Continuous Flattening of Convex Polyhedra

Size: px
Start display at page:

Download "Continuous Flattening of Convex Polyhedra"

Transcription

1 Continuous Flttnin o Conv Polr Jin-ii Ito 1, Ci Nr 2, n Costin Vîlu 3 1 Fult o Eution, Kummoto Univrsit, Kummoto, , Jpn. j-ito@kummoto-u..jp 2 Lirl Arts Eution Cntr, Aso Cmpus, Toki Univrsit, Aso, Kummoto, , Jpn. nr@ktmil.toki-u.jp 3 Institut o Mtmtis Simion Stoilow o t Romnin Am, P.O. Bo 1-764, Burst, Romni. Costin.Vilu@imr.ro Astrt. A lt olin o polron is olin rss into multilr plnr sp. It is n opn prolm o E. Dmin t l., tt vr lt ol stt o polron n r ontinuous olin pross. Hr w prov tt vr onv polron posssss ininitl mn ontinuous lt olin prosss. Morovr, w iv suiint onition unr wi vr lt ol stt o onv polron n r ontinuous olin pross. 1 Introution W us t trminolo polron or los polrl sur wi is prmitt to tou itsl ut not sl-intrst (n so oul ovr polon is polron). A lt olin o polron is olin rss into multilr plnr sp. T rsults prsnt r r rlt to t ollowin prolm propos Erik Dmin t l. (s Opn Prolm 18.1 in [5]): Cn vr lt ol stt o polron r ontinuous olin pross? Noti tt, i polron P is lttn ontinuous olin pross (s Dinition 1) wit polr {P t : 0 t 1}, tn t rs pttrn in P or {P t : 0 t 1} is n ininit st o lin smnts. Tis ollows rom Cu s riiit torm n Sitov s rsult on t volum invrin unr lin [9]-[10]. T istn o lt ol stts or polr omomorpi to t 2- spr ws prov t mto o isk pkin (s 18.3 in [5]), n or som spil lsss o onv polr ws lso prov t mto o strit skltons (s 18.4 in [5], n [4]). Stion 2 o tis work is vot to prliminris. W lso ril prsnt tr (Torm 1) t mto to ontinuousl lttn t Pltoni polr onto tir oriinl s, propos in [6]. Support Grn-in-Ai or Sintii Rsr (No ), JSPS. Support Grn-in-Ai or Sintii Rsr (No ), JSPS. Prtill support t rnt PN-II-ID-PCE o CNCS-UEFISCDI.

2 In St. 3 w propos mto to lttn nrl onv polr ontinuous olin prosss (Torm 2). W mplo Alnrov s luin torm n t strutur o ut loi (s Dinition 2) or t proos. In St. 4 w iv suiint onition, unr wi vr lt ol stt o onv polron n r ontinuous olin pross (Torm 3). W n t ppr wit w rmrks n opn qustions (St. 5). 2 Prliminris W strt wit t inition o ontinuous olin pross or polron. Dinition 1. Lt P polron in t Eulin sp IR 3. W s tt mil o polr {P t : 0 t 1} is ontinuous olin pross rom P = P 0 to P 1 i it stisis t ollowin onitions: (1) or 0 t 1, tr ists polron P t otin rom P suiviin som s o P (i.., som s o P t m inlu in t sm o P, ut P t is onrunt to P ) su tt P t is omintorill quivlnt to P t n t orrsponin s o P t n P t r onrunt, (2) t mppin [0, 1] τ P τ {P t : 0 t 1} is ontinuous. Morovr, i P 1 is lt ol polron, w s tt P is lttn ontinuous olin pross n w ll P 1 lt ol polron (or stt) o P. In t s o Pltoni polr, two o us prov t nt rsult [6], wi will srv s ontrst in Stion 4. Torm 1. For t iv Pltoni polr tr r ontinuous lt olin prosss onto tir oriinl s. Fiur 1 sows ow to ontinuousl lttn t u n t rulr otron on tir s (s [6] or tils or or t otr Pltoni polr). Torm 1 ws prov usin k lmm: n romus n ol into sp s sow in Fi.2 (2), wit istns ()() = l n ()( = m or n ivn 0 l n 0 m, wr w not t Eulin mtri istn twn, IR 3. Our min tools r r t Alnrov s luin torm (stt low) n t ut loi, to wi t rminin o tis stion is vot. Alnrov s luin torm. Consir topoloil spr S otin luin plnr polons (i.., nturll intiin pirs o sis o t sm lnt) su tt t most 2π nl is lu t point. Tn S, now wit t intrinsi mtri inu t istn in IR 2, is isomtri to polrl onv sur P IR 2, possil nrt. Morovr, P is uniqu up to rii motion n rltion in IR 3. (S [2], p.100.) 2

3 (1) (2) (3) (4) Fi. 1. (1) T u; (2) t ltt u on its ; (3) t rulr otron; (4) t ltt otron on its. q () (q)=(q ) () o q (o) (1) () (2) () Fi. 2. An mpl o ol romus. Dinition 2. Lt P onv polron. T ut lous C() = C(, P ) o t point on P is in s t st o npoints (irnt rom ) o ll nontnl sortst pts (on t sur P ) strtin t. Fiur 3 provis two mpls o ut loi or points on t u. W summriz in our irst lmm vrious known proprtis o ut loi. Lmm 1. (i) C() is tr wos lvs (npoints) r vrtis o P, n ll vrtis o P, ptin (i t s), r inlu in C(). Noti tt w llow vrtis o r two in C(). (ii) T juntion points in C() r join to s mn sortst pts s tir r in t tr. (iii) T s o C() r sortst pts on P. (iv) Assum t sortst pts γ n γ rom to C() r ounin omin D o P, wi intrsts no otr sortst pt rom to. Tn t r o C() t towrs D ists t nl o D t. (v) I P s n vrtis tn C() is tr wit O(n) vrtis, n it n onstrut in tim O(n 2 ). Proo. (i)-(ii) n (iv) Ts r wll known. 3

4 = = 1 2 (1) (2) Fi. 3. (1) T ut lous o t vrt = on u; (2) t ut lous on u wit rspt to t mipoint o t. (iii) Tis is Lmm 2.4 in [1]. (v) T irst prt is lr. For t son prt, w us t loritm o J. Cn n Y. Hn [3] (s [7] or puli implmnttion). W will us t u to illustrt our mto. Tis mto pns upon sortst pts rom point on t u to prtiulr points on C(), in Fi. 4(1), n 1 n 2 in Fi. 4(2). = = 1 2 (1) (2) Fi. 4. (1) Sortst pts joinin = to = ; (2) sortst pts joinin to 1, 2, n to t u vrtis tt r intrior points o C(). W ll n o C() n l i it is inint to l o C(). 3 Continuous Flttnin Prosss or Conv Polr In tis stion w provi mto to ontinuousl lttn n onv polron P, s on ut loi n Alnrov s luin torm. Towr tis ol, w urtr sri t strutur o ut loi. 4

5 = = =p = = =p = ==q ==q ==q (1) (2) (3) = = ==q =p ==q = =p ==q = ==q (4) (5) (6) Fi. 5. (1) T ut lous o = ; (2) two sortst pts γ 1 n γ 2 joinin to, nlosin prisl on l E = uv = ; (3) two prts o t u, sprt γ 1 γ 2; (4) two rsultin surs otin luin (t ims o) γ 1 n γ 2; (5) t rsultin polron rom t u tr luin γ 1 to γ 2 ; (6) t lt ol stt o t u inll otin (1) (2) (3) (4) Fi. 6. (1) T ut lous o t mipoint o ; (2) two sortst pts γ 1 n γ 2 joinin to 1, n nlosin prisl on l E = uv = 1 ; (3) t rsultin polron tr luin γ 1 to γ 2 ; (4) t lt ol stt o t u inll otin. 5

6 W irst iv i-lvl viw o t mto, prsntin two irnt ws to lttn t u, illustrt in Fis. 5 n 6. W strt wit n ritrr point on P, n trmin its ut lous n ll smnts rom to t juntion points o C(), s Fis 5 (1) n 6 (1). Evr l E o C() is inlu in som rion T o P oun two onsutiv smnts rom to juntion point o C() (E = in Fiur 5 (2/3) n E = 1 in Fiur 6 (2)). T n lttn to oul ovr trinl T E, n P \ T n zipp to som onv polron Q E ( Alnrov s luin torm). Tror, P is isomtri to P E = T E Q E, onsistin o nt oul ovr trinl T E (s in t iurs) tt to som onv polron Q E (Lmm 2), s Fis. 5 (4/5) n 6 (3). T ut lous C(, Q E ) o on Q E is prisl t truntion o t ut lous C(, P ) (Lmm 3), n w n itrt t pross until C() is mrl pt, in wi s t rsultin polron is lr lttn (Lmm 4), s Fis. 5 (6) n 6 (4). Lmm 5 sows t ontinuit o tis prour. Lt γ 1 n γ 2 sortst pts on P rom P to C(); ut lon γ 1 γ 2 n kp on l-sur P. B luin γ 1 to γ 2 w mn to inti t points on γ 1 n rsptivl γ 2 t qul istn to. Lmm 2. Lt point on onv polron P. E l E = uv o t ut lous C(), strtin t t l v o C(), is oun two sortst pts γ 1 n γ 2 rom to u, wos union nloss prisl on l, v, o C(). T rion T o P, nlos γ 1 γ 2 n ontinin v, n lttn to oul ovr trinl T E, n t rminin prt o P orrspons to onv polron Q E luin γ 1 to γ 2. T oriinl polron P is isomtri to t polron P E = Q E T E, wr w tt T E to Q E, su tt γ 1 n γ 2 r touin otr ut r inlu in istint lrs. Proo. Lt E = uv n l wit l v o t ut lous C(). Tn tr r sortst pts joinin to u on P, wr is t r o t point u in t tr C(), n tl two o tm, s γ 1 n γ 2, nlos prisl on l v. Fis. 5(2) n 6(2) sow t rions o t u orrsponin to t l s n 1 in t rsptiv ut loi. T rion T o P, oun γ 1 γ 2 n ontinin v, s no otr vrt o P insi, n it onsists o two lt onrunt trinls wit s v, uv n γ i (i = 1, 2). Tror, T n lttn to som oul ovr trinl T E, luin γ 1 to γ 2. T rminin prt o P orrspons to onv polron Q E Alnrov s luin torm. Hn P is isomtri to P E = Q E T E, wr w tt T E to Q E su tt γ 1 n γ 2 r touin otr ut r inlu in istint lrs in P E. Noti tt, ltou lttn, T E m not li in pln. For n l E o C(, P ) w will us t nottion Q E n P E or t polr introu in Lmm 2. Lmm 3. Lt point in onv polron P, n lt E = uv n l o t ut lous C(), inint to t t l v o C(). T ut lous 6

7 C(, Q E ) o on Q E is (isomtri to) t truntion o t ut lous C(, P ) wit rspt to t uts lon γ 1 n γ 2 in in Lmm 2, n t luin lon tm. Proo. Tis ollows rom t inition o ut lous n t proprt (iv) in Lmm 1. Lmm 4. I t ut lous C() o point in onv polron P is pt, tn P is oul ovr polon. Proo. Sin ll vrtis o P pt possil r inlu in C(), P is oul ovr polon, Lmms 2 n 3. Lmm 5. Lt point in onv polron P, wos ut lous C() is not pt, n lt E = uv n l o C(), inint to t t l v o C(). Tr is ontinuous olin pross rom P to P E. Proo. Lt p t point movin ontinuousl rom v to u lon t E = uv, s t inrss rom 0 to 1, n not E t = p t v. Tr r two sortst pts γ t,1 n γ t,2 joinin to p t, nlosin prisl on l v o C(). B uttin lon γ t,1 γ t,2 n luin γ t1 to γ t2, w otin oul ovr trinl T t = T Et n onv polron Q t = Q Et, Alnrov s luin torm. Lt P t = P Et = Q t T t in similrl to P E in Lmm 2. Hr T t is lipp lokwis out t point n it tous Q t, in orr to voi n onlit ltr. W stlis low proprt o Q t. T strutur o Q t is ivn to us vi Alnrov s luin torm. W know t vrtis o Q t (t r, p t, n vrtis o P ), ut not its s. Nvrtlss, (i) t s o Q t twn vrtis (orrsponin to vrtis) o P r sust o t olltion o ll sortst pts twn pirs o su vrtis; (ii) t s o Q t rom its vrt to vrtis (orrsponin to vrtis) o P r sust o t olltion o ll sortst pts rom to su vrtis; (iii) t s o Q t rom its vrt p t to vrtis (orrsponin to vrtis) o P r sust o t olltion o ll sortst pts rom p t to su vrtis; (iv) t o Q t twn n p t orrspons to γ t,1 γ t,2. Dnot G t sust o P onsistin o ll sortst pts joinin pirs o vrtis o P, or joinin to vrtis o P. Consir now nioroo N o u, n points 0, z 0 N su tt t trinl 0 = u 0 z 0 intrsts G C() onl t u. Tis is possil, us ot G n C() r ompos o initl mn sortst pts on P, n N (G C()) onsists o initl mn sortst pts on N. Lt now G t P onsist o ll sortst pts rom p t to t vrtis o P, n in G t = G G t γ t,1 γ t,2. It ollows tt G t N is t union o initl mn lin-smnts, n tr ist points t, z t N \ G t su tt t trinl t = u t z t intrsts G t C() onl t u (s Fi. 7). 7

8 t t v p t u C() z t t Fi. 7. A trinl u tz t su tt u tz t G t = {u}. W lim tt tr r t most initl mn vlus τ 1, τ 2,..., τ m ]0, 1[ su tt, or n numr t in ]τ i, τ i+1 [, n n vrt v o P, t numr o sortst pts rom p t to v os not pn on t (i = 1,..., m 1). To prov t lim, rll tt o C(v) is sortst pt on P, n so is uv (s Lmm 1). Tror, or n E o C(v), E uv is itr, or point, or n r A. Morovr, ll points in uv \ E r join to v prisl on sortst pt, n i E uv = A tn ll intrior points to A r join to v prisl two sortst pts. B t ov rumnt, t numr o sortst pts rom v to n ptionl point p τi is t lst qul to t numr o sortst pts rom v to p t, or t suiintl los to τ i. T ov lim n t uppr smi-ontinuit o sortst pts sow tt, or n t [τ i, τ i+1 [, t n z t n oosn su tt t pns ontinuousl on t. Morovr, i t rs n ptionl vlu τ i, 0 < t < τ i, tn w m oos t n z t su tt τi t. In onlusion, t ists n pns lowr smi-ontinuousl on t [0, 1]. W sow nt ow to rliz P t in IR 3, or 0 t 1. O ours, it suis to sow ow to rliz Q t. For t = 0, w rliz Q 0 (n n P 0 = P ) in IR 3, stisin t onitions: (i) u = (0, 0, 0), 0 = ( 0,1, 0, 0), n z 0 = (z 0,1, z 0,2, 0), or som rl numrs 0,1 0, z 0,1, z 0,2 ; n (ii) Q 0 is inlu in t l-sp z 0. For 0 < t < 1, w rliz Q t in t l-sp z 0 su tt t is rliz s t orrsponin sust o N. Assum now tt t = 1. Lt {t n } n 1 squn onvrin to 1, wit 0 < t n < 1. Sin t mil {Q tn } n 1 is oun wit rspt to t Husor mtri on t sp o ll ompt sts in IR 3, tr ists susqun wi onvrs to ompt st R 1, Blsk s onvrn torm. T uniit in Alnrov s luin torm sows now tt R 1 os not pn on t oi o t onvrin squn t n 1, n w m rliz Q 1 R 1. 8

9 Conluin, i Q t is los to Q s tn tir orrsponin s r los to otr, in prtiulr tos inluin t n s, n n tir rliztions in IR 3 r los to otr. Finll, w noti tt t mppin rom 0 t 1 to t 1-prmtr mil o ompt sts {Q t : 0 t 1} is ontinuous wit rspt to t Husor mtri. Lt s rl numr wit 0 s 1, n {s n } n 1 squn onvrin to s, wit 0 < s n < 1. T mil {Q sn } n 1 is oun wit rspt to t Husor mtri on t sp o ll ompt sts in IR 3, n tr ists susqun wi onvrs to ompt st R s, Blsk s onvrn torm, n t uniit in Alnrov s luin torm ns t proo. Torm 2. For vr onv polron tr ist ininitl mn ontinuous lt olin prosss. Proo. Lt P onv polron n lt point in P. Stp 1. Dtrmin t ut lous C(), wi is tr (s Lmm 1). Stp 2. Flttn t rion T o P orrsponin to n l E o C() (s Lmm 2). T rminin prt o P, tr lttnin T s ov, is rliz s onv polron Q E, Alnrov s luin torm. Tror, t rsult P E tr tis lttnin is isomtri to P, n onsists o t polron Q E tt to t oul ovr trinl T E. T E soul li lokwis out t point in orr to voi onlit. Stp 3. Itrt Stp 2 or Q E inst o P, until C(, Q E ) is ru to pt; i.., until Q E is oul ovr polon. Lmm 3 urnts t itrtions r possil, wil Lmm 4 stliss t inl orm o Q. Fis. 5(6) n 6(4) sow t lt ol stts o t u tr lttnin ll su rions orrsponin to l s o C(, P ). Sin tr r O(n) vrtis in C(), wr n is t numr o vrtis o P (s Lmm 1), w v to lttn O(n) rions o P orrsponin to l s o C(, Q) on on, n tror t lttnin pross ns tr O(n) itrtions. All olin prosss orrsponin to l s r ontinuous Lmm 5, so P is ontinuousl ol to lt ol stt. 4 Continuous Flttnin Prosss or Simpl Flt Fol Stts In tis stion w iv suiint onition or lt ol stt o onv polron, to r ontinuous olin pross. Dinition 3. A 2-ovr onv polon onsists o two opis o onv polon lu lon som o tir orrsponin s (t otr s r ut ). Fiur 8(3) provis mpls o 2-ovr onv polons. W will lws rr su surs wit ounr s vin two onrunt lrs touin t tir orrsponin points, ut lu lon onl som s. 9

10 u =z (1) v (2) w = u =z v (3) w (4) = Fi. 8. (1) A rtnulr o B; (2) simpl lt ol stt o B otin pusin in two si s o B; (3) omposition o t lt ol stt into our onrunt 2- ovr trpzois n on 2-ovr rtnl; (4) t rion nlos two sortst pts rom to, orrsponin to t oul ovr trinl. Dinition 4. A lt ol stt P o onv polron is ll simpl i it njos t ollowin proprtis: (i) P n ompos into init numr o 2-ovr onv polons {R i : 1 i k}, (ii) or n 1 i k, i R 1, R 2,, R i 1 wr ut o rom P, tn R i n lso ut o rom t rminin prt o P prisl on ut lon n o R i. Noti tt ll lt ol stts otin in Torm 2 r simpl, wil Torm 1 provis mpls o non-simpl lt ol stts; or mpl, t lt ol stts sown in Fis. 1(2) n 1(4) r not simpl us t o not stis t onition (ii). T ol stt P sow in Fi. 1(2) or Fi. 1(4) n ompos into twlv 2-ovr trinls R i, ut no R i n ut o rom P prisl on ut lon n o R i. Fiur 8(2) sows lt ol stt o rtnulr o B, wr two si s o B r pus in. It is simpl, us it n ompos into iv 2-ovr onv polons s sown in Fi. 8(3), nml our onrunt ut oul trpzois n on 2-ovr rtnl. Howvr, it nnot otin t ut lous mto sri in t prvious stion. Torm 3. Evr simpl lt ol stt o onv polron n r ontinuous olin pross. 10

11 Proo. Lt P simpl lt ol stt o onv polron P, ompos into init olltion o 2-ovr onv polons {R i : 1 i k} uttin P lon som o R i, on on. B suiviin R i (1 i k) i nssr, w n ssum, witout loss o nrlit, tt ll R i r 2-ovr trinls. W prov t rsult inution ovr k. I k = 1 tn P = P n t onlusion ols. Suppos now tt t sttmnt is tru n, n ssum k = n + 1 or P. Lt R 1 2-ovr trinl z wit t ut n s z n z lu. Consir t ut lous C() = C(, P ). Tn E = z is l o C(). B Lmm 5, tr ists ontinuous olin pross rom P to t polron P E = Q E R 1. Noti tt Q E s t lt ol stt Q E, onsistin o 2-ovr onv trinls {R i : 2 i n + 1}, n Q E, stisis t onition (ii) in Dinition 4, wit t o R 2 lu. B t inution s ssumption, Q E, n r ontinuous olin pross rom Q E. Tror, P n r ontinuous olin pross rom P. 5 Rmrks n Opn Qustions Our irst rsult in tis ppr proposs n loritmi mto to ontinuousl lttn onv polr. Hr, t ssumption o onvit is ssntil t two points. First, or t istn o t lt ol stt w us t t tt o t ut lous is sortst pt (Lmm 1 (iii)), proprt wi is not tru on non-onv surs. Son, or t ontinuit o t pross, w us t uniqunss in Alnrov s luin torm, wi ils or non-onv surs. Sin ssntill t sm rumnt is mplo to prov our son rsult, suiint onition or t istn o ontinuous lttnin prosss, our proo tr lso ils or non-onv surs. Our ppro riss svrl qustions onrnin t strutur o ut loi. Our lttnin prour strts wit t ut lous C() o t point in P, n t stp it trts (mor prisl, it limints) ll l s o C(). Qustion 1. For wi polr n on in points wos ut lous s prisl on rmiition point (i.., C() is omomorpi to str rp)? Gnrll, wt is t miniml numr o stps (i.., o rmiition points in C()) to n t prour on onv polron P wit n vrtis, i t point vris on P? Consir now t ontinuous lttnin pross. It is s on point ontinuousl movin lon C(). Suppos t movmnt is t onstnt sp. Tn t lttnin tim is proportionl to t lnt λc() o C(), so it sms o prtiulr intrst to in lowr n uppr ouns on λc(). Qustion 2. Cn on lot on P point wit miniml lnt ut lous? T strtin point o our invstition is t qustion o Erik Dmin t l. (s Opn Prolm 18.1 in [5]), on t istn o ontinuous olin prosss 11

12 or ll lt ol stts o (not nssril onv) polr. Tis prolm rmins opn, n n rprs n win in irnt rmwork, s ollows. Consir n strt onv polron P (i.., on otin orin to Alnrov s luin torm). It s uniqu isomtri min in IR 3 s onv sur, ut mn otr non-onv rliztions in IR 3 (s [8] or t pris initions). Qustion 3. Lt R not t sp o ll rliztions o P in IR 3, wit t topolo inu t Husor mtri on t sp o ll ompt sts in IR 3. Is R rwis onnt? Aknowlmnt. T utors r int to Josp O Rourk or is rul rin o prliminr vrsion o tis ppr n is vlul sustions, prtiulrl improvin t proo o Lmm 5. Rrns 1. P. K. Arwl, B. Aronov, J. O Rourk n C. A. Svon, Str unolin o poltop wit pplitions, SIAM J. Comput. 26 (1997), A. D. Alnrov, Conv Polr, Sprinr-Vrl, Brlin, Monorps in Mtmtis. Trnsltion o t 1950 Russin ition N. S. Dirkov, S. S. Kuttlz, n A. B. Sossinsk. 3. J. Cn n Y. Hn, Sortst pt on polron, Pro. 6t Ann. ACM Smpos. Comput. Gom. (1990), E. D. Dmin, M. D. Dmin, n A. Luiw, Flttnin polr, Unpulis mnusript, E. D. Dmin n J. O Rourk, Gomtri olin loritms, Lins, Orimi, Polr, Cmri Univrsit Prss, J. Ito n C. Nr, Continuous lt olins o Pltoni polr. In: Akim t l. (s) CGGA2010, LNCS 7033, , Sprinr, Hirr (2011). 7. B. Knv n J. O Rourk, An implmnttion o Cn n Hn s sortst pt loritm, Pro. 12t Cnin Con. Comput. Gom. (2000), I. Pk, Inltin polrl surs, ttp:// pk/pprs/pillow4.p, I. Sitov, T volum o polron s untion o its mtri, Funm. Prikl. Mt. 2(4) (1996), I. Sitov, T volum s mtri invrint o polr, Disrt Comput. Gom. 20 (1998),

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures 1 (4, )-oosility o plnr rps wit orin struturs 4 5 Znr Brikkyzy 1 Cristopr Cox Mil Diryko 1 Kirstn Honson 1 Moit Kumt 1 Brnr Liiký 1, Ky Mssrsmit 1 Kvin Moss 1 Ktln Nowk 1 Kvin F. Plmowski 1 Drrik Stol

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Physics 222 Midterm, Form: A

Physics 222 Midterm, Form: A Pysis 222 Mitrm, Form: A Nm: Dt: Hr r som usul onstnts. 1 4πɛ 0 = 9 10 9 Nm 2 /C 2 µ0 4π = 1 10 7 tsl s/c = 1.6 10 19 C Qustions 1 5: A ipol onsistin o two r point-lik prtils wit q = 1 µc, sprt y istn

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 0, No. 0, pp. 000 000 2009 Soity or Inustril n Appli Mtmtis THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS HAL KIERSTEAD, BOJAN MOHAR, SIMON ŠPACAPAN, DAQING

More information

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then: Assinmnts: DFA Minimiztion CMPU 24 Lnu Tory n Computtion Fll 28 Assinmnt 3 out toy. Prviously: Computtionl mols or t rulr lnus: DFAs, NFAs, rulr xprssions. Toy: How o w in t miniml DFA or lnu? Tis is t

More information

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014 Grp Aloritms n Comintoril Optimiztion Dr. R. Cnrskrn Prsntrs: Bnjmin Frrll n K. Alx Mills My 7t, 0 Mtroi Intrstion In ts ltur nots, w mk us o som unonvntionl nottion or st union n irn to kp tins lnr. In

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

TCI SERIES, 3 CELL THE COOLING TOWER CO., L.C. TCI 3 CELL SERIES GA

TCI SERIES, 3 CELL THE COOLING TOWER CO., L.C. TCI 3 CELL SERIES GA of T SIN IS T PROPRTY O T OOLIN TOWR OMPNY, L, N IS LON OR MUTUL SSISTN. IT IS NOT TO ORWR NOR RPRINT IN NY ORM WITOUT WRITTN PRMISSION. L W OPTIONL SS PLTORM " x " STNR PLTORM PR LL OPTIONL VIRTION SWIT

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Revisiting Decomposition Analysis of Geometric Constraint Graphs

Revisiting Decomposition Analysis of Geometric Constraint Graphs Rvisitin Domposition Anlysis o Gomtri Constrint Grps R. Jon-Arinyo A. Soto-Rir S. Vil-Mrt J. Vilpln-Pstó Univrsitt Politèni Ctluny Dprtmnt Llnuts i Sistms Inormàtis Av. Dionl 647, 8, E 08028 Brlon [rort,

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

MCS100. One can begin to reason only when a clear picture has been formed in the imagination.

MCS100. One can begin to reason only when a clear picture has been formed in the imagination. 642 ptr 10 Grps n Trs 46. Imin tt t irmsown low is mp wit ountris ll. Is it possil to olor t mp wit only tr olors so tt no two jnt ountris v t sm olor? To nswr tis qustion, rw n nlyz rp in wi ountry is

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Designing A Uniformly Loaded Arch Or Cable

Designing A Uniformly Loaded Arch Or Cable Dsinin A Unirmy Ar Or C T pr wit tis ssn, i n t Nxt uttn r r t t tp ny p. Wn yu r n wit tis ssn, i n t Cntnts uttn r r t t tp ny p t rturn t t ist ssns. Tis is t Mx Eyt Bri in Stuttrt, Grmny, sin y Si

More information

CS150 Sp 98 R. Newton & K. Pister 1

CS150 Sp 98 R. Newton & K. Pister 1 Outin Cok Synronous Finit- Mins Lst tim: Introution to numr systms: sin/mnitu, ons ompmnt, twos ompmnt Rviw o ts, ip ops, ountrs Tis tur: Rviw Ts & Trnsition Dirms Impmnttion Usin D Fip-Fops Min Equivn

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

G-001 CHATHAM HARBOR AUNT LYDIA'S COVE CHATHAM ATLANTIC OCEAN INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1" = 500' CANADA

G-001 CHATHAM HARBOR AUNT LYDIA'S COVE CHATHAM ATLANTIC OCEAN INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1 = 500' CANADA TR ISL ROR UST 8 O. R-2,4-3 R-4 IX O VITIO IS STT PL ORPI OORITS POSITIO 27698 4-39'-" 88 69-6'-4."W 278248 4-4'-" 8968 69-6'-4"W 27973 4-4'-2" 88 69-6'-"W W MPSIR OOR UUST PORTL MI OR 27 8-OOT OR L -

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian)

Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian) msp INVOLVE 7:1 (2014) x.oi.or/10.2140/involv.2014.7.41 Sli-n-swp prmuttion roups Onyui Eknt, Hn Gil Jn n Jo A. Silr (Communit y Josp A. Gllin) W prsnt simpl til-sliin m tt n ply on ny 3-rulr rp, nrtin

More information

On the Characterization of Level Planar Trees by Minimal Patterns

On the Characterization of Level Planar Trees by Minimal Patterns On t Crtriztion o Lvl Plnr Trs Miniml Pttrns Aljnro Estrll-Blrrm, J. Jos Fowlr, n Stn G. Koourov Drtmnt o Comutr Sin, Univrsit o Arizon {l,owlr}@mil.rizon.u, oourov@s.rizon.u Astrt. W onsir rtriztions

More information

3 a 15a 6 b 21a 5 c 30a 6 d 12a 9. e 125a 8 f 36a 12 g 90a 13 h 56a a 6a b 5 c 3a 4 d 6a 4. e 10a 4 f 8a 2 g 5a 4 h 12a 2

3 a 15a 6 b 21a 5 c 30a 6 d 12a 9. e 125a 8 f 36a 12 g 90a 13 h 56a a 6a b 5 c 3a 4 d 6a 4. e 10a 4 f 8a 2 g 5a 4 h 12a 2 Answrs Cptr Workin wit surs Eris A Surs 8 6 6 8 6 6 6 + 6 8 6 6 6 6 + 8 + + 8 6 9 6 m ( + m Cptr Simpliin prssions usin t lws o inis Eris A Inis 9 i j 6 k 8 l 6 6 i j k l 6 6 9 8 6 9 6 6 6 8 8 6 9 8 8

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

Proof of Pumping Lemma. PL Use. Example. Since there are only n different states, two of q 0, must be the same say q i

Proof of Pumping Lemma. PL Use. Example. Since there are only n different states, two of q 0, must be the same say q i COSC 2B 22 Summr Proo o Pumpin Lmm Sin w lim L is rulr, tr must DFA A su tt L = L(A) Lt A v n stts; oos tis n or t pumpin lmm Lt w strin o lnt n in L, sy w = 2 m, wr m n Lt i t stt A is in tr rin t irst

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT 0 NOTS: VI UNSS OTRWIS SPII IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION. NR: a. PPITION SPIITION S: S--00 b. PROUT SPIITION S: PS--00 c. PIN SPIITION

More information

G-001 SACO SACO BAY BIDDEFORD INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1" = 1000' CANADA MAINE STATE PLANE GEOGRAPHIC NO.

G-001 SACO SACO BAY BIDDEFORD INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1 = 1000' CANADA MAINE STATE PLANE GEOGRAPHIC NO. 2 3 6 7 8 9 0 2 3 20000 230000 220000 ST TORY M 8-OOT W ST 2880000 2880000 L ROOK RL OTS: UKI OR TUR RKWTR (TYP) U O ROOK. SOUIS R I T TTS. T RR PL IS M LOWR LOW WTR (MLLW) IS S O T 983-200 TIL PO. SOUIS

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Generating Balanced Parentheses and Binary Trees by Prefix Shifts

Generating Balanced Parentheses and Binary Trees by Prefix Shifts Gnrtin Bln Prnthss n Binr Trs Pri Shits Frnk usk 1 Aron Willims 2 Dprtmnt o Computr Sin Univrsit o Vitori, Vitori BC, V8W 3P6, Cn, 1 UL: http://www.s.uvi./~rusk 2 Emil: hron@uvi. Astrt W show tht th st

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments Ston 7 - Rpr Prours Srv Mnul - Son Eton Pltorm Controls 1-1 Joystk Controllrs Mntnn oystk ontrollrs t t propr sttns s ssntl to s mn oprton. Evry oystk ontrollr soul oprt smootly n prov proportonl sp ontrol

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Madad Khan, Saima Anis and Faisal Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan

Madad Khan, Saima Anis and Faisal Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan Rsr Jorl o Ali is Eiri Tolo 68: 326-334 203 IN: 2040-7459; -IN: 2040-7467 Mwll itii Oritio 203 itt: M 04 202 At: Frr 0 203 Plis: Jl 0 203 O F- -ils o -Al-Grss's Groois M K i Ais Fisl Drtt o Mttis COMAT

More information

Two Approaches to Analyzing the Permutations of the 15 Puzzle

Two Approaches to Analyzing the Permutations of the 15 Puzzle Two Approhs to Anlyzin th Prmuttions o th 15 Puzzl Tom How My 2017 Astrt Th prmuttions o th 15 puzzl hv n point o ous sin th 1880 s whn Sm Lloy sin spin-o o th puzzl tht ws impossil to solv. In this ppr,

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

STRUCTURAL GENERAL NOTES

STRUCTURAL GENERAL NOTES UILIN OS: SIN LOS: RUTURL NRL NOTS NRL NOTS: US ROUP: - SSMLY USS INTN OR PRTIIPTION IN OR VIWIN OUTOOR TIVITIS PR MIIN UILIN O STION. SSONL. T UNTION O TIS ILITY IS NOT OR QUIPP OR OUPNY URIN WINTR/ TIN

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information