On the Characterization of Level Planar Trees by Minimal Patterns

Size: px
Start display at page:

Download "On the Characterization of Level Planar Trees by Minimal Patterns"

Transcription

1 On t Crtriztion o Lvl Plnr Trs Miniml Pttrns Aljnro Estrll-Blrrm, J. Jos Fowlr, n Stn G. Koourov Drtmnt o Comutr Sin, Univrsit o Arizon {l,owlr}@mil.rizon.u, oourov@s.rizon.u Astrt. W onsir rtriztions o lvl lnr trs. Hl t l. [8] rtriz t st o trs tt r lvl lnr in trms o two miniml lvl non-lnr (MLNP) ttrns. Fowlr n Koourov [7] ltr rov tt t st o ttrns ws inomlt n two itionl ttrns. In tis r, w sow tt t rtriztion is still inomlt roviin nw MLNP ttrns not inlu in t rvious rtriztions. Morovr, w introu n itrtiv mto to rt n ritrr numr o MLNP ttrns, tus rovin tt t st o miniml ttrns tt rtrizs lvl lnr trs is ininit. 1 Introution An imortnt lition o utomti r rwin n oun in t lout o rs tt rrsnt irril rltionsis. Wn rwin rs in t -ln, tis trnslts to rstrit orm o lnrit wr t -oorint o vrt is ivn n t rwin loritm onl s t rom to oos t -oorint. Tis rstrit orm o lnrit is ll lvl lnrit, n ivn -oorint orrsons to lvl. Jünr, Lirt, n Mutzl [13] rovi linr-tim ronition loritm or lvl lnr rs. Tis loritm is s on t lvl lnrit tst ivn Ht n Pmmrju [9,10]. T loritm Ht n Pmmrju is s on t mor rstrit PQ-tr lvl lnrit tstin loritm o irris (lvlrso irt li rs in wi ll s r twn jnt lvls n ll t sour vrtis r on t urmost lvl) ivn Di Bttist n Nrlli in [3]. In t r, t utors lso rtriz su irris in trms o lvl non-lnr (LNP) ttrns. Jünr n Lirt [12] rovi linr-tim lvl lnr min loritm tt oututs st o linr orrins in t -irtion or t vrtis on lvl. Howvr, to otin strit-lin lnr rwin on ns to susuntl run n O( V ) loritm ivn Es t l. [4] wo monstrt tt vr lvl lnr min s strit-lin rwin, tou it m ruir onntil r. Hl t l. [8] us LNP ttrns to rovi st o miniml lvl non-lnr (MLNP) sur ttrns tt rtriz lvl lnr rs. Tis is t ountrrt or lvl rs to t rtriztion o lnr rs Kurtowsi [14] in trms o orin suivisions o K 5 n K 3,3.TwonwMLNP tr ttrns wr in [7] Tis wor ws suort in rt NSF rnt CCF D. Estin n E.R. Gnsnr (Es.): GD 2009, LNCS 5849, , Srinr-Vrl Brlin Hilr 2010

2 70 A. Estrll-Blrrm, J.J. Fowlr, n S.G. Koourov Fowlr n Koourov to t rvious st o ttrns ivn Hl t l. Intis r, w sow tt t rtriztion rmins inomlt roviin nw MLNP ttrns not inlu in t rvious rtriztions. Morovr, w introu n itrtiv mto to rt n ritrr numr o MLNP ttrns, tus rovin tt t st o miniml ttrns tt rtrizs lvl lnr trs is ininit. T stu o MLNP ttrns is motivt in rt t rolm o visulizin irril struturs. Suim t l. [15] sri wt s om t stnr rmwor or rwin irt li rs. In tis rmwor vrtis r ssin to lvls n tn on lvl vrtis r orr, wit t ovrll ol o minimizin t numr o rossins. Tr ists oo uristis n som t mtos s uon intr linr rorms (ILPs) to in oo orrs witin lvls [11]. Howvr, till t ssinmnt o vrtis to lvls is on wit t l o r lol otimiztions [2]. Unrstnin t unrlin ostrutions to lvl lnrit (su s MLNP ttrns) oul l to ttr solutions to t lvl ssinmnt st. Lvl lnrit is lso rlt to simultnous min [1]. In nrl, st o rstritions on t lout o on r m l in t lout o son r on t sm vrt st. Siill, wn min t wit lnr r, i t r n rwn on orizontl lvls, tn t t n rwn in -monoton sion witout rossins. Estrll-Blrrm t l. [6] rtriz t st o unll lvl lnr (ULP) trs on n vrtis tt r lvl lnr ovr ll ossil llins o t vrtis in trms o two orin trs: T 8 n T 9. A lvl non-lnr llin o T 9 wsustootinmlnp ttrns P 3 n P 4 in [7]; s Fi Prliminris A -lvl r G(V, E,φ)onn vrtis is irt r G(V, E) wit lvl ssinmnt φ : V {1,...,} su tt t inu rtil orr is strit: φ(u) <φ(v) or vr (u, v) E. A-lvl r is -rtit r in wi φ rtitions nto innnt sts V 1, V 2,..., V, wi orm t lvls o G. Alvl- j vrt v is on t j t lvl i φ(v) = j (i.. v ). In lvl r, n (u, v) issort i φ(v) = φ(u) + 1 wil s snnin multil lvls r lon.aror lvl r s onl sort s. An lvl r n m ror suiviin lon s into sort s. In tis r, lvl r is ror unlss stt otrwis. A lvl r G s lvl rwin i tr ists rwin su tt vr vrt in is l lon t orizontl lin l j = {(, j) } n t s r rwn s stritl -monoton ollins. T orr tt t vrtis o r l lon l j in lvl rwin o ror r inus mil o linr orrs lon t - irtion, wi orm linr min o G. A lvl rwin, n onsuntl its lvl min, is lvl lnr i it n rwn witout rossins. A lvl r G is lvl lnr i it mits lvl lnr min. T inition o lvl rwins llowin onl strit-lin smnts or s is uivlnt, ivn tt Es t l. [4] v sown tt vr lvl lnr r s strit-lin lnr rwin. A t is non-rtin orr sun o vrtis (v 1, v 2,...,v n )orn 1. A str wit n vrtis is tr wit on vrt o r n 1, ll t root, nn 1 vrtis o r 1. A sir is n ritrril suivi str, wr suiviin n

3 On t Crtriztion o Lvl Plnr Trs Miniml Pttrns 71 () () Fi. 1. Oriinl MLNP ttrns P 1 in () n P 2 in () roos Hl t l (u, v) rls t wit nw vrt w n nw s (u, w) n(w, v). In r- sir, t root s r. A in-lin, not u v, is t rom vrt u to vrt v wit u v su tt intrnl vrt w tt lis lon t t s r 2. Lt φ(u v) not t st o lvls o t intrnl vrtis wr i φ(u v) j is sort-n or sin tt i φ(w) j or intrnl vrt w o t in-lin u v. Unlss stt otrwis w ssum tt φ(u) φ(u v) φ(v) or in-lin u v.alinin in,orsimlin, is sun o on or mor in-lins. Noti tt vrt in t intrstion o two ins is not onsir rossin twn t ins. In ll iurs, urv onntin two vrtis, rrsnts in. In lvl non-lnr r, ttrn is n ostrutin sur wit lvl ssinmnt tt ors rossin. Sin r w in rtiulr ttrns in trms o ins, t rrsnt st o rs wit similr rortis in trms o lvlin. A lvl non-lnr ttrn is miniml i t rmovl o n ritrr ms t ttrn lvl lnr. All t ttrns sri r (wit t tion o w tt r smmtril) v orrsonin orizontll li vrsion. 3 Prvious Wor 3.1 Crtriztion o Lvl Plnr Trs Hl t l. Hl t l. [8] in MLNP ttrns s ollows: Lt i n j t minimum n mimum lvl, rstivl, o n vrt in t ttrn. Lt vrt o r 3 wit tr sutrs wit t ollowin rortis: (i) sutr s t lst on vrt on ot trm lvls; (ii) sutr is itr in or it s two sutrs tt r ins; (iii) ll lvs r lot on trm lvls (n l is t onl vrt in its sutr on t trm lvl); n (iv) t sutrs tt r ins n v nonl vrtis on on trm lvl, lso v t lst on l vrt on t oosit trm lvl. Tn t istinuis two ttrns; P 1 wit on n trm lvl n P 2 wit on non-trm lvl (Hl t l. not tm T1 n T2). Fiur 1 sows P 1 n P 2. Noti tt ts ttrns r in in trms o sutrs. Tis imlis, or ml,

4 72 A. Estrll-Blrrm, J.J. Fowlr, n S.G. Koourov i i () () () V V () () () Fi. 2. (-) Fiv vritions o ttrn P 1 in ition to t on in Fi. 1(); () On vrition o ttrn P 2 in ition to t on in Fi. 1() tt sutr wit vrt o r 3 m rl t. Fowlr n Koourov, on t otr n, in t ttrns in trms o ts. Hn, to rorl omr t st o ttrns w n to onsir t irnt ss, or vritions, o t sutrs in P 1 n P 2. Hn, P 1 ls to vritions P1 A,...,PF 1 n P 2 ls to vritions P2 A n P2 B ; s Fi. 2. Noti tt wn in rs n trm lvl wit r-2 vrt, mor r-2 vrtis o t in n lso on t trm lvl. Tis is illustrt in Fi. 2() or t in wit son r-2 vrt. Hl t l. [8] sow tt ot o ts ttrns r miniml lvl non-lnr. 3.2 Crtriztion o Lvl Plnr Trs Fowlr n Koourov T two trs T 8 n T 9 wr sown to t onl ostrutions in t ontt o unll lvl lnrit or trs [6]. Howvr, s t tr T 9 os not mt n o t MLNP ttrns Hl t l. [8], nw ttrn P 3 ws roos [7]; s Fi. 3(). Not tt mtin T 9 wit itr o t rlir ttrns P 1 or P 2 woul imossil s ot P 1 n P 2 r s on ntrl vrt o r 3 (vrt in Fi. 1), wil T 9 n its mtin ttrn P 3 v ntrl vrt o r 4 (vrt in Fi. 3()). Yt notr ttrn P 4 n otin rom P 3 slittin vrt o r 4 su tt i < l φ() m < j into two vrtis o r 3 onnt t. In Fi. 3() vrt is rl in su tt l φ( ) m in Fi. 3(). Pttrns P 3 n P 4 wr to t rvious st o two ttrns (it vritions) to otin nw rtriztion onsistin o our ttrns (tn vritions). A st o

5 On t Crtriztion o Lvl Plnr Trs Miniml Pttrns () () () Fi. 3. Fowlr n Koourov nrliz t orin ULP tr T 9 in () to rou t MLNP ttrns P 3 in () n P 4 in () roo or t lim tt tis nw rtriztion is omlt ws m in [7], ut in t nt stion w sow tt t rtriztion rmins inomlt. 4 Nw Miniml Lvl Non-lnr Pttrns In tis stion, w sow tt t rtriztion o lvl lnr trs miniml ttrns is still inomlt. In St. 4.1, w sow tt tr r vritions o P 3 n P 4 tt wr not onsir. Tn in St. 4.2, w sri nw ttrn rviousl not onsir s it s vrt o r 5, wrs, ll o t rviousl nown MLNP ttrns v mimum r Vritions o Pttrns P 3 n P 4 T rvious rtriztion introus t nw ttrns P 3 n P 4. Just s wit t vritions o P 1 n P 2,irnt vritions o P 3 n P 4 n rou rlin som ins wit r-3 sirs. W sri ts vritions nt. Pttrn P3 A. Tis is t oriinl ttrn P 3; s Fi. 3(). Pttrn P3 B. Tis ttrn is similr to PA 3 ut rls t in su tt l φ() m, φ( ) = m, φ() = i, ni φ( ) m, wit r-3 sir root t n lvs,,n su tt l φ( ) m, φ() = φ( ) = m, φ() = i, nl φ( ) m; s Fi. 4(). Pttrn P C 3. Tis ttrn is similr to PA 3 ut rls t in, su tt l φ() m, φ() = l, φ() = j, nl φ( ) m wit r-3 sir root t n lvs,,nsu tt l φ( ) m, φ() = φ() = l, φ() = j, n l φ( ) m; s Fi. 4(). Pttrn P3 D. Tis ttrn ms ot rlmnts m ttrns PB 3 n PC 3 on P3 A su tt φ() = φ( ) = l, φ( ) = φ( ) = m, l φ() m, i φ( ) m, n l φ( ) j; s Fi. 4(). Pttrn P4 A. Tis is t oriinl ttrn P 4; s Fi. 3(). Pttrns P4 B, PC 4,nPD 4. Ts ttrns m nloous rlmnts on PA 4 s tosmp3 B, PC 3,nPD 3 on PA 3 ; s Fi. 4(-).

6 74 A. Estrll-Blrrm, J.J. Fowlr, n S.G. Koourov () () () () () () Fi. 4. (-) Vritions o ttrn P 3 (P B 3, PC 3,nPD 3 ); (-) Vritions o ttrn P 4 (P B 4, PC 4,n P D 4 ) T imortn o t nw vritions o P 3 n P 4 is tt t r t unmntl ssumtion m in t rl ttmts t rtriztions, nml tt in n miniml lvl non-lnr ttrn, lvs must li on trm lvls i or j. All o t nw ttrns v lvs on non-trm lvls. W omit t roos or t vritions o P 3 n P 4 s in t nt stion w ormll sow tt nw ttrn, P 5 wit non-trm lvs is MLNP. Morovr, in St. 5, w sow tt t st o MLNP ttrns or trs is not just missin w mor ttrns ut is tull ininit. 4.2 Nw Pttrn P 5 In tis stion, w sri nw ttrn P 5 n its vritions. T min rtristi o tis ttrn is t rsn o vrt wit r 5. Pttrn P5 A. Tis ttrn is r-5 sir, root t, wit two lvls l n m twn t trm lvls i n j su tt i < l <φ() m < j. Tr is in su tt φ() = i, in su tt φ() = j; in su tt φ() = m n φ() = l; in su tt φ() = l, φ( ) = m, φ() = i, nφ() = j; n in su tt l <φ() <φ(), φ() = j, φ() = i n l <φ( ) j; s Fi. 5(). Pttrn P5 B. Similr to PA 5 ut rls t in wit r-3 sir root t su tt l <φ( ) < m, wit,, n su tt l <φ() m, φ() = l, φ() = i, φ( ) = m, n tr is in

7 On t Crtriztion o Lvl Plnr Trs Miniml Pttrns 75 () () () Fi. 5. Pttrns P A 5, PB 5,nPC 5 su tt φ() = l wr l φ( ) m, l φ( ) m, n i φ( ) m ; s Fi. 5(). Pttrn P C 5. Similr to PA 5 ut rls t in wit r-3 sir root t su tt φ() = l wit lvs,, n ; s Fi. 5(). In t ollowin two lmms w sow tt tis nw ttrn is MLNP. Lmm 1. Pttrn P 5 is lvl non-lnr. Proo. W sow tt P5 A is lvl non-lnr (t ss or PB 5 n PC 5 r similr). First noti tt to voi rossin wit in, ll t vrtis o t in must li to t rit o t in wil ll t vrtis o t in must li to t lt, or vi vrs; s Fi. 5(). Assum w.l.o.. tt lis to t lt n lis to rit o in (s in Fi. 5()). Now osrv tt in orr to voi rossin o in wit ins, or, t in must li twn ins n or li twn ins n. Howvr, in t irst s rossin will our wit in (sin φ() <φ() nφ() φ( ) m) n in t ltr s rossin will our wit in. Lmm 2. T rmovl o n in ttrn P 5 ms it lvl lnr. Proo. W onsir t irnt ss o rmovl rom t ins in P5 A (PB 5 n P C 5 r similr): s 1) I n is rmov rom in, tn t rossin wit in is voi wn is to t rit o s in Fi. 6(). s 2) I n is rmov rom ins or, tn ll t vrtis in t in (t ) n to t lt or to t rit o in

8 76 A. Estrll-Blrrm, J.J. Fowlr, n S.G. Koourov () () () () Fi. 6. Dirnt ss o rmovin n (ott) rom ttrn P A 5 wr in n on t otr si voiin t rossin s in Fi. 6(). s 3) I n is rmov rom in, tn ins n n on t sm si wit rst to. Tus voiin t rossin wit in ; s Fi. 6(). s 4) I n is rmov rom in, tn in n li to t rit o in s in Fi. 6(). W now us Lmms 1 n 2 to sow tt P 5 is in MLNP. Torm 1. P 5 is miniml lvl non-lnr ttrn or trs. Proo. B Lmm 1, P 5 is lvl non-lnr n Lmm 2, P 5 is miniml. Minimlit lso imlis tt P 5 os not ontin n MLNP ttrn s sur. Morovr, ttrn P 5 os not mt n o t rvious ttrns ivn tt vrt s r 5, wil ll o t rviousl nown ttrns v mimum r 4. In tis stion, w v sown tt nw ttrn P 5 is MLNP. Howvr,P 5 is not t onl ttrn missin rom rlir rtriztions. Nw ttrns P 6,...,P 11 r sown lon wit tir vritions in [5]. T roos o lvl non-lnrit n minimlit o ts ttrns r similr to t on ivn or P 5. Tus, inst o rovin tt o ts ttrns is MLNP, w sri onstrutiv mto or nrtin n ininit numr o istint MLNP ttrns in t nt stion.

9 On t Crtriztion o Lvl Plnr Trs Miniml Pttrns () () Fi. 7. Constrution o nw ttrn (P A 4 ) 1 in () rom ttrn P A 4 in () 5 Ininit Miniml Lvl Non-lnr Pttrns Our ro or rtin nw MLNP ttrns is to t nown ttrn s s n tn rt sur o t ttrn min moiitions on t lvlin su tt t nw ttrn os not stritl ontin t rvious on. Hr w us P4 A ut t mto lis to otr ttrns s wll. Tirststistomoott 0 = su tt φ() = φ() = i <φ() <φ( ) <φ() = j s in Fi. 7() in orr to t nw t 1 = su tt φ( 1 ) = φ( 1 ) = i 1, φ( 1 ) = j, φ( 1 ) = j + 1, n φ( 1 ) = j + 2 s in Fi. 7(). T son st is to 1 to P4 A mrin vrtis 1 n rtin nw vrt o r 3 tt ts t l o. Tis nw lvl ssinmnt rts two nw trm lvls i 1nj + 2. W omlt t onstrution o t nw ttrn movin vrtis,, n to t nw trm lvls, siill, w st φ() = i 1nφ() = φ() = j + 2. W now nrliz t rvious onstrution to n ritrr numr o itrtions. W not t ttrn rt t itrtion t rom ttrn P s (P) t. Tus, t oriinl P4 A is (P4 A) 0 n t ttrn rt in Fi. 7() is (P4 A) 1. T vrtis in t ttrn r ll in t sm w, or ml 0 =. Tror, in orr to rt nw ttrn (P4 A) t+1 rom ttrn (P4 A) t, w irst o t t t = t t t t t to t nw t t+1 = t+1 t+1 t+1 t+1 t+1 su tt φ( t+1 ) = φ( t+1 ) = i t 1, φ( t+1 ) = j + 2t, φ( t+1 ) = j + 2t + 1, n φ( t+1 ) = j + 2t + 2. W tn mr t+1 wit t to otin t nw t+1. Finll, w st t lvls s φ() = i t 1, n φ() = φ() = j + 2t + 2; s Fi. 8. In t nt lmm w sow tt ttrn, (P4 A) t, nrt wit t rvious mto is lvl non-lnr. Lmm 3. Pttrn (P A 4 ) t or t 0, is lvl non-lnr. Proo. W us inution on t, t numr o itrtions in t nrtion mto. T s s is t = 0; tis is t oriinl ttrn P 4 wi is rovn to lvl non-lnr in t rtriztion Fowlr n Koourov [7]. W now ssum tt (P A 4 ) t is lvl

10 78 A. Estrll-Blrrm, J.J. Fowlr, n S.G. Koourov -t t t -t-1 Vi-t t t t+1 t+1 t t t t +2t t +2t t+1 t+1 +2t+2 t+1 () () Fi. 8. Constrution o nw ttrn (P A 4 ) t+1 in () rom ttrn (P A 4 ) t in () non-lnr in orr to rov tt (P4 A) t+1 is lvl non-lnr. Tt is, w sow tt t moiitions m to (P4 A) t to otin (P4 A) t+1 o not t t lvl non-lnrit o t nw ttrn. Clrl, t ition o vrtis n s nnot t t lvl non-lnrit o tr, n t ition o t t t+1 os not m t ttrn lvl lnr. Morovr, sin t ins n in (P4 A) t r ontin in t ins n o (P4 A) t+1, t n on t lvls o n r siml ition o vrtis n s tt nnot t t lvl non-lnrit o t ttrn. Finll, w onsir t n o lvl o vrt. Noti tt t rossin twn t in n t in in (P4 A) t nnot voi in (P4 A) t+1 wit t n o lvl o. Tis is us s is mov to t lvl o t in t+1 t+1 t+1 ls n nloous rol in t ttrn (P4 A) t+1 tt t in t ls in t ttrn (P4 A) t. Tt is, t ition o t in t+1 t+1 to t ttrn (P4 A) t+1 rvnts t swit o si o t in in orr to voi t rossin wit s tis will rou rossin wit t in t+1 t+1 (s in Fi. 9()). Tror, inution t ttrn (P4 A) t is lvl non-lnr or ll non-ntiv intrs t 0. W nt sow t minimlit o t ttrns nrt wit t mto ov. Lmm 4. T rmovl o n in (P A 4 ) t or n t 0, ms it lvl lnr. Proo. W onsir t ss o rmovl in (P A 4 ) t. s 1) I n is rmov rom t in, tn t slintrstion is voi s in Fi. 9(). s 2) I n is rmov rom t in, tn t in n us t to voi t rossin s in Fi. 9().

11 On t Crtriztion o Lvl Plnr Trs Miniml Pttrns 79 s 3) I n is rmov rom t in α α or α α or n α = 0,...,t, tn in n us t to rwn twn t ins α α n α α s in Fi. 9() or twn α n α. s 4) I n is rmov rom t ins α α or α α or n α = 0,...,t, tn t in n intrn sis wit t in α α i α = t s in Fi. 9(). Wn α<t, ll t ins β β β β β or β = α + 1,...,t r mov lon wit t in α α. Wit t lst two lmms w now sow tt ttrn nrt wit t itrtiv mto sri in tis stion is MLNP. Torm 2. Pttrn (P A 4 ) t or t 0, is miniml lvl non-lnr ttrn or trs. Proo. B Lmm 3, (P A 4 ) t is lvl non-lnr n Lmm 4, (P A 4 ) t is miniml. Minimlit imlis tt (P A 4 ) t os not ontin n MLNP ttrn s sur. In rtiulr, (P A 4 ) t os not ontin t rvious ttrn (P A 4 ) t 1. To s tis in Fi. 8(), osrv tt in t sur twn lvls i n j, t in is srt lvl j into two isjoint ins. Morovr, ttrn (P A 4 ) t os not mt n o t rvious ttrns (P A 4 ) α or α = 0,...,t 1sin(P A 4 ) t ontins n itionl vrt o r 3, t. Torm 2 imlis tt w n nrt n ritrr numr o irnt MLNP ttrns. Tis ivs our min rsult. t t t t -t -t t t t t +2t t +2t t () t t t () t -t -t t t t t +2t t +2t t () () Fi. 9. Dirnt ss o rmovin n (ott) rom ttrn (P A 4 ) t

12 80 A. Estrll-Blrrm, J.J. Fowlr, n S.G. Koourov Torm 3. T st o miniml lvl non-lnr ttrns or trs is ininit. 6 Conlusions n Futur Wor In tis r, w sow w two rlir ttmts to rtriz t st o lvl nonlnr trs in trms o miniml lvl non-lnr ttrns il. In ot ss, tr ws n imliit ssumtion tt t st o irnt MLNP ttrns is smll n init. Howvr, it turns out tt tr r ininitl mn irnt MLNP ttrns, n n ltotr irnt ro mit n or omlt rtriztion. Rrns 1. Brß, P., Cn, E., Dunn, C.A., Ert, A., Ertn, C., Ismilsu, D., Koourov, S.G., Luiw, A., Mitll, J.S.B.: On simultnous lnr r mins. Comuttionl Gomtr: Tor n Alitions 36(2), (2007) 2. Cimni, M., Gutwnr, C., Mutzl, P., Won, H.-M.: Lr-r uwr rossin minimiztion. In: MGo, C.C. (.) WEA LNCS, vol. 5038, Srinr, Hilr (2008) 3. Di Bttist, G., Nrlli, E.: Hirris n lnrit tor. IEEE Trnstions on Sstms, Mn, n Crntis 18(6), (1989) 4. Es, P., Fn, Q., Lin, X., Nmoi, H.: Strit-lin rwin loritms or irril rs n lustr rs. Aloritmi 44(1), 1 32 (2006) 5. Estrll-Blrrm, A.: Simultnous Emin n Lvl Plnrit. PD tsis, Drtmnt o Comutr Sin, Univrsit o Arizon (2009) 6. Estrll-Blrrm, A., Fowlr, J.J., Koourov, S.G.: Crtriztion o unll lvl lnr trs. Comuttionl Gomtr: Tor n Alitions 42(7), (2009) 7. Fowlr, J.J., Koourov, S.G.: Minimum lvl nonlnr ttrns or trs. In: Hon, S.-H., Nisizi, T., Qun, W. (s.) GD LNCS, vol. 4875, Srinr, Hilr (2008) 8. Hl, P., Kuusi, A., Lirt, S.: A rtriztion o lvl lnr rs. Disrt Mtmtis 280(1-3), (2004) 9. Ht, L.S., Pmmrju, S.V.: St n uu louts o irt li rs. II. SIAM Journl on Comutin 28(5), (1999) 10. Ht, L.S., Pmmrju, S.V., Trn, A.N.: St n uu louts o irt li rs. I. SIAM Journl on Comutin 28(4), (1999) 11. Jünr, M., L, E.K., Mutzl, P., Ontl, T.: A olrl ro to t multi-lr rossin minimiztion rolm. In: DiBttist, G. (.) GD LNCS, vol. 1353, Srinr, Hilr (1997) 12. Jünr, M., Lirt, S.: Lvl lnr min in linr tim. Journl o Gr Aloritms n Alitions 6(1), (2002) 13. Jünr, M., Lirt, S., Mutzl, P.: Lvl lnrit tstin in linr tim. In: Witsis, S.H. (.) GD LNCS, vol. 1547, Srinr, Hilr (1999) 14. Kurtowsi, C.: Sur ls rolèms s ours us n Tooloi. Funmnt Mtmti 15, (1930) 15. Suim, K., Tw, S., To, M.: Mtos or visul unrstnin o irril sstm struturs. IEEE Trnstions on Sstms, Mn, n Crntis 11(2), (1981)

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures 1 (4, )-oosility o plnr rps wit orin struturs 4 5 Znr Brikkyzy 1 Cristopr Cox Mil Diryko 1 Kirstn Honson 1 Moit Kumt 1 Brnr Liiký 1, Ky Mssrsmit 1 Kvin Moss 1 Ktln Nowk 1 Kvin F. Plmowski 1 Drrik Stol

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Madad Khan, Saima Anis and Faisal Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan

Madad Khan, Saima Anis and Faisal Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan Rsr Jorl o Ali is Eiri Tolo 68: 326-334 203 IN: 2040-7459; -IN: 2040-7467 Mwll itii Oritio 203 itt: M 04 202 At: Frr 0 203 Plis: Jl 0 203 O F- -ils o -Al-Grss's Groois M K i Ais Fisl Drtt o Mttis COMAT

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT 0 NOTS: VI UNSS OTRWIS SPII IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION. NR: a. PPITION SPIITION S: S--00 b. PROUT SPIITION S: PS--00 c. PIN SPIITION

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Physics 222 Midterm, Form: A

Physics 222 Midterm, Form: A Pysis 222 Mitrm, Form: A Nm: Dt: Hr r som usul onstnts. 1 4πɛ 0 = 9 10 9 Nm 2 /C 2 µ0 4π = 1 10 7 tsl s/c = 1.6 10 19 C Qustions 1 5: A ipol onsistin o two r point-lik prtils wit q = 1 µc, sprt y istn

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 0, No. 0, pp. 000 000 2009 Soity or Inustril n Appli Mtmtis THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS HAL KIERSTEAD, BOJAN MOHAR, SIMON ŠPACAPAN, DAQING

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

TCI SERIES, 3 CELL THE COOLING TOWER CO., L.C. TCI 3 CELL SERIES GA

TCI SERIES, 3 CELL THE COOLING TOWER CO., L.C. TCI 3 CELL SERIES GA of T SIN IS T PROPRTY O T OOLIN TOWR OMPNY, L, N IS LON OR MUTUL SSISTN. IT IS NOT TO ORWR NOR RPRINT IN NY ORM WITOUT WRITTN PRMISSION. L W OPTIONL SS PLTORM " x " STNR PLTORM PR LL OPTIONL VIRTION SWIT

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then: Assinmnts: DFA Minimiztion CMPU 24 Lnu Tory n Computtion Fll 28 Assinmnt 3 out toy. Prviously: Computtionl mols or t rulr lnus: DFAs, NFAs, rulr xprssions. Toy: How o w in t miniml DFA or lnu? Tis is t

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Continuous Flattening of Convex Polyhedra

Continuous Flattening of Convex Polyhedra Continuous Flttnin o Conv Polr Jin-ii Ito 1, Ci Nr 2, n Costin Vîlu 3 1 Fult o Eution, Kummoto Univrsit, Kummoto, 860-8555, Jpn. j-ito@kummoto-u..jp 2 Lirl Arts Eution Cntr, Aso Cmpus, Toki Univrsit, Aso,

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014 Grp Aloritms n Comintoril Optimiztion Dr. R. Cnrskrn Prsntrs: Bnjmin Frrll n K. Alx Mills My 7t, 0 Mtroi Intrstion In ts ltur nots, w mk us o som unonvntionl nottion or st union n irn to kp tins lnr. In

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P rol. Using t dfinitions of nd nd t first lw of trodynis nd t driv t gnrl rltion: wr nd r t sifi t itis t onstnt rssur nd volu rstivly nd nd r t intrnl nrgy nd volu of ol. first lw rlts d dq d t onstnt

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

STRUCTURAL GENERAL NOTES

STRUCTURAL GENERAL NOTES UILIN OS: SIN LOS: RUTURL NRL NOTS NRL NOTS: US ROUP: - SSMLY USS INTN OR PRTIIPTION IN OR VIWIN OUTOOR TIVITIS PR MIIN UILIN O STION. SSONL. T UNTION O TIS ILITY IS NOT OR QUIPP OR OUPNY URIN WINTR/ TIN

More information

Designing A Uniformly Loaded Arch Or Cable

Designing A Uniformly Loaded Arch Or Cable Dsinin A Unirmy Ar Or C T pr wit tis ssn, i n t Nxt uttn r r t t tp ny p. Wn yu r n wit tis ssn, i n t Cntnts uttn r r t t tp ny p t rturn t t ist ssns. Tis is t Mx Eyt Bri in Stuttrt, Grmny, sin y Si

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

CS150 Sp 98 R. Newton & K. Pister 1

CS150 Sp 98 R. Newton & K. Pister 1 Outin Cok Synronous Finit- Mins Lst tim: Introution to numr systms: sin/mnitu, ons ompmnt, twos ompmnt Rviw o ts, ip ops, ountrs Tis tur: Rviw Ts & Trnsition Dirms Impmnttion Usin D Fip-Fops Min Equivn

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

OPERATING HEAD CODE SIDE ROTARY COUNTRY USE CODE US, CANADA, MEXICO ALL OTHER APPROVED COUNTRIES

OPERATING HEAD CODE SIDE ROTARY COUNTRY USE CODE US, CANADA, MEXICO ALL OTHER APPROVED COUNTRIES O-- ONWLL PRT NUMR - RV OUMNT N K 0 S SP M WL SPILS O TP O N, MTL IN NLOSUR NTNN TP O LLOW OR US 0 0 0 0 0 0 0 0 0 WIRLSS STNR SINL RN T RT OPRTIN RQUN SOTWR VRSION O VRSION R MOUL TRNSMIT POWR MX RIV

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

MCS100. One can begin to reason only when a clear picture has been formed in the imagination.

MCS100. One can begin to reason only when a clear picture has been formed in the imagination. 642 ptr 10 Grps n Trs 46. Imin tt t irmsown low is mp wit ountris ll. Is it possil to olor t mp wit only tr olors so tt no two jnt ountris v t sm olor? To nswr tis qustion, rw n nlyz rp in wi ountry is

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Revisiting Decomposition Analysis of Geometric Constraint Graphs

Revisiting Decomposition Analysis of Geometric Constraint Graphs Rvisitin Domposition Anlysis o Gomtri Constrint Grps R. Jon-Arinyo A. Soto-Rir S. Vil-Mrt J. Vilpln-Pstó Univrsitt Politèni Ctluny Dprtmnt Llnuts i Sistms Inormàtis Av. Dionl 647, 8, E 08028 Brlon [rort,

More information

F102 1/4 AMP +240 VDC SEE FIGURE 5-14 FILAMENT AND OVEN CKTS BLU J811 BREAK-IN TB103 TO S103 TRANSMITTER ASSOCIATED CAL OFF FUNCTION NOTE 2 STANDBY

F102 1/4 AMP +240 VDC SEE FIGURE 5-14 FILAMENT AND OVEN CKTS BLU J811 BREAK-IN TB103 TO S103 TRANSMITTER ASSOCIATED CAL OFF FUNCTION NOTE 2 STANDBY OWR OR F0 M NOT S0 RT OF FUNTI FL0 T0 OWR SULY SUSSIS T0 T0 WIR FOR 0 V OWR SULY SUSSIS T0 WIR FOR V 0 0 RT V0 RT V0. V RT V0 RT V0 NOT. V. V NOT +0 V 0 +0 V. V 0 FUNTI NOT L +0 V S FIUR - FILMNT N OVN

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

SOCKET WELD OR THREADED BODY TYPE (3051SFP FLOWMETER SHOWN THROUGHOUT / 3051CFP, 2051CFP AVAILABLE)

SOCKET WELD OR THREADED BODY TYPE (3051SFP FLOWMETER SHOWN THROUGHOUT / 3051CFP, 2051CFP AVAILABLE) 9 10 12 13 14 15 16 RVISION T RVISION O NO. PP' T SI1053953 3/30/17 03/31/17 SRIPTION NOT 10 N RIITION ON ST 10. T 1 - OY INSIONS 2X 1/4" NPT VNT VVS INSIONS IN SIZ 3.4 [86.0] 3.8 [97.0] 4.5 [4.0] 4.7

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

G-001 CHATHAM HARBOR AUNT LYDIA'S COVE CHATHAM ATLANTIC OCEAN INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1" = 500' CANADA

G-001 CHATHAM HARBOR AUNT LYDIA'S COVE CHATHAM ATLANTIC OCEAN INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1 = 500' CANADA TR ISL ROR UST 8 O. R-2,4-3 R-4 IX O VITIO IS STT PL ORPI OORITS POSITIO 27698 4-39'-" 88 69-6'-4."W 278248 4-4'-" 8968 69-6'-4"W 27973 4-4'-2" 88 69-6'-"W W MPSIR OOR UUST PORTL MI OR 27 8-OOT OR L -

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

24.1 Sex-Linked Inheritance. Chapter 24 Chromosomal Basis of Inheritance Sex-Linked Inheritance Sex-Linked Inheritance

24.1 Sex-Linked Inheritance. Chapter 24 Chromosomal Basis of Inheritance Sex-Linked Inheritance Sex-Linked Inheritance ptr 24 romosoml sis o Inritn 24. Sx-Link Inritn Normlly, ot mls n mls v 23 pirs o romosoms 22 pirs r ll utosoms On pir is t sx romosoms Mls r XY mls r XX opyrit T Mrw-Hill ompnis, In. Prmission rquir or

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Pythagorean Theorem and Trigonometry

Pythagorean Theorem and Trigonometry Ptgoren Teorem nd Trigonometr Te Ptgoren Teorem is nient, well-known, nd importnt. It s lrge numer of different proofs, inluding one disovered merin President Jmes. Grfield. Te we site ttp://www.ut-te-knot.org/ptgors/inde.stml

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

Two Approaches to Analyzing the Permutations of the 15 Puzzle

Two Approaches to Analyzing the Permutations of the 15 Puzzle Two Approhs to Anlyzin th Prmuttions o th 15 Puzzl Tom How My 2017 Astrt Th prmuttions o th 15 puzzl hv n point o ous sin th 1880 s whn Sm Lloy sin spin-o o th puzzl tht ws impossil to solv. In this ppr,

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information