t til on vrtx to t nwly vt vrtx, n so on, wit t ompnyin swps t stp. T ol itsl pros rom to to n so on, in t orr ty r list. Unlik t itn puzzl or M 13, t srmlin tt ppns s rsult o

3 SLIDE-AND-SWAP PERMUTATION GROUPS Fiur 1. [,,,, ]=( ) on t 8-vrtx u rp. plyin pt P in tis m nnot unon simply y plyin its rvrs (mnin t sm pt s P, just trvrs in t opposit irtion). Howvr, w o v si rsult out invrtiility: Proposition 1. Any ll mov squn in t sli-n-swp m n unon (rturnin t tils to tir position or t squn ws ply) y notr ll mov squn. Proo. Suppos vrtx x 0 is initilly mpty n w prmut t tils y plyin P =[x 0,,...,x n ]. Lt R =[x n, x n 1,...,x 0 ]. T rsult o P ollow y R is prmuttion (o init orr, sin tr r only initly mny tils!) wi rturns t ol to x 0. From tt point w n ply P ollow y R rptly until ll t tils (n t ol) v rturn to tir initil position. You my lso not tt sinl sli [x 0, ] n unon y [, x 0,, x 0 ]. Consquntly, lonr mov squn [x 0,,...,x n ] n unon on stp t tim, s ollows: First uno t inl sli y plyin [x n, x n 1, x n, x n 1 ], tn uno t on or tt y [x n 1, x n 2, x n 1, x n 2 ], n so on. Sli-n-swp loop roups Now, suppos w in m on onnt, 3-rulr rp 0 wit k vrtis, vrtx initilly unovr. T prmuttions wi rturn t ol to its initil vrtx (s in Fiur 1) orm roup unr omposition. W ll tis t loop roup or 0 s t n not it &. Sin t si movs in t m r ll oul trnspositions, & is lwys suroup o t ltrntin roup A k 1. T nottion

4 44 ONYEBUCHI EKENTA, HAN GIL JANG AND JACOB A. SIEHLER susts tt t loop roup pns on t oi o t initil unovr vrtx, ut up to isomorpism t oi os not mttr. Proposition 2. For ny vrtis n in 0, t roups & n & r isomorpi. Proo. Sin 0 is onnt, oos pt P rom to n lt t prmuttion inu y plyin P. T mppin 7! 1 ins omomorpism rom & to &. Tis omomorpism s 7! 1 s its invrs, so t two roups r isomorpi (in, ty r onjut insi t symmtri roup S k ). For tis rson, w will nort omit ny rrn to t unovr vrtx n rr to t loop roup ssoit to rp. Proposition 3. T loop roup o t ttrron (tt is, t omplt rp on 4 vrtis) is trivil. T proo o tis is lt s n xris. Lrr rps nrt nontrivil roups, owvr, n nturl lri prolm is to trmin, up to isomorpism, wi prmuttion roups n rliz s sli-n-swp loop roups. Tt prolm is ntirly rsolv y t ollowin torms, wi w will prov in t susqunt stions. Nottion. From now on, 0 will lwys not onnt, 3-rulr rp on k vrtis, n & will not its loop roup (wit t unrstnin tt t oi o mpty vrtx osn t mttr). Torm 1. I 0 is not t u or ttrron, tn & is isomorpi to t ltrntin roup A k 1. Torm 2. T loop roup o t u is isomorpi to GL(3, F 2 ), t simpl roup o 168 lmnts. T rsmln to Wilson s rsults or orinry til-sliin ms on rps sms unnny. Funmntl trms n propositions Dixon s prolm ook [1973] is ny rrn or t lmntry tory o prmuttion roups, n t mtril is vlop in pt in [Dixon n Mortimr 1996]. Hr, w n only w si initions n proprtis. Lt G roup o prmuttions on st X. T orit o n lmnt x 2 X is { (x) 2 G}. Ts orits orm prtition o X. I tr is only on orit (wi ontins ll t lmnts o X), tn G is si to trnsitiv. A nonmpty st B X is ll lok or G i or vry 2 G, itr (B) = B or (B) \ B =?. T st X itsl is vintly lok, s r ll sinlton susts o X; ts r ll trivil loks. G is si to primitiv i ll loks or G r trivil; otrwis, i nontrivil loks xist, G is imprimitiv.

5 SLIDE-AND-SWAP PERMUTATION GROUPS 45 I G is trnsitiv n B is ny lok, tn t sts (B), wr 2 G, prtition X into isjoint, nonmpty sts, o wi is lok. Su prtition o X is ll systm o imprimitivity or G. W onsir & to roup o prmuttions on t nonmpty vrtis o 0. T ollowin proposition is lss ovious or sli-n-swp ms tn it is or orinry til-sliin ms. Som tim spnt wit plyl vrsion o t m [Silr 2011], tryin to mov ivn til to ivn vrtx, my lpul in unrstnin t iiultis. Proposition 4. I 0 is not t ttrron, tn & is trnsitiv. Lik Proposition 2, tis is usul t to rliz rom t outst. It ollows rom t proo o Proposition 9, owvr, so w o not inlu sprt proo t tis point. Our proo o Torm 1 pns on t ollowin nrl rsult: Proposition 5 [Wilson 1974]. Lt G trnsitiv prmuttion roup on st X n suppos tt G ontins 3-yl. I G is primitiv, tn G ontins t ltrntin roup on X. Gnrtin t ltrntin roup T nxt w rsults sow tt, in nrl, our loop roups stisy t ypotss o Proposition 5. First, w stlis t prsn o 3-yls. Proposition 6. I 0 is not t ttrron or u, tn & ontins 3-yls. Proo. First, not tt t isomorpism in Proposition 2 is rliz y onjution witin t symmtri roup, wi prsrvs yl typs. For tis rson, i t roup s t ny vrtx ontins 3-yl, tn tis is tru t vry vrtx, n so w n oos t mpty vrtx t our onvnin. In t ollowin, t lls (, x 2, n so on) nm t vrtis o t rp. It osn t mttr wi tils r on wi vrtis, xpt tt t vrtx ll x 0 is t initilly opn vrtx. W onsir tr ss. Cs 1. I 0 ontins trinl {x 0,, x 2 }, tn (sin 0 is not ttrron) two vrtis in t trinl must v istint niors. Suppos x 0 n v niors x 3 n x 4, lik tis: x 4 x 3 x 0 x 2 In tis s, [x 0,, x 0 ] = (x 2 x 4 x 3 ).

6 46 ONYEBUCHI EKENTA, HAN GIL JANG AND JACOB A. SIEHLER Cs 2. Suppos 0 os not ontin trinl, ut ontins pt x 0,, x 2 wr x 0 n x 2 v no niors in ommon xpt : x 4 x 5 x 0 x 2 x 3 x 7 x 6 Tn [x 0,, x 2,, x 0 ] 2 = ( x 2 x 7 ). Similrly, i 0 s no trinl ut s pt x 0,, x 2 wr x 0 n x 2 v ll tr niors in ommon (sy, x 4 = x 5 n x 3 =x 6 in t iur), tn [x 0,, x 2,, x 0 ] = ( x 7 x 2 ). Cs 3. T only rminin s to onsir is rp 0 wit no trinls, in wi t npoints o vry pt o lnt two v xtly two niors in ommon. In An tls o rps, R n Wilson [1998] sow tt tr r only six 3-rulr rps o imtr lss tn tr, inluin t ttrron, n non o tm stisy ts ypotss. Ts r ll smll rps n t lim is sy to vriy y insption. Tror w my ssum tt t imtr o 0 is t lst 3. W lim tt in tis s 0 n only t u. Bin wit pt,,,, wr t istn rom to is 3 (so tr is no sortr pt rom to ). Lt v t otr ommon nior o n, n w t otr ommon nior o n : v Now t pt,,w implis tt n w v notr ommon nior x. Similrly t pt,, vimplis tt n v must v notr ommon nior y. Tis rins us to t ollowin sitution: w v y x w Sin t rp is 3-rulr, x ns notr. I x wr onnt to som otr vrtx z not lry sown, tn t pt z, x, woul imply tt tr is notr vrtx jnt to ot n z. Tis woul imply tt itr, or on o t vrtis jnt to in t prin iur, s n itionl, wi is

7 SLIDE-AND-SWAP PERMUTATION GROUPS 47 impossil; o tos vrtis lry s tr s. It ollows tt x n y r jnt. At tis point ll t vrtis v ll tr s ount or, n t rsultin rp is t u, s lim. Proposition 7. Suppos tt or vry pir o jnt vrtis x n y in 0 tr is p-yl 2 & wr p is prim n (x) = y. Tn & is primitiv. Proo. Suppos t nonmpty vrtis r prtition into loks B 1, B 2,...,B n ormin systm o imprimitivity or &. Lt B i n B j two loks wi ontin jnt vrtis w i n w j, rsptivly. By ypotsis, w my oos p-yl 2 & wit (w i ) = w j. Consir s prmuttion o loks, ts nontrivilly (snin B i to B j ), n sin p is prim, tis implis tt ts wit orr p. Howvr, only movs p vrtis, so tr n only p loks involv n only on vrtx in o tos loks, inluin B i. Tis rumnt n ppli wit ny lok plyin t rol o B i n ny jnt lok plyin t rol o B j. Tus, sin 0 is onnt, itr ll loks r sinltons or tr is only sinl lok. Sin no nontrivil loks r possil, & is primitiv. Proposition 8. Givn ny two jnt, nonmpty vrtis x n y in 0, tr is mov squn wi lvs t tils on x n y ix wil positionin t ol jnt to on o tos two vrtis. Proo. I t mpty vrtx is lry jnt to x or y, no movs r n. Otrwis, lt Q t sortst possil pt innin t t mpty vrtx, wit t proprty tt t nin vrtx o Q s istn o two rom x or istn o two rom y. No point on Q n jnt to itr x or y, sin t prvious point woul v istn o two, n sortr pt oul onstrut. It ollows tt t prmuttion inu y plyin Q lvs t tils on x n y ix. So, ssum tt w v ply Q, nin wit t ol on vrtx x 0 wi is istn two rom on o t ivn vrtis witout loss o nrlity, sy it s istn two rom y. T ol now is to mov t ol onto vrtx wi is jnt to y, still witout isturin t tils on x n y. Tr r tr lol oniurtions to onsir, n t propr movs to pro in s r sown in Fiurs 2 4. x y x 0 Fiur 2. [x 0,, x 0, ]=(x 0 )( ).

8 48 ONYEBUCHI EKENTA, HAN GIL JANG AND JACOB A. SIEHLER x y x 0 Fiur 3. [x 0,, x 0,, x 0, ]=(x 0 )( ). x y x 0 Fiur 4. [x 0,, x 0, ]=(x 0 )( ). In s, w t t sir rsult. Vrtx (jnt to y) is vt, wil t tils on x n y rmin ix. W justiy t lim tt ts tr r t only ss s ollows: Sin x 0 is not jnt to itr x or y it must v two niors otr tn x, y or. An must v on itionl nior otr tn y or x 0. Tis itionl nior my x, or on o t niors o x 0, or point istint rom ot x n t niors o x 0, prisly t tr ss w v onsir. Proposition 9. I 0 is not t ttrron, tn t ypotss o Proposition 7 r stisi, n & is primitiv. Proo. On in, lt x n y ny two jnt, nonmpty vrtis in 0. Assum t mpty vrtx is jnt to y. Now, t possil oniurtions o t rp nr x n y r summriz in t ollowin iur, wr x 0 is t mpty vrtx n is vrtx jnt to y otr tn x n x 0. E ott my or my not xist. I ll s xist simultnously tn 0 is t ttrron. Tt lvs svn nontrivil ss to onsir. Tr r six ss in wi t lst on ott xists; ty r sown in

9 SLIDE-AND-SWAP PERMUTATION GROUPS 49 Fiur 5. An x 0 -. [x 0,, y, x 0 ] inus itr (x y ) or (x y ). Fiur 6. An x-x 0. [x 0, x, y, x 0 ] inus itr (x y) or (x y). Fiur 7. An x-. [x 0, y, x 0, y,, y, x 0 ] inus itr (x y) or (x y). Fiur 8. x- n x 0 - s. [x 0,, x 0 ]=(x y). Fiurs In s w xiit pt wi n ply to nrt yl o prim lnt (itr 3- or 5-yl) snin x to y. Not tt i ott is omitt, t vrtis tt onnts must v n to som otr vrtx not pprin in t iur t t ottom o prvious p. Ts xtr vrtis r not nssrily istint, so tr r som suss to onsir. In our iurs, vrtis not on t pt or jnt to point on t pt r not

10 50 ONYEBUCHI EKENTA, HAN GIL JANG AND JACOB A. SIEHLER Fiur 9. x- n x-x 0 s. In t irst s, [x 0, y,, y, x 0 ]= (x y). In t son s, [x 0, y, x 0, y, x 0, y,, y, x 0 ]= (x y). Fiur 10. x- n x 0 - s. [x 0,, x 0 ]=(x y). u v Fiur 11. No s mon {x, x 0, }. [x 0, y,, y, x 0 ] inus itr ( )( )(x y) (wi n squr to t t sir 3-yl) or (x y). rwn us ty v no t on t rsultin prmuttion. Fiur 11 sows t s wr non o t ott s r prsnt, n n x 0 sr 0 or 2 niors otr tn y. Tt lvs t s wr non o t ott s r prsnt, n n x 0 v xtly on ommon nior u. T tir nior o u is itr on o t points on t rp otr tn y, or point o t rp. So tr r totl o our suss to l wit in tis s n ty r sown in Fiurs In vry s, w prou yl o prim lnt wi sns x to y. But w n wit t provisionl ssumption tt t initilly mpty vrtx is jnt to y. In nrl, owvr, Proposition 8 n ppli to prou prmuttion wi movs t mpty vrtx jnt to y wil lvin x n y ix. Conjutin y ivs t sir yl in &. Rmrk. Sin ny vrtx my mov to ny jnt vrtx y mns o ts yls, & is trnsitiv, s w ssrt in Proposition 4.

11 SLIDE-AND-SWAP PERMUTATION GROUPS 51 u Fiur 12. [x 0, u,, y, x 0 ]=( uxy). u Fiur 13. [x 0, u,, y, x 0 ]=(x y u). u Fiur 14. [x 0, y, x 0, u,, u, x 0 ]=(x uy). u q Fiur 15. [x 0, u,, y, x 0 ]=( uxy q). Proo o Torm 1. Our min rsult now ollows quikly. I 0 is not t u or ttrron, tn Proposition 6 sows tt & ontins 3-yls. Proposition 9 sows tt & is trnsitiv n primitiv. Tus Proposition 5 pplis to & n w onlu tt & ontins ll vn prmuttions o t nonmpty vrtis. T xptionl u Now, w nlyz t loop roup o t u. Initilly, omputr lultion rvl tt tis roup s only 168 lmnts (inst o t xpt 7!/2 = 2520 in A 7 ). T numr 168 is milir to lrists s t orr o GL(3, F 2 ), t roup

12 52 ONYEBUCHI EKENTA, HAN GIL JANG AND JACOB A. SIEHLER Fiur 16. Vrtis o t u ll wit vtors o F 3 2. q Fiur 17. Vrtis o t u ll wit unknown vtors. o invrtil 3 3 mtris ovr t il o two lmnts, n t son-smllst nonlin simpl roup. To stlis onntion twn tis roup n t u, w ll t vrtis wit 3-imnsionl vtors ovr F 2, s in Fiur 16. For rvity, w writ vtor 1, 2, 3 i s 3-it inry strin Wit su llin, movs in t m n intrprt s prmuttions o F 3 2. T prtiulr llin in Fiur 16 s t proprty tt t sum (mo 2, o ours) o ny til totr wit its tr jnt tils is zro, n w will ll ny rrnmnt o vtor tils wit tis proprty lolly zro rrnmnt. Proposition 10. T prmuttion o F 3 2 inu y sinl mov on u wit lolly zro rrnmnt o vtors is n in trnsormtion. Proo. Lt,..., n q t it vtors o F 3 2, llin t vrtis o t u in lolly zro rrnmnt s in Fiur 17. I w in = + q, = + q, = + q, t ollowin itionl rltions ollow quikly rom t lolly zro onition: + = + q, + = + q, + = + q, + + = + q. Not tt ll t linr omintions o,, n r istint, so {,, } is linrly inpnnt st (n, in t, sis or F 3 2 ).

13 SLIDE-AND-SWAP PERMUTATION GROUPS 53 Now, onsir sli-n-swp mov. By symmtry w n ssum tt q is mpty n w sli til into t ol rom. Tis inus prmuttion ' wit '(q) =, '() = q, '() =, '() =, n t otr points rminin ix. Din ˆ' y ˆ'(x) = '(x + q) +. Applyin ˆ' to our sis lmnts ivs ˆ'( ) = + +, ˆ'( ) =, ˆ'( ) =, rom wi w n vriy t r wy (tt is, y kin vry linr omintion o sis lmnts) tt ˆ' is linr: ˆ'( + ) =ˆ'( + q) = + = + =ˆ'( ) +ˆ'( ), ˆ'( + )= ˆ'( + q) = + = + =ˆ'( ) +ˆ'( ), ˆ'( + )= ˆ'( + q) = q + = + =ˆ'( ) +ˆ'( ), ˆ'( + + )= ˆ'( + q) = + = =ˆ'( ) +ˆ'( ) +ˆ'( ), n o ours ˆ'(0) = '(q)+ = + = 0. Tus, wit rspt to t sis {,, }, ˆ' is rprsnt y t mtrix M 1 1 0A, n ' is sri y t ormul '(x) = M(x +q)+, or '(x) = Mx+(Mq+), n in trnsormtion s lim. Proo o Torm 2. Bin t m wit vrtis ll y vtors in lolly zro rrnmnt n t 000 vrtx opn. By t prin proposition, ny squn o slis is omposition o in trnsormtions (wi is in n in trnsormtion). T lotion o t ol lwys rvls t trnsltion prt o t trnsormtion, so t loop roup (orrsponin to slis wr t ol rturns to 000) onsists o linr trnsormtions n is ontin in GL(3, F 2 ). To omplt t proo, w simply xiit w lmnts o t roup. Rturnin to t u in Fiur 17 n supposin q is initilly opn, onsir t lmnts [q,, q,,,,,, q]=( )( ), [q,, q]=( )( ), wi nrt irl roup o it lmnts. Also, [q,,,, q]=( )( ), [q,,,, q]=( ). Suroups o orr 8, 3, n 7 imply roup o orr t lst 168, n so t loop roup o t u is not just ontin in, ut qul to GL(3, F 2 ).

14 54 ONYEBUCHI EKENTA, HAN GIL JANG AND JACOB A. SIEHLER Eiint solutions n otr qustions In prinipl, t mto o proo tt w us to lssiy t loop roups oul likly turn into n loritm or solvin srml puzzl on ny ivn rp, sin w sow ow to prou smll, loliz yls t ny point on t rp, wi oul us to mirt pis to tir pproprit lotions. In prti, tis sort o solution tks mny mor movs tn t optiml solution. In orinry til-sliin ms, t prolm o inin n optiml solution or srml stt is NP-omplt [Golri 1984; Rtnr n Wrmut 1990]. W o not know i t sm is tru or sli-n-swp ms; tis is qustion or utur ppr. T sli-n-swp vrint is lso unusul in tt t numr o movs rquir to iv position rom strt my irnt rom t numr o movs rquir to rturn it to strt. Tis spt o t puzzl s no ountrprt in otr sliin or twistin prmuttion puzzls tt w r milir wit, n t rltionsip twn istn to n istn rom strt is worty o som urtr nlysis. Conwy, Elkis n Mrtin [Conwy t l. 2006] v sown ow to us ulity o t projtiv pln to prou n outr utomorpism o t Mtiu roup M 12. It woul intrstin i t symmtris o t u n t sli-n-swp m ruls llow similr onstrution o outr utomorpisms or GL(3, F 2 ), ut w v not yt isovr ow to o tis, n it rmins sujt or urtr invstition. Rrns [Arr 1999] A. F. Arr, A morn trtmnt o t 15 puzzl, Amr. Mt. Montly 106:9 (1999), MR 2001:05004 Zl [Conwy 1997] J. H. Conwy, M 13, pp in Survys in omintoris, 1997, it y R. A. Bily, Lonon Mt. So. Ltur Not Sr. 241, Cmri Univ. Prss, MR 98i:20003 Zl [Conwy t l. 2006] J. H. Conwy, N. D. Elkis, n J. L. Mrtin, T Mtiu roup M 12 n its psuoroup xtnsion M 13, Exprimnt. Mt. 15:2 (2006), MR 2007k:20005 Zl [Dixon 1973] J. D. Dixon, Prolms in roup tory, Dovr, [Dixon n Mortimr 1996] J. D. Dixon n B. Mortimr, Prmuttion roups, Grut Txts in Mtmtis 163, Sprinr, Nw York, MR 98m:20003 Zl [Fink n Guy 2009] A. Fink n R. Guy, Rik s triky six puzzl: S 5 sits spilly in S 6, Mt. M. 82:2 (2009), MR Zl [Golri 1984] O. Golri, Finin t sortst mov-squn in t rp-nrliz 15- puzzl is NP-r, 1984, Avill t ttp://tinyurl/15puzz-p. prprint. [Rtnr n Wrmut 1990] D. Rtnr n M. Wrmut, T (n 2 1)-puzzl n rlt rlotion prolms, J. Symoli Comput. 10:2 (1990), MR 91i:68138 Zl

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures 1 (4, )-oosility o plnr rps wit orin struturs 4 5 Znr Brikkyzy 1 Cristopr Cox Mil Diryko 1 Kirstn Honson 1 Moit Kumt 1 Brnr Liiký 1, Ky Mssrsmit 1 Kvin Moss 1 Ktln Nowk 1 Kvin F. Plmowski 1 Drrik Stol

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

Physics 222 Midterm, Form: A

Physics 222 Midterm, Form: A Pysis 222 Mitrm, Form: A Nm: Dt: Hr r som usul onstnts. 1 4πɛ 0 = 9 10 9 Nm 2 /C 2 µ0 4π = 1 10 7 tsl s/c = 1.6 10 19 C Qustions 1 5: A ipol onsistin o two r point-lik prtils wit q = 1 µc, sprt y istn

More information

Two Approaches to Analyzing the Permutations of the 15 Puzzle

Two Approaches to Analyzing the Permutations of the 15 Puzzle Two Approhs to Anlyzin th Prmuttions o th 15 Puzzl Tom How My 2017 Astrt Th prmuttions o th 15 puzzl hv n point o ous sin th 1880 s whn Sm Lloy sin spin-o o th puzzl tht ws impossil to solv. In this ppr,

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then: Assinmnts: DFA Minimiztion CMPU 24 Lnu Tory n Computtion Fll 28 Assinmnt 3 out toy. Prviously: Computtionl mols or t rulr lnus: DFAs, NFAs, rulr xprssions. Toy: How o w in t miniml DFA or lnu? Tis is t

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

MCS100. One can begin to reason only when a clear picture has been formed in the imagination.

MCS100. One can begin to reason only when a clear picture has been formed in the imagination. 642 ptr 10 Grps n Trs 46. Imin tt t irmsown low is mp wit ountris ll. Is it possil to olor t mp wit only tr olors so tt no two jnt ountris v t sm olor? To nswr tis qustion, rw n nlyz rp in wi ountry is

More information

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014 Grp Aloritms n Comintoril Optimiztion Dr. R. Cnrskrn Prsntrs: Bnjmin Frrll n K. Alx Mills My 7t, 0 Mtroi Intrstion In ts ltur nots, w mk us o som unonvntionl nottion or st union n irn to kp tins lnr. In

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212,

Indices. Indices. Curriculum Ready ACMNA: 209, 210, 212, Inis Inis Curriulum Ry ACMNA: 09, 0,, 6 www.mtltis.om Inis INDICES Inis is t plurl or inx. An inx is us to writ prouts o numrs or pronumrls sily. For xmpl is tully sortr wy o writin #. T is t inx. Anotr

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 0, No. 0, pp. 000 000 2009 Soity or Inustril n Appli Mtmtis THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS HAL KIERSTEAD, BOJAN MOHAR, SIMON ŠPACAPAN, DAQING

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

CS150 Sp 98 R. Newton & K. Pister 1

CS150 Sp 98 R. Newton & K. Pister 1 Outin Cok Synronous Finit- Mins Lst tim: Introution to numr systms: sin/mnitu, ons ompmnt, twos ompmnt Rviw o ts, ip ops, ountrs Tis tur: Rviw Ts & Trnsition Dirms Impmnttion Usin D Fip-Fops Min Equivn

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Continuous Flattening of Convex Polyhedra

Continuous Flattening of Convex Polyhedra Continuous Flttnin o Conv Polr Jin-ii Ito 1, Ci Nr 2, n Costin Vîlu 3 1 Fult o Eution, Kummoto Univrsit, Kummoto, 860-8555, Jpn. j-ito@kummoto-u..jp 2 Lirl Arts Eution Cntr, Aso Cmpus, Toki Univrsit, Aso,

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017 Dv Mount CMSC 45: Ltur Grph Bsis Thursy, Au, 07 Rin: Chpt. in KT (Klinr n Tros) n Chpt. in DBV (Dsupt, Ppimitriou, n Vzirni). Som o our trminoloy irs rom our txt. Grphs n Dirphs: A rph G = (V, E) is strutur

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

On Distinguishing Virtual Knot Groups from Knot Groups

On Distinguishing Virtual Knot Groups from Knot Groups On Distinuisin Virtul Knot Groups from Knot Groups Jns Hrlnr, Stpn Rosrok Mr 19, 009 Astrt W us urvtur tniqus from omtri roup tory to prou xmpls of virtul knot roups tt r not lssil knot roups. AMS Sujt

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings PAGES Primry Primry Mths Bsis Sris THE SUBTRACTION BOOK A prorssion o sutrtion skills writtn y Jillin Cokins INTRODUCTION This ook is intn to hlp sur th mthmtil onpt o sutrtion in hilrn o ll s. Th mstry

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Proof of Pumping Lemma. PL Use. Example. Since there are only n different states, two of q 0, must be the same say q i

Proof of Pumping Lemma. PL Use. Example. Since there are only n different states, two of q 0, must be the same say q i COSC 2B 22 Summr Proo o Pumpin Lmm Sin w lim L is rulr, tr must DFA A su tt L = L(A) Lt A v n stts; oos tis n or t pumpin lmm Lt w strin o lnt n in L, sy w = 2 m, wr m n Lt i t stt A is in tr rin t irst

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Designing A Uniformly Loaded Arch Or Cable

Designing A Uniformly Loaded Arch Or Cable Dsinin A Unirmy Ar Or C T pr wit tis ssn, i n t Nxt uttn r r t t tp ny p. Wn yu r n wit tis ssn, i n t Cntnts uttn r r t t tp ny p t rturn t t ist ssns. Tis is t Mx Eyt Bri in Stuttrt, Grmny, sin y Si

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

3 a 15a 6 b 21a 5 c 30a 6 d 12a 9. e 125a 8 f 36a 12 g 90a 13 h 56a a 6a b 5 c 3a 4 d 6a 4. e 10a 4 f 8a 2 g 5a 4 h 12a 2

3 a 15a 6 b 21a 5 c 30a 6 d 12a 9. e 125a 8 f 36a 12 g 90a 13 h 56a a 6a b 5 c 3a 4 d 6a 4. e 10a 4 f 8a 2 g 5a 4 h 12a 2 Answrs Cptr Workin wit surs Eris A Surs 8 6 6 8 6 6 6 + 6 8 6 6 6 6 + 8 + + 8 6 9 6 m ( + m Cptr Simpliin prssions usin t lws o inis Eris A Inis 9 i j 6 k 8 l 6 6 i j k l 6 6 9 8 6 9 6 6 6 8 8 6 9 8 8

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information