(4, 2)-choosability of planar graphs with forbidden structures

Size: px
Start display at page:

Download "(4, 2)-choosability of planar graphs with forbidden structures"

Transcription

1 (4, )-ooslty o plnr rps wt orn struturs Znr Brkkyzy 1 Crstopr Cox Ml Dryko 1 Krstn Honson 1 Mot Kumt 1 Brnr Lký 1, Ky Mssrsmt 1 Kvn Moss 1 Ktln Nowk 1 Kvn F. Plmowsk 1 Drrk Stol 1,4 Dmr 11, 015 Astrt All plnr rps r 4-olorl n 5-oosl, wl som plnr rps r not 4- oosl. Dtrmnn w proprts urnt tt plnr rp n olor usn lsts o sz our s rv snnt ttnton. In trms o onstrnn t strutur o t rp, or ny l {, 4, 5, 6, 7}, plnr rp s 4-oosl t s l-yl-r. In trms o onstrnn t lst ssnmnt, on rnmnt o k-ooslty s ooslty wt sprton. A rp s (k, s)-oosl t rp s olorl rom lsts o sz k wr jnt vrts v t most s ommon olors n tr lsts. Evry plnr rp s (4, 1)-oosl, ut tr xst plnr rps tt r not (4, )-oosl. It s n opn quston wtr plnr rps r lwys (4, )-oosl. A or l-yl s n l-yl wt on tonl. W monstrt or l {5, 6, 7} tt plnr rp s (4, )-oosl t os not ontn or l-yls. 1 Introuton A propr olorn s n ssnmnt o olors to t vrts o rp G su tt jnt vrts r ssn stnt olors. A (k, s)-lst ssnmnt L s unton tt ssns lst L(v) o k olors to vrtx v so tt L(v) L(u) s wnvr uv E(G). A propr olorn φ o G su tt φ(v) L(v) or ll v V (G) s ll n L-olorn. W sy tt rp G s (k, s)-oosl, or ny (k, s)-lst ssnmnt L, tr xsts n L-olorn o G. W ll ts vrton o rp olorn ooslty wt sprton. Not tt wn rp s (k, k)-oosl, w smply sy t s k-oosl. Osrv tt G s (k, t)-oosl, tn G s (k, s)-oosl or ll s t. A notl rsult rom Tomssn [11] stts tt vry plnr rp s 5-oosl, so t ollows tt ll plnr rps r (5, s)-oosl or ll s 5. Forn rtn struturs wtn plnr rp s ommon rstrton us n rp olorn. Torm 1. summrzs t urrnt knowl on (, 1)-ooslty o plnr rps. Škrkovsk [1] onjtur tt ll plnr rps r (, 1)-oosl; ts quston s stll opn n s prsnt low s Conjtur Dprtmnt o Mtmts, Iow Stt Unvrsty, Ams, IA, U.S.A. {znr,mryko,kons,mkumt,lky,kymss,kmoss,knowk,kplmow,stol}@stt.u Dprtmnt o Mtmtl Sns, Crn Mllon Unvrsty, Pttsur, PA, U.S.A. oox@nrw.mu.u Support y NSF rnt DMS Dprtmnt o Computr Sn, Iow Stt Unvrsty, Ams, IA, U.S.A. 1

2 Conjtur 1.1 (Škrkovsk [1]). I G s plnr rp, tn G s (, 1)-oosl. Torm 1.. A plnr rp G s (, 1)-oosl G vos ny o t ollown struturs: - -yls (Krtovíl, Tuz, Vot [9]). - 4-yls (Co, Lký, Stol [4]). - 5-yls n 6-yls (Co, Lký, Stol [4]). In ts ppr, w ous on 4-ooslty wt sprton. Krtovíl, Tuz, n Vot [9] prov tt ll plnr rps r (4, 1)-oosl, wl Vot [1] monstrt tt tr xst plnr rps tt r not (4, )-oosl. It s not known ll plnr rps r (4, )-oosl. Conjtur 1. (Krtovíl, t l. [9]). I G s plnr rp, tn G s (4, )-oosl. Torm 1.4 (Krtovíl, t l. [9]). I G s plnr rp, tn G s (4, 1)-oosl. Torm 1.4 ws strntn y Krst n Lký [8], wr t s sown tt w n llow n npnnt st o vrts to v lsts o sz rtr tn 4. Torm 1.5 (Krst n Lký [8]). Lt G plnr rp n I V (G) n npnnt st. I L ssns lsts o olors to V (G) su tt L(v) or vry v I, n L(v) = 4 or vry v V (G) \ I, n L(u) L(v) 1 or ll uv E(G), tn G s n L-olorn. In ton to t work summrz ov, tr r svrl rsults rrn 4-ooslty. A rp s k-nrt o ts surps s vrtx o r t most k. Eulr s ormul mpls plnr rp wt no -yls s -nrt n n 4-oosl. Ts n otr smlr rsults r lst low n Torm 1.6. For t lst rsult n Torm 1.6, not tt or l-yl s n l-yl wt n tonl onntn two o ts non-onsutv vrts. Torm 1.6. A plnr rp G s 4-oosl G vos ny o t ollown struturs: - -yls (olklor). - 4-yls (Lm, Xu, Lu, [10]). - 5-yls (Wn n L [14]). - 6-yls (Fjvz, Juvn, Mor, n Škrkovsk [7]). - 7-yls (Frz [6]). - Cor 4-yls n or 5-yls (Boron n Ivnov []). Our mn rsults n ts ppr r lst low n Torm 1.7. Not tt ouly-or l-yl s or l-yl wt n tonl. Torm 1.7. A plnr rp G s (4, )-oosl G vos ny o t ollown struturs: - Cor 5-yls. - Cor 6-yls. - Cor 7-yls. - Douly-or 6-yls n ouly-or 7-yls. W prov s o Torm 1.7 sprtly. In Ston 4, w or or 5-yls (s Torm 4.1). In Ston 5, w or or 6-yls (s Torm 5.1); w us prts o ts proo to lso prov t s wn orn ouly-or 6-yls n ouly-or 7-yls (s Corollry 5.). In Ston 6, w or or 7-yls (s Torm 6.). Tr r mny turs ommon to ll o ts proos, w w tl n Stons n.

3 1.1 Prlmnrs n Notton Rr to [15] or stnr rp tory trmnoloy n notton. Lt G rp wt vrtx st V (G) n n st E(G); lt n(g) = V (G). W us K n, C n, n P n to not t omplt rp, yl rp, n pt rp, rsptvly, on n vrts. T opn noroo o vrtx, not N(v), s t st o vrts jnt to v n G; t los noroo, not N[v], s t st N(v) {v}. T r o vrtx v, not G (v), s t numr o vrts jnt to v n G; w wrt (v) wn t rp G s lr rom t ontxt. I t r o vrtx v s k, w ll v k-vrtx; t r o v s t lst k, w ll v k + -vrtx. T lnt o, not l(), s t lnt o t ounry wlk. I t lnt o s k, w ll k-; t lnt o s t lst k, w ll k + -. Ovrvw o Mto All o our mn rsults us t srn mto. W rr t rr to t survys y Boron [] n Crnston n Wst [5] or n ntrouton to srn, w s mto ommonly us to otn rsults on plnr rps. For rl numrs v,,, w n ntl r vlus µ(v) = v (v) or vry vrtx v n ν() = l() or vry. I v > 0, > 0 n v + = > 0, tn Eulr s ormul mpls tt v µ(v) + ν() =, n t totl r on t ntr rp s ntv. W tn n srn ruls tt sr mto or movn r vlu mon vrts n s wl onsrvn t totl r vlu. W monstrt tt G s mnml ountrxmpl to our torm, tn vry vrtx n ns wt nonntv r tr t srn pross, w s ontrton. Intutvly, ts pross works wll wn orn strutur (su s sort or yl) wt low r. In Ston, w onrtly n rul onurtons. Loosly, rul onurton s strutur C n rp G wt (4, )-lst ssnmnt L wr ny L-olorn o G C xtns to n L-olorn o G. I w r lookn or mnml xmpl o rp tt s not (4, )-oosl, tn non o ts rul onurtons ppr n t rp. W n lr lst o onurtons, (C1) (C1) (s Fur ), n prov ty r rul usn vrous nr onstrutons. T onurtons (C1) (C10) r us wn orn or 6- or 7-yls, wl t onurtons (C9) (C1) r us wn orn or 5-yls. T us o rnt onurtons s u to rns n our srn rumnts. In Ston 4, w or or 5-yls n vry - s jnt to t most on otr -. Morovr, -s r not jnt to 4-s. Tus, our ntl r unton n ts s urnts tt t only ojts wt ntv ntl r r 4- n 5-vrts. In Stons 5 n 6, w us rnt srn strty. Our ntl r vlus urnt tt t only ojts o ntv r r -s. Tus, our srn ruls r sn to sn r rom 5 + -s n 4 + -vrts to -s. Howvr, s w or or 6-yls or or 7-yls, tr my mny -s vry los to otr. I G s pln rp n G s ts ul, tn lt F t st o -s o G n lt G t nu surp o G wt vrtx st F. A lustr s mxml st o -s tt r onnt n G,.., onnt omponnt o G. Not tt two -s srn n r jnt n G, n two -s srn only vrtx r not jnt n G. S Fur 1 or lst o t lustrs wt mxmum yl lnt sx n vry ntrnl vrtx o r t lst our. In ts urs, t outr yl s not nssrly l yl, ny r ll wt ry s not, n pr o squr vrts rprsnt snl vrtx. Atonlly, ol s sr sprtn

4 v v 1 v u 4 u (K) (K4) (K5) (K5) u 1 u u u 4 v u u v u 5 u 4 1 u 1 u 1 u u 1 u 6 1 u 4 u 5 u 4 u (K5) (K6) (K6) (K6) u u u 5 v w 4 5 v u u 1 u 4 u 4 1 u 1 u u z 1 u (K6) (K6) (K6) (K6) w (K6) (K6) (K6j) (K6k) (K6l) (K6m) (K6n) (K6o) (K6p) (K6q) (K6r) Ts r ll o t possl lustrs wt lonst yl t most sx n mnmum r our. Bol s monstrt sprtn -yls. Gry rons snt yls tt r not s. W roup our lustrs y t lnt o t lonst yl n t lustr. Tus onurton (Kn) s mxmum yl lnt o n. Fur 1: Clustrs wt mxmum yl lnt t most sx. 4

5 -yls, w r yls n pln rp wos xtror n ntror rons ot ontn vrts not on t yl. Ts urs r s on t lst o lustrs us y Frz [6] n t proo tt 7-yl-r plnr rps r 4-oosl. For k {1, }, tr s xtly on wy to rrn k -s n lustr. A trnl s lustr ontnn xtly on -; s (K). A mon s lustr ontnn xtly two -s; s (K4). For k, tr r multpl wys to rrn k - n lustr. A k-n s lustr o k -s ll nnt to ommon vrtx o r t lst k + 1; s (K5) n (K6). A k-wl s lustr o k -s ll nnt to ommon vrtx o r xtly k; s (K5) n (K6). Not tt t vrtx nnt to ll s o -wl s r. A k-strp s lustr o k -s 1,..., k wr t ounrs o t -s r sjont xpt tt n +1 sr n or {1,..., k 1} n n + sr vrtx or {1,..., k }; s (K5) n (K6). I 1,..., k r t -s n lustr, tn w wll prov tt t totl r on 1,..., k tr srn s nonntv. Tus, som o t -s my v ntv r, ut ts s ln y otr -s n t lustr vn postv r. Hn, our proos n wt lst o ll possl lustr typs n vryn tt s nonntv totl r. Wl tr r totl lustrs tt vo or 7-yls, w o not v tt mny ss to k. T lustrs (K5) n (K6) (K6r) v tr ol s, monstrtn sprtn - yl. W vo kn ts ss y usn strntn olorn sttmnt (s Torm 6.) tt llows our mnml ountrxmpl to not ontn ny sprtn -yls. Rul Conurtons In ts ston, w sr struturs tt nnot ppr n mnml ountrxmpl to Torm 1.7. Lt G rp, : V (G) N, n s nonntv ntr. A rp s -oosl G s L-oosl or vry lst ssnmnt L wr L(v) (v). An (, s)-lst-ssnmnt s lst ssnmnt L on G su tt L(v) (v) or ll v V (G), L(v) L(u) s or ll s uv E(G), n L(u) L(v) = uv E(G) n (u) = (v) = 1. A rp G s (, s)-oosl G s L-olorl or vry (, s)-lst-ssnmnt L. Dnton.1. A onurton s trpl (C, X, x) wr C s pln rp, X V (C), n x : V (C) {0, 1,, } s n xtrnl r unton. A rp G ontns t onurton (C, X, x) C pprs s n nu surp C o G, n or vrtx v V (C), tr r t most x(v) s n G rom t opy o v to vrts not n C. For trpl (C, X, x), n t lst-sz unton : V (C) N s { 4 x(v) v X (v) = 1 v / X. A onurton (C, X, x) s rul C s (, )-oosl. Not tt rp G wt (4, )-lst ssnmnt L ontns opy o rul onurton (C, X, x) n G X s L-oosl, tn G s L-oosl. Frst, w not tt (C, X, x) s rul onurton, tn ny wy to n twn stnt vrts o X n lowr tr xtrnl r y on rsults n notr rul onurton. 5

6 (C1) (C) (C) (C4) (C5) (C6) (C7) (C8) (C9) (C10) (C11) (C1) (C1) (C14) (C15) (C16) (C17) (C18) (C19) (C0) (C1) In ts onurtons, s wt only on npont r xtrnl s. Vrts n X r ll wt wt. Fur : Rul onurtons. 6

7 (C1) (C) (C4) (C5) (C10) (C11) (C1) (C1) (C14) (C15) (C16) Fur : Alon-Trs Ornttons. Lmm.. Lt (C, X, x) rul onurton, n suppos tt x, y X r nonjnt vrts wt { x(x), x(y) 1. Lt (C, X, x ) t onurton wr C = C + xy, X = X, n x x(v) v / {x, y} (v) = x(v) 1 v {x, y},. Tn t onurton (C, X, x ) s rul. Proo. Lt t lst-sz unton or C n not tt C s (, )-oosl. Smlrly lt t lst-sz unton on t onurton (C, X, x ), n lt L n (, )-lst ssnmnt on V (C ). Not tt (x) = (x) + 1 n (y) = (y) + 1. Lt S = L (x) L (y). I S <, tn t most on lmnt rom o L (x) n L (y) to S untl S =. Now lt S = {, } su tt L (x) n L (y), n n lst ssnmnt L on C y rmovn rom L (x) n rmovn rom L (y). Osrv tt L s n (, )-lst ssnmnt n n tr xsts n L-olorn o C. Sn L(x) L(y) =, ts propr L-olorn o C s lso n L -olorn o C. W wll us Lmm. mpltly y ssumn tt C[X] pprs s n nu surp n our mnml ountrxmpl G..1 Rulty Proos In ts ston, w prov tt onurtons (C1) (C1) sown n Fur r rul..1.1 Alon-Trs Torm W wll us t lrt Alon-Trs Torm [1] to qukly prov tt mny o our onurtons r rul. In t, onurtons tt r monstrt n ts wy r rul or 4-ooslty, not just (4, )-ooslty. A rp D s n orntton o rp G G s t unrlyn unrt rp o D n D s no -yls; lt + D (v) n D (v) t out- n n-r o vrtx v n D. An Eulrn surp o rp D s sust S E(D) su tt, or vry vrtx v V (D), t numr o outon s o v n S s qul to t numr o nomn s o v n S. Lt EE(D) t numr o Eulrn surps o vn sz n EO(D) t numr o Eulrn surps o o sz. 7

8 Torm. (Alon-Trs Torm [1]). Lt G rp n : V (G) N unton. Suppos tt tr xsts n orntton D o G su tt + D (v) (v) 1 or vry vrtx v V (G) n EE(D) EO(D). Tn G s -oosl. W ll n orntton n Alon-Trs orntton t stss t ypotss o Torm.. For onurton (C, X, x) n t ssot lst-sz unton, t sus to monstrt n Alon-Trs orntton o C wt rspt to. S Fur or lst o Alon-Trs ornttons o svrl onurtons. Corollry.4. T ollown onurtons v Alon-Trs ornttons n n r rul: (C1), (C), (C4), (C5), (C10), (C11), (C1), (C1), (C14), (C15), (C16)..1. Drt Proos In t proos low, w onsr onurton (C, X, x) wt lst-sz unton n ssum tt n (, )-lst-ssnmnt L s vn or C. W wll monstrt tt C s L-olorl. Rr to Fur or rwns o t onurtons. Frst rll t ollown t out lst-olorn o yls. Ft.5. I L s -lst ssnmnt o n o yl, tn tr os not xst n L-olorn o t yl n only ll o t lsts r ntl. Lmm.6. (C) s rul onurton. Proo. Lt v 1,..., v 4 t vrts o 4-yl wt or v v 4 n lt v n v 4 v xtrnl r 1; t olors (v 1 ) n (v ) r x. E o v n v 4 v t lst on olor n tr lsts otr tn (v 1 ) n (v ). Sn L(v ) or {, 4}, tr on o ts vrts s t lst two olors vll, or L(v ) L(v 4 ) = {(v 1 ), (v )}. In tr s, w n xtn t olorn. For t onurtons (C6), (C7), n (C8), ll t vrts s n Fur 4: ll t ntr vrtx v 0 n t outr vrts v 1,..., v 5, strtn wt t vrtx rtly ov v 0, movn lokws. v 1 v 1 v 1 v 5 v v 5 v v 5 v v 0 v 0 v 0 v 4 v v 4 v v 4 v (C6) (C7) (C8) Fur 4: Vrtx lls or onurtons (C6), (C7), n (C8). Lmm.7. (C6) s rul onurton. 8

9 Proo. T olors (v 1 ) n (v 4 ) r trmn. I (v 1 ) n (v 4 ) r ot n L(v 0 ), tn slt (v 5 ) rom L(v 5 )\(L(v 0 ) {(v 1 ), (v 4 )}); otrws, slt (v 5 ) L(v 5 )\{(v 1 ), (v 4 )} rtrrly. Dn L (v 0 ) = L(v 0 ) \ {(v 1 ), (v 4 ), (v 5 )}, L (v ) = L(v ) \ {(v 1 )}, n L (v ) = L(v ) \ {(v 4 )} n not tt L (v ) or ll {0,, }. I L (v 0 ) = L (v ) =, tn L (v 0 ) L (v ), so t -yl v 0 v v s n L -olorn y Ft.5. Lmm.8. (C7) s rul onurton. Proo. I tr xsts olor L(v 1 ) L(v 4 ), strt y ssnn (v 1 ) = (v 4 ) = ; tn rly olor t rmnn vrts n t ollown orr: v, v, v 0, v 5. Otrws, L(v 4 ) L(v 1 ) =. Suppos tt L(v 1 ) L(v 5 ) =. Slt olor (v 4 ) L(v 4 ). Consrn v 4 s n xtrnl vrtx n norn t v 1 v 5, t 4-yl v 0 v 1 v v orms opy o (C4), w s rul y Corollry.4. Tus, tr xsts n L-olorn o v 0,..., v 4 ; ts olorn xtns to v 5 sn L(v 1 ) L(v 5 ) =. I L(v 4 ) L(v 5 ) =, tn tr xsts n L-olorn y symmtr rumnt. Otrws, tr xst olors L(v 1 ) \ L(v 5 ) n L(v 4 ) \ L(v 5 ); ssn (v 1 ) = n (v 4 ) =. Slt (v ) L(v ) \ {(v 1 )}. Dn L (v 0 ) = L(v 0 ) \ {(v 1 ), (v ), (v 4 )} n L (v ) = L(v ) \ {(v ), (v 4 )}. Not tt L (v 0 ) = L (v ) = 1, tn L(v 0 ) L(v ) = {(v ), (v 4 )} n n L (v 0 ) L (v ) =. Tus, t olorn xtns y rly olorn v, v 0, n v 5. Lmm.9. (C8) s rul onurton. Proo. I L(v 1 ) L(v ) =, tn rly olor v n v ; wt rmns s (C4) n t olorn xtns. A smlr rumnt works L(v ) L(v ) =. I L(v 1 ) L(v ) =, tn L(v 1 ) L(v ) = L(v ) L(v ) = 1. Slt (v 1 ) L(v 1 ) \ L(v ), (v ) L(v ) \ L(v ). Dn L (v 0 ) = L(v 0 ) \ {(v 1 ), (v )}, L (v 4 ) = L(v 4 ) \ {(v )}, n L (v 5 ) = L(v 5 ) \ {(v )}. Osrv tt w n L -olor t -yl v 0 v 4 v 5 y Ft.5 n tn slt (v ) L(v ) \ {(v 0 )}. I tr xsts olor L(v 1 ) L(v ), strt y ssnn (v 1 ) = (v ) = n tn ssn (v ) L(v )\{}. Dn L (v 0 ) = L(v 0 )\{, (v )}, L (v 4 ) = L(v 4 )\{}, n L (v 5 ) = L(v 5 )\{}. Osrv tt t -yl v 0 v 4 v 5 s n L -olorn y Ft.5. Lmm.10. (C9) s rul onurton. Proo. Consr t vrtx v o rtrry xtrnl r n lt (v) t olor ssn to v. Lt u 1 n u t two nors o v n t onurton. I w rmov (v) rom t lsts on u 1 n u, osrv tt t lst two olors rmn n vry lst or vry vrtx o t 5-yl. I tr s no L-olorn o t onurton, tn Ft.5 ssrts tt ll lsts v sz two n ontn t sm olors; owvr, ts mpls tt L(u 1 ) = L(u ) n L(u 1 ) L(u ) =, ontrton..1. Tmplt Conurtons T onurtons (C17) (C1) r spl ss o nrl onstrutons ll tmplt onstrutons. Lt (C, X, x) onurton wt vrts u, v X. A uv-pt P s ll spl uv-pt ll ntrnl vrts o P v r two n C n xtrnl r two. A uv-pt P s ll n xtr-spl uv-pt ll ntrnl vrts o P v xtrnl r two n r two n C, xpt or onsutv pr xy wr x(x) = x(y) = 1, (x) = (y) =, n tr s vrtx 9

10 z / X su tt z s ommon nor to x n y, n z s not jnt to ny otr vrts n C. Usn ts spl n xtr-spl pts, w n sr svrl onurtons y t ollown tmplts (s Fur 5), onsstn o (B1) trnl uvw, wr x(u) = x(w) =, x(v) = 0, n xtr-spl uv-pt P 1, n spl vw-pt P, n (B) trnl vwr, wr x(r) =, x(w) = 1, x(v) = 0, vrtx u jnt to v wr x(u) =, n xtr-spl uv-pt P 1, n spl vw-pt P. z P 1 x y u v (B1) w P P 1 x u z r y v (B) Dott lns nt spl pts or xtr-spl pts. Vrts n X r ll wt wt. Fur 5: Tmplts or rul onurtons. W mk som s osrvtons out spl n xtr-spl pts tt wll us to prov tt ts tmplts orrspon to rul onurtons. Lt P spl uv-pt or n xtr-spl uv-pt. For vry olor L(u), lt P u () t st ontnn olor L(v) su tt ssnn (u) = n (v) = os not xtn to n L-olorn o P. Sn w n rly olor P strtn t u untl rn v, tr s t most on olor n P u (). Furtr, u P () n only ts ry olorn pross s xtly on o or vrtx n P. Tus, P u () = {} tn lso v P () = {}. Sn L s n (, )-lst ssnmnt, jnt vrts v t most two olors n ommon. Tus, tr r t most two olors 1, L(u) su tt P u ( ). Morovr, osrv tt tr r two stnt olors 1, L(u) su tt P u ( ), tn ot 1 n r n vry lst lon P n n { 1, } L(v). I P s n xtr-spl uv-pt wt -yl xyz wr xy s n t pt P, tn tr olor s ssn to z (s x(z) = ) tr on o x or y s tr olors vll or L(x) L(y) 1. Tror, P s n xtr-spl uv-pt, tn tr s t most on olor L(u) su tt P u (). Lmm.11. All onurtons mtn t tmplt (B1) r rul. Proo. Lt (C, X, x) onurton mtn t tmplt (B1) n lt L n (, )-lst ssnmnt. Lt L(u) = { 1, }. Sn P 1 s n xtr-spl pt, tr s t lst on {1, } su tt u P 1 ( ) =. Assn (u) =, slt (w) L(w)\{ } n (v) L(v)\ ( {(u), (w)} w P 1 ((w)) ) ; t olorn xtns to P 1 n P. w P 10

11 Corollry.1. T onurtons (C17), (C18), n (C19) mt t tmplt (B1), n n ty r rul. Lmm.1. All onurtons mtn t tmplt (B) r rul. Proo. Lt (C, X, x) onurton mtn t tmplt (B) n lt L n (, )-lst ssnmnt. Lt (r) t unqu olor n t lst L(r). Lt L(u) = { 1, }. Sn P 1 s n xtr-spl pt, tr s t lst on {1, } su tt P u 1 ( ) =. Assn (u) =. I (r) / L(v), tn slt (w) L(w), n L(v) L(v) \ ( {(u), (w)} P w ((w)) ) ; t olorn xtns to P 1 n P. I (r) L(v), tn slt (w) L(w) \ L(v); osrv (w) (r). Tr xsts olor (v) L(v) \ ( {(r), (u)} P w ((w)) ) ; t olorn xtns to P 1 n P. Corollry.14. Usn Lmm., t onurtons (C0) n (C1) mt t tmplt (B), n n ty r rul. 4 No Cor 5-Cyl In ts ston w sow t s o orn or 5-yls rom Torm 1.7. Torm 4.1. I G s pln rp not ontnn or 5-yl, tn G s (4, )-oosl. Proo. Lt G ountrxmpl mnmzn n(g) mon ll pln rps von or 5- yls wt (4, )-lst ssnmnt L su tt G s not L-oosl. Osrv tt n(g) 4; n t, δ(g) 4. Sn G s mnml ountrxmpl, G os not ontn ny o t rul onurtons (C9) (C1). I (C, X, x) s rul onurton, tn y Lmm. C os not ppr s surp o G wr G (x) C (x) + x(x) or ll x V (C). Furtr, t onurtons (C1) (C1) r lr nou tt w must onsr onurtons tt r orm y ntyn rtn prs o vrts n ts onurtons. In Appnx A, w onrtly k ll vrtx prs tt vo rtn or 5-yl n n tt ll rsultn onurtons r rul. For v V (G) n F (G) n ntl rs µ(v) = (v) 6 n ν() = l() 6. By Eulr s Formul, t sum o ntl rs s 1. Atr rs r ntlly ssn, t only lmnts wt ntv r r 4-vrts n 5-vrts. Sn or 5-yls r orn, tr s no -n n G n vry 4- s jnt to only 4 + -s. T possl rrnmnts o -, 4 + -, or 5 + -s nnt to 4- n 5-vrts r sown n Fur 6. Squntlly pply t ollown srn ruls. Not tt, or vrtx v n, w n µ (v) n ν () to t r on v n, rsptvly, tr pplyn rul (R). (R1) Lt v 4-vrtx n nnt to v. I s jnt to - tt s lso nnt to v, tn sns r 1 to v; otrws, sns r 1 to v. (R) Lt v 5-vrtx. I s nnt to v, tn sns r 1 to v. A s ny ν () < 0; otrws, s non-ny. (R) I v s 5-vrtx nnt to ny 5-, tn v sns r 1 to. 11

12 v v v v () () () () v v v v v () () () () () Fur 6: Possl yl rrnmnts o -, 4 + -, n 5 + -s nnt to 4- n 5-vrts A vrtx v s ny vrtx µ (v) < 0; otrws, v s non-ny. (R4) I s non-ny nnt to ny 5-vrtx v, tn sns r 1 to v. W sow tt µ 4 (v) 0 or vrtx v n ν 4 () 0 or. Sn t totl r ws prsrv urn t srn ruls, ts ontrts t ntv r sum rom t ntl r vlus. W n y onsrn t r struton tr pplyn (R1) n (R). Lt v vrtx. I v s 4-vrtx, tn µ(v) = n v rvs totl r t lst rom ts norn s y (R1). Furtrmor, v s not t y ny ruls tr (R1), so µ 4 (v) 0. I v s 6 + -vrtx, tn µ(v) 0 n v s not t y ny otr ruls, so µ 4 (v) 0. I v s 5-vrtx, tn µ(v) = 1 n v rvs totl r t lst 1 rom ts norn s y (R). Tror, or ny vrtx v, µ (v) 0. Lt. I s -, tn ν() = 0 n s not t y ny rul, so ν 4 () = 0. I s 4-, tn ν() =. In (R1) n (R), t only s tt sn r 1 to snl vrtx r jnt to -. A 4- jnt to - s or 5-yl, w s orn y ssumpton, so sns r t most 1 to vrtx. Sn 4-s r not t y ruls (R) (R4), ν 4 () 0. I s 6 + -, tn s t lst s mu ntl r s t s nnt vrts. I v s 4-vrtx nnt to, tn sns r t most 1 to v y (R1) n os not sn ny r to v y ruls (R) (R4). I v s 5-vrtx nnt to, tn sns r 1 to v y (R1), n possly notr r 1 y (R4), n os not sn r to v y (R1) or (R). Tus sns r t most 1 to nnt vrtx, n ν 4 () 0. I s 5-, tn ν() = 4 n sns r t most 1 to nnt vrtx y (R1) n (R). Osrv tt ν () = 1, tn s nnt to v 4-vrts n s jnt to t lst on -; ts orms (C9), ontrton. Tror, w v t ollown lm out t strutur o ny 5-vrtx. Clm 4.. I s ny 5-, tn ν () = 1 n s jnt to xtly on 5-vrtx. W now onsr t r struton tr pplyn (R). I s ny 5-, tn ν () = 1 n s jnt to xtly on 5-vrtx, so ν () = 0. No s los r n (R), tror ν () 0 or ny. 1

13 Clm 4.. I v s ny 5-vrtx, tn v s nnt to tr -s, two 4 + -s, n xtly on ny 5-; n µ (v) = 1. Proo. Suppos tt v s vrtx su tt µ (v) < 0, n onsr t yl rrnmnt o - n 4 + -s out v. Cs 1: v s nnt to t lst our 4 + -s (Furs 6() n 6()). Sn µ (v) 1 n µ (v) < 0, v s nnt to t lst tr ny 5-s. Hn two o t ny 5-s r jnt, ormn (C1), ontrton. Cs : v s nnt to two non-jnt -s n tr 4 + -s (Fur 6()). Sn µ (v) = 1 n µ (v) < 0, v s nnt to two ny 5-s, 1 n. I ts two s r jnt, tn ty orm (C1), ontrton. Otrws, ty sr - t s nor n ll vrts nnt to 1,, n t otr tn v r 4-vrts, so t vrts nnt to 1 n t orm (C10), ontrton. Cs : v s nnt to two jnt -s n tr 4 + -s (Fur 6()). Sn µ (v) = 1 n µ (v) < 0, v s nnt to two ny 5-s, 1 n. I 1 n r jnt tn ty orm (C1), ontrton. Tus, 1 n r not jnt, ut ty r jnt to - nnt to v. Sn s ny or {1, }, snt r 1 to vry 4-vrtx nnt to. By (R1), vry 4-vrtx nnt to s nnt to - jnt to. Tror, 1 s jnt to - tt os not sr ny vrts wt t t two -s nnt to v, ormn on o (C0) or (C1), ontrton. Cs 4: v s nnt to tr -s n two 4 + -s (Fur 6()). I v s nnt to two ny 5-s 1 n, tn t - t jnt to ot 1 n s nnt to two 4-vrts, n t vrts nnt to 1 n t orm (C10), ontrton. Tror, v s nnt to xtly on ny 5-, s lm. By (R4), vry ny 5-vrtx rvs r 1 rom ts unqu nnt non-ny 5+ -, so µ 4 (v) 0 or vry vrtx v. E ny 5- s nonntv r tr (R), so ν 4 () < 0 or som 5-, tn sns r y (R4), n tus s non-ny. 1 t 1 t v 1 t v 5 v 4 v v +1 v +1 u t v +1 u t v +1 v w () A 5- wt ν 4() < 0. () Clm 4.5, Cs 1. () Clm 4.5, Cs. Fur 7: Spl ss or 5- wt ν 4 () < 0. 1

14 Consr t Fur 7(), wr s 5- wt ν 4 () < 0, s nnt to vrts v 1,..., v 5, v 1 s ny 5-vrtx, n 1 s t ny 5- nnt to v 1. Lt t 1 n t t jnt pr o -s nnt to v 1 wt t 1 jnt to 1 n t jnt to ; lt t t otr - nnt to v 1. W mk two s lms out ts rrnmnt. Clm 4.4. T vrtx v jnt to v 1 n nnt to t s 5 + -vrtx. Proo. I v s 4-vrtx, tn t vrts nnt to 1 n t orm (C10), ontrton. Clm 4.5. I v n v +1 r onsutv vrts on t orr o, tn t most on o v n v +1 s ny. Proo. Suppos tt two onsutv vrts v n v +1 r ny 5-vrts. Lt n +1 t ny 5-s nnt to v n v +1, rsptvly. Sn ot v n v +1 v tr nnt -s, s jnt to - t ross t v v +1. Lt u t tr vrtx nnt to t n onsr two ss. Cs 1: t s not n mon (Fur 7()). Sn s ny, t vrtx jnt to u n nnt to (wt v ) s 4-vrtx n s nnt to - t su tt t s jnt to. T vrts nnt to, +1, t, n t orm on o (C15) or (C19), ontrton. Cs : t s n mon (Fur 7()). Lt w t ourt vrtx n t mon n ssum, wtout loss o nrlty, tt v s jnt to w. Lt t vrtx nnt to +1 tt s not jnt to u or v +1 lon t ounry o +1 ; sn +1 s ny, tr s - t +1 nnt to n jnt to +1. T vrts v n w n tos nnt to +1 n t +1 orm on o (C17) or (C18), ontrton. By Clm 4.5, s nnt to t most two ny vrts, n y Clm 4.4, v s non-ny. I s nnt to xtly on ny 5-vrtx, tn v, v 4, n v 5 r 4-vrts sn µ () = 0, ut tn t vrts nnt to n 1 orm (C14), ontrton. Tror, s nnt to two ny vrts, n sn v s 5 + -vrtx, s nnt to xtly two 4-vrts. E o ts rvs r 1, so ν 4 () = 1. By Clm 4.5, t ny vrts nnt to onsst o v 1 n xtly on o v or v 4. T ny 5-vrtx v otr tn v 1 s lso nnt to tr -s t 4, t 5, n t 6, wr t 4 n t 5 orm mon wt t 4 jnt to. By Clm 4.4, t vrtx jnt to v n nnt to ot n t 6 s non-ny 5 + -vrtx. T only non-ny 5 + -vrtx nnt to s v, n n v s ny 5-vrtx n t 4 s nnt to v 4. I v s 6 + -vrtx, tn ν 4 () 0. Tror, tr s unqu rrnmnt o ny vrts, 4-vrts, n 5-vrtx out 5- wt ν 4 () < 0 (Fur 8). For {1, }, lt t ny 5- nnt to t ny 5-vrtx v. T vrts nnt to, 1,, t, n t 6 orm (C16), so ts rrnmnt os not ppr wtn G; n ν 4 () 0 or ll 5-s. Tror, vry vrtx n s nonntv r tr (R4), ontrtn t ntv ntl r sum. Tus, mnml ountrxmpl os not xst n vry pln rp wt no or 5-yl s (4, )-oosl. 14

15 v 5 v 4 t t 4 t 1 t 5 v 1 v 1 v t t 6 Fur 8: A non-ny 5-vrtx v nnt to non-ny 5- wt ν 4 () < 0. 5 No Cor 6-Cyl In ts ston w sow t s o orn or 6-yls rom Torm 1.7. T s o orn ouly-or 6- n 7-yls ollows rom vry smlr rumnt. W v t ull proo or no or 6-yls n sr t rns or t proo wn w or oulyor 6- n 7-yls. Torm 5.1. I G s pln rp not ontnn or 6-yl, tn G s (4, )-oosl. Proo. Lt G ountrxmpl mnmzn n(g) mon ll pln rps von or 6- yls wt (4, )-lst ssnmnt L su tt G s not L-oosl. Osrv tt n(g) 5; n t, δ(g) 4. Sn G s mnml ountrxmpl, G os not ontn ny o t rul onurtons. Splly, w us t t tt G vos (C) n (C4) (s Fur ). For v V (G) n F (G) n ntl r µ(v) = (v) 4 n ν() = l() 4. By Eulr s Formul, t ntl r sum s 8. Sn δ(g) 4, t only lmnts o ntv r r -s. Sn or 6-yl s orn n δ(g) 4, t lustrs (s Fur 1) r trnls (K), mons (K4), -ns (K5), 4-wls (K5), n 4-ns wt n vrts nt (K5). Splly not tt t 4-n (K6) ontns or 6-yl, so t most tr -s n lustr sr ommon vrtx, unlss ty orm 4-wl (K5) n t ommon vrtx s t 4-vrtx n t ntr o t wl. Apply t ollown srn ruls, s sown n Fur 9. (R1) I s - n s n nnt, tn lt t jnt to ross. (R1) I s 5 + -, tn pulls r 1 rom trou t. (R1) I s 4-, tn lt 1,, n t otr s nnt to. For {1,, }, lt t jnt to ross. For {1,, }, t pulls r 1 9 rom t trou t s n. (R) Lt v 5 + -vrtx, n lt n nnt -. (R) I v s 5-vrtx, tn v sns r 1 (R) I v s 6 + -vrtx, tn v sns r 4 9 to. to. (R) I X s lustr, tn vry - n X s ssn t vr r o ll -s n X. 15

16 (R1) (R1) (R) (R) v 1 v 4 9 Fur 9: Dsrn ruls n t proo o Torm 5.1. Not tt t ruls prsrv t sum o t rs. Lt µ (v) n ν () not t r on vrtx v or tr rul (R). W lm tt µ (v) 0 or vry vrtx v n ν () 0 or vry ; sn t totl r sum s prsrv y t srn ruls, ts ontrts t ntv r sum rom t ntl r vlus. Lt v vrtx. I v s 4-vrtx, tn v s not nvolv n ny rul, so t rsultn r s 0. I v s 6 + -vrtx, tn y (R) v loss r 4 9 to nnt -. Sn G vos or 6-yls, v s nnt to t most 4 (v) -s. Tus µ (v) stss µ (v) (v) (v) (v) (v) = (v) 4 0. I v s 5-vrtx, tn y (R) v loss r 1 6-yls, v s nnt to t most tr -s, so to nnt -. Sn G vos or µ (v) (v) 4 1 = (v) 5 = 0. Tror, µ (v) 0 or vry vrtx v. Lt. Sn 4-s r not jnt to 4-s, (R1) os not t t r vlu on 4-s. Tus, ν () = 0 or vry 4-. I s 6 + -, tn loss r t most 1 trou y (R1) or (R1), so ν () l() 4 1 l() = l() 4 0. Tror, ν () 0 or vry Lt 5-. Sn G ontns no or 6-yls, s not jnt to -. Tror, loss no r y (R1), ut oul los r usn (R1), so ν () l() l() = 8 l() Tror, ν () 0 s 5-. All ojts tt strt wt nonntv r v nonntv r tr t srn pross. It rmns to sow tt lustr o -s rvs nou r to rsult n nonntv r sum. 16

17 Cs 1: (K) Lt n solt -. T tr jnt s 1,, n r ll 4 + -s. By (R1) or (R1), rvs r 1 trou nnt, so ν () = = 0. Cs : (K4) Lt 1 n -s n mon lustr (K4). Tn 1 s jnt to two 4 + -s 1 n, n s jnt to two 4 + -s 1 n. By (R1) or (R1), t lustr rvs r 1 trou o t our s on t ounry o t mon. Sn ν( 1 ) + ν( ) =, t r vlu on t mon tr rul (R1) s. Sn G ontns no (C), tr s 5 + -vrtx v nnt to ot 1 n. I v s 5-vrtx, tn y (R), 1 n rv r 1, n t rsultn r on t mon s zro. I v s 6+ -vrtx, tn y (R), 1 n rv r 4 9, n t rsultn r on t mon s postv. Cs : (K5) Lt 1,, n -s n -n lustr (K5), wr s jnt to ot 1 n. T ntl r on ts lustr s. Tr r v s on t ounry o ts lustr, so y (R1) t lustr rvs r 5, rsultn n r 4 tr (R1). Not tt t s jnt to ot 1 n. Sn G ontns no (C), tr xsts 5 + -vrtx v nnt to ot 1 n, n tr xsts 5 + -vrtx u nnt to ot n. I v u, tn y (R) v sns r t lst 1 to o 1 n n u sns r t lst 1 to o n, rsultn n nonntv r on t -n. I v = u n v s 6 + -vrtx, tn y (R) v sns r 4 9 to 1,, n, rsultn n nonntv r on t -n. Otrws, suppos tt v = u n v s 5-vrtx. Sn G ontns no (C4), tr xsts notr 5 + -vrtx w nnt to t lst on o 1 n. By (R) v sns r 1 to o 1,, n, n y (R) w sns r t lst 1 to t lst on o 1 n, rsultn n nonntv r on t -n. Cs 4: (K5) Lt 1,,, n 4 -s n 4-wl (K5). T ntl r on ts lustr s 4. Tr r our s on t ounry o ts lustr, so y (R1) t lustr rvs r 4, rsultn n r 8 tr (R1). Lt v t 4-vrtx nnt to ll our -s. Lt u 1, u, u, n u 4 t vrts jnt to v, orr yllly su tt vu u +1 s t ounry o t - or {1,, } n vu 4 u 1 s t ounry o 4. Sn G ontns no (C) n (v) = 4, u s 5 + -vrtx. By (R), u sns r t lst to t lustr, rsultn n nonntv totl r. Cs 5: (K5) Lt 1,,, n 4 -s n 4-strp wt nt vrts s n (K5). T ntl r on ts lustr s 4. Lt v, u 1, u, u, n u 4 t vrts n t 4-strp, wr v s nnt to only 1 n 4, u 1 s nnt to only 1 n, u s nnt to,, n 4, u s nnt to 1,, n, n u 4 s nnt to only n 4. Tr r sx s on t ounry o ts lustr, so y (R1) t lustr rvs r 6, rsultn n r = tr (R1). 6 Sn n orm mon, n G ontns no (C), on o u n u s 5 + -vrtx. Wtout loss o nrlty, ssum u s 5 + -vrtx. Sn n 4 orm mon, n G ontns no (C), on o u n u 4 s 5 + -vrtx. I u s 5 + -vrtx, tn y (R), t lustr rvs r t lst + rom u n u, w rsults n nonntv totl r. Otrws, u s 4-vrtx n u 4 s 5 + -vrtx. I u s 6 + -vrtx, tn y (R), t lustr rvs r t lst 4 + rom u n u 4. I u s 5-vrtx, tn sn 1 n orm mon n G ontns no (C4), on o v n u 1 s 5 + -vrtx. By (R), t lustr rvs 17

18 r t lst + + rom u n u 4 n on o v n u 1. In tr s, t nl r s nonntv. W v vr tt t totl r tr srn s nonntv, ontrtn t ntv ntl r sum. Tus, mnml ountrxmpl os not xst n vry plnr rp wt no or 6-yl s (4, )-oosl. Corollry 5.. I G s pln rp not ontnn ouly-or 6-yl or ouly-or 7-yl, tn G s (4, )-oosl. Proo. Lt G mnml ountrxmpl y mnmzn n(g). Osrv tt n(g) 4 n δ(g) 4. Sn G ontns no ouly-or 6-yl, t lustrs r -s (K), mons (K4), -ns (K5), 4-wls (K5), n 4-ns wt n vrts nt (K5). Us t sm srn rumnt s n Torm 5.1, wt t ollown ns: I s 4-, tn n jnt to 4-. Howvr, sn G ontns no oulyor 7-yl, nnot jnt to -. Tror, os not los r y rul (R1). I s 5-, tn n jnt to t most on -, sn G ontns no oulyor 7-yl. By (R1) loss r 1 ross t t srs wt, n y (R1) loss r t most 1 9 ross t otr our s. Tus ν () l() = 9 0. All o t otr rumnts rom t proo o Torm 5.1 ol, w sows tt t rsultn totl r s nonntv, n n mnml ountrxmpl os not xst. 6 No Cor 7-Cyl Torm 6.1. I G s pln rp not ontnn or 7-yl, tn G s (4, )-oosl. W prov t ollown strntn sttmnt: Torm 6.. Lt G plnr rp wt no or 7-yl, n lt P surp o G, wr P s somorp to on o P 1, P, P, or K, n ll vrts n V (P ) r nnt to ommon. Lt L (4, )-lst ssnmnt o G P n lt propr olorn o P. Tr xsts n xtnson o to propr olorn o G su tt (v) L(v) or ll v V (G P ). Proo. Suppos tt tr xsts ountrxmpl. Slt ountrxmpl (G, P, L, ) y mnmzn n(g) 1 4n(P ) mon ll or 7-yl r pln rps, G, wt surp P somorp to rp n {P 1, P, P, K }, propr olorn o P, n (4, )-lst ssnmnt L o G P su tt os not xtn to n L-olorn o G. W wll rr to t vrts o P s prolor vrts. Clm 6.. G s -onnt. 18

19 Proo. I G s sonnt, tn onnt omponnt n olor sprtly. Suppos tt G s ut-vrtx v. Tn tr xst onnt surps G 1 n G wr G = G 1 G n V (G 1 ) V (G ) = {v}, n(g 1 ) < n(g), n n(g ) < n(g). W n ssum wtout loss o nrlty tt G 1 ontns t lst on vrtx o P, so lt S 1 t surp o P ontn n G 1. I G ontns t lst on vrtx o P,.., v S 1, tn lt S t surp o P ontn n G ; otrws, lt S t vrtx v. Sn (G, P, L, ) s mnml ountrxmpl, tr s n L-olorn 1 o G 1 tt xtns t olorn on S 1. Usn t olor prsr y 1 on v, tr xsts n L-olorn o G tt xtns t olorn on S. T olorns 1 n orm n L-olorn o G, ontrton. Clm 6.4. G s no sprtn -yls. Proo. Suppos tt P = v 1 v v s sprtn -yl o G. Lt G 1 t surp o G vn y t xtror o P lon wt P, n lt G t surp o G vn y t ntror o P lon wt P. Sn P s sprtn, n(g 1 ) < n(g) n n(g ) < n(g). Sn t vrts n P sr ommon, w n ssum wtout loss o nrlty tt V (P ) V (G 1 ). Sn (G, P, L, ) s mnml ountrxmpl, tr xsts n L-olorn 1 o G 1. Assn t olors rom 1 to P. Tn tr xsts n L-olorn o G xtnn t olors on P, n totr 1 n orm n L-olorn o G, ontrton. Clm 6.5. I v V (P ) su tt V (P ) N[v], tn t surp o G nu y N(v) s not somorp to ny rp n {P 1, P, P, K }. Proo. Suppos tt tr xsts vrtx v V (P ) wr ll prolor vrts r n N[v] n t surp G[N(v)] s somorp to surp n {P 1, P, P, K }. Tn onsr t rp G = G v wt surp P = G[N(v)]. Sn N G [v] 4, tr xsts n L-olorn o G[N[v]]. Sn (G, P, L, ) s mnml ountrxmpl, xtns to n L-olorn o G, w n turn xtns to n L-olorn o G, ontrton. Clm 6.6. I v V (P ) s G (v), tn G (v) = n P s somorp to P 1, P, or P. Proo. By Clm 6., G (v) 1. I G (v) = n P = K, tn G[N G (v)] s somorp to P, ontrtn Clm 6.5. Clm 6.7. P s somorp to on o P or K. Proo. Suppos tt P s not somorp to tr P or K. I P s somorp to P 1, tn t vrtx o P s two onsutv nors u 1 n u not n P ; lt U = {u 1, u }. I P s somorp to P, tn som vrtx v n P s nor u 1 not n P tt srs wt t n P ; lt U = {u 1 }. Lt P t surp somorp to P or K vn y nlun vrts n U. Tr xsts propr olorn o P tt xtns t olorn on P. But tn (G, P, L, ) s n(g) 1 4 n(p ) < n(g) 1 4n(P ), so tr xsts n L-olorn o G tt xtns, ontrton. Clm 6.8. I v V (G P ), tn G (v) 4. 19

20 Proo. Suppos tt v V (G P ) s r (v). Tn G v s plnr rp wt no or 7-yl ontnn prolor surp P n lst ssnmnt L. Sn (G, P, L, ) s mnmum ountrxmpl, G v s n L-olorn. Howvr, v s t most tr nors n t lst our olors n t lst L(v). Tus, tr s n xtnson o t L-olorn o G v to n L-olorn o G, ontrton. Osrv tt n(g) 4. Rll tt n onurton (C, X, x), n L-olorn o V (C) \ X xtns to ll o C. Bus o ts t, G ontns rul onurton (C, X, x), tn tr s prolor vrtx n t st X, or ls G X s n L-olorn tt xtns to ll o G. Splly, w wll us t t tt G vos (C), (C), (C4), (C5), (C6), (C7), n (C8). For v V (G) n F (G) n µ(v) = (v) 4 + δ(v) n ν() = l() 4 + ε(), wr δ(v) {0, 1} s vlu 1 n only v V (P ), n ε() {0, 1} s vlu 1 n only t ounry o s t st o prolor vrts, V (P ). By Eulr s Formul, t ntl r sum s t most 1. Clms 6.6 n 6.8 ssrt tt t only ntvly-r ojts r -s. For vrtx v, lt t k (v) not t numr o k-s nnt to v. Apply t ollown srn ruls. Lt µ (v) n ν () not t r on vrtx v or tr rul (R). 8 v 1 v 4 9 (R1) (R) (R) (R1) (R1), Cs 1 (R1), Cs Fur 10: Dsrn ruls (R1) n (R) n t proo o Torm 6.1. (R0) I v s prolor vrtx n s n nnt - wt ntv r, tn v sns r 1 to. (R1) I s - n s n nnt, tn lt t jnt to ross. 0

21 (R1) I s 5 + -, tn pulls r 8 rom trou t. (R1) I s 4- n s t only - jnt to, tn lt 1,, n t otr s nnt to. For {1,, }, lt t jnt to ross. For {1,, }, t pulls r 1 8 rom t trou t s n. (R1) I s 4- n s jnt to two -s 1 n (sy 1 = ), tn lt 1 n t otr s nnt to, wr t s 1 n srn ts s r 6 + -s. For {1, }, t pulls r 16 rom t trou t s n. (R) Lt v 5 + -vrtx wt v / V (P ) n lt n nnt -. (R) I v s 5-vrtx, tn v sns r 1 to, wn = mx{, t (v)}. (R) I v s 6 + -vrtx, tn v sns r 1 (R) I s 6- wt ν () < 0 n v s n nnt 5 + -vrtx or n nnt vrtx n V (P ) wt µ 0 (v) > 0, tn v sns r 1 4 to. W lm tt µ (v) 0 or vry vrtx v n ν () 0 or vry. Sn t totl r sum ws prsrv urn t srn ruls, ts ontrts t ntv r sum rom t ntl r vlus. Not tt 6-s r not nnt to -s sn G os not ontn or 7-yl. Osrv tt 6- s ν 1 () < 0 n only ll s jnt to r 4-s, n o tos 4-s s two jnt -s. Clm 6.9. Lt v vrtx n V (P ). Tn µ (v) 0. In ton, v s nnt to 6- wt ν 1 () < 0, tn µ 0 (v) > 0. Proo. By Clms 6.6 n 6.7, w v µ(v) = (v) 0. Not tt µ(v) 1 t (v) t 6(v), tn t nl r µ (v) s nonntv. Sn (v) t (v) + t 6 (v), t sus to sow tt µ 0 (v) 1 4 (v) t (v). Cs 1: P = P. Lt v 1, v, n v t vrts n t -pt P. For {1,, }, µ(v ) = (v ). Sn P s not somorp to K, ts vrts o not orm yl, n t to w ll vrts r nnt s not -. Hn t (v ) (v ) 1. I (v ) 4, tn µ(v ) = (v ) 1 (v ) > 1 4 (v ) t (v ). I (v ) =, tn µ(v ) = 0. I =, tn v s not nnt to ny -s sn v 1 n v r not jnt. I {1, } n v s jnt to -, tn lt v t nor o v not n V (P ). Lt P t surp nu y (V (P ) {v }) \ {v }, w orms opy o P or K n G v. For ny olor (v ) L(v ) \ {(v )}, tr xsts n L-olorn o G v s (G v, P, L, ) s not ountrxmpl; ts olorn xtns to n L-olorn o G. Tus, t (v ) = 0. I v s nnt to 6- wt ν 1 () < 0, tn t otr nnt to v s 4- tt s jnt to two -s. Ts rsults n or 7-yl, ontrton; tus (R) os not pply to v. to. I (v ) =, Clm 6.4 ssrts tt G s no sprtn -yls, so tn v loss r t most 1 n (R0). I v s nnt to 6- wt ν 1 () < 0, tn t otr two s nnt to v 1

22 r 4-s n ts 4-s r jnt to two -s. Ts rts or 7-yl, ontrton, so (R) os not pply to v n µ (v ) 0. Cs : P = K. Lt v 1, v, n v t vrts n t -yl P, so µ(v ) = (v ) or v. By Clm 6.4, G s no sprtn -yl, so t tr vrts r nnt to ommon - wt ν() = 0. Tror, vrtx v sns r 1 to t most (v ) 1 nnt -s y (R0). Rll tt (v ) y Clm 6.6. Suppos tt (v ) =. I t (v ) > 1, t surp o G nu y t noroo o v s somorp to P or K, ontrtn Clm 6.5. I (v ) 4, tn µ(v ) = (v ) 1 (v ) 1 4 (v ) t (v ). Tror, µ (v ) 0. Tus, n ll ss prolor vrtx v s µ (v) 0. W wll now sow tt ll ojts tt strt wt nonntv r lso n wt nonntv r. I s 4-, tn (R1) n (R1) o not pull r rom, sn ts woul rqur to jnt to 4- tt s jnt to - t, ut tn,, n t orm ouly-or 7-yl. Tus, ν () = 0 or vry 4-. I s 5-, tn sn G ontns no or 7-yls, s not jnt to two -s n s not jnt to 4-. Tror, loss r t most 8 y (R1), ut loss no r usn (R1), so ν () > 0 or vry 5-. I s 6-, tn s not jnt to - sn G ontns no or 7-yl. Osrv tt y Clm 6. t ounry o s smpl 6-yl. So sns r trou n urn (R1), t n sn r 1 8 trou y (R1), or t n sn r 8 trou y (R1). T only wy tt ts wll rsult n ntv r tr (R1) n (R) s or to sn r 8 trou o ts sx s y (R1); ts wll us ν () = 6 8 = 1 4. I s prolor vrtx v on ts ounry, tn y Clm 6.9, v s postv r tr (R0); y (R), rvs r t lst 1 4, rsultn n ν () 0. I s no nnt prolor vrts, tn sn G ontns no (C), som vrtx v on t ounry o s 5 + -vrtx. By (R) v sns r 1 4 to n n ν () 0. Osrv t ollown lm onrnn t strutur out vrtx tt loss r y (R). Clm Lt v 5 + -vrtx wt t tr nnt s 1,, n, n yl orr. I v sns r to y (R), tn 1 n r 4-s n s 6-. I s 7 + -, tn y (R1) loss r t most 8 ν () l() 4 8 l() = 5 l() 4 > 0. 8 trou. Tus, Tror, ν () > 0 or vry Nxt, w wll onsr vrtx v not n V (P ). I v s 4-vrtx, tn v os not los r y ny rul, so t rsultn r s 0. I v s 5-vrtx, lt = mx{, t (v)} n v loss r 1 t (v) to nnt -s y (R). I (R) os not pply to v, tn v sns r t most 1 to nnt -s n µ (v) 0. I (R) ppls to v, tn v s nnt to s 1,, n wr 1 n r 4-s n s 6-. Sn (v) = 5 n G s no or 7-yl, t rul (R) ppls t most on. I (R) ppls on, tn t (v) n v loss r t most y (R) n r 1 4 y (R), so µ (v) 0. I v s 6 + -vrtx, tn lt k = t (v) n l t numr o tms (R) ppls to v. Not tt k 4 5(v) sn G vos or 7-yls. Furtr, not tt k + l (v), sn

23 6- tt ns r rom v y (R) s pr y 4- n t yl orr o s roun v. By (R), v n los r 1 to nnt -, n v n los r t most 1 4 to nnt 6- y (R). Tn v ns wt r µ (v) (v) 4 1 k 1 4 l. I (v) = 6, tn osrv k + l 4 n n µ (v) 0. I (v) = 7, tn, k, n l stsy t ollown lnr prorm wt ul on vrls 1,, n : mn 1 k 1 4 l s.t k 0 k l 0, k, l 0 mx 7 1 s.t ,, 0 T ul-sl soluton ( 1,, ) = ( 40, 1 0, 1 ) 4 monstrts tt 1 k 1 4 l 7 40 > 4, n tus µ (v) > 0 or vry 7 + -vrtx. It rmns to sown tt t lustrs rv nou r to om nonntv. Sn G ontns no sprtn -yl, G os not ontn t lustr (K5) or t lustrs (K6) (K6r). Osrv tt tr s no prolor vrtx v o r t most tr wr ll s nnt to v v lnt tr. Fnlly, t s wort notn n tt G ontns rul onurton (C, X, x), tn tr s prolor vrtx n t st X. I vrtx v s 5 + -vrtx or v V (P ), w sy v s ull; v s 6 + -vrtx or v V (P ), tn v s vy. Not tt vy vrtx v sns r 1 to nnt ntvly-r - y (R0) or (R). I P = K, w ll P t prolor. v 1 1 (K) (K4) (K5) Fur 11: Clustrs (K), (K4), n (K5) Cs 1: (K) Lt t solt - n (K). I s t prolor, tn ν () = ν() = 0. Otrws, t ntl r on s 1. By (R1), rvs r 9 8 trou ts ounry s, rsultn n nonntv nl r. Cs : (K4) Lt 1 n -s n mon lustr (K4). Frst, suppos wtout loss o nrlty tt 1 s t prolor. T ntl r o t lustr s 1. Tn rvs r 1 y (R0) n r 8 y (R1), rsultn n postv nl r. Otrws, t ntl r on t lustr s. By (R1), 1 n rv r 8 trou o t two s on t ounry o t lustr, rsultn n r 1. I t lustr ontns prolor vrtx u, tn t rvs r 1 y (R0). Otrws, sn G ontns no (C), tr s 5+ -vrtx v nnt to ot 1 n. By (R), ts vrtx sns r t lst 1 to o t s, rsultn n nonntv nl r. Cs : (K5) Lt 1,, n -s n -n lustr (K5), wr s jnt to ot 1 n. Suppos tt t lustr ontns prolor, so t ntl r on t lustr

24 s. I s prolor, tn t lustr rvs r 4 1 y (R0); 1 or s prolor, tn t lustr rvs r 1 y (R0) n r 8 y (R1). In tr s, t nl r s nonntv. I P = K or t lustr os not ontn t prolor, tn t ntl r on t lustr s. By (R1), t lustr rvs r 5 8, rsultn n r 9 8. Not tt t s 1 n orm mon n t s n orm mon. Sn G ontns no (C), tr xsts ull vrtx v nnt to ot 1 n. Smlrly, tr xsts ull vrtx u nnt to n. I u v, tn y (R0) or (R), v sns r t lst 1 to o 1 n n u sns r t lst 1 to o n, rsultn n nonntv r on t lustr. I u = v n v s vy vrtx, tn v sns r 1 to 1,, n, rsultn n nonntv r on t lustr. Otrws, suppos tt u = v / V (P ) n v s 5-vrtx. Sn G ontns no (C4), tr xsts notr ull vrtx w tt s nnt to t lst on o 1 n. By (R), v sns r 1 to 1,, n, n y (R0) or (R), w sns r t lst 1 to on o 1 n, rsultn n nonntv r on t lustr. u 1 u 1 v u 4 v u 5 u 4 u u 1 u 1 (K5) (K6) (K6) Fur 1: Clustrs (K5), (K6), n (K6) Cs 4: (K5) Lt 1,,, n 4 -s n 4-wl (K5). I t lustr ontns prolor, tn t ntl r on t lustr s ; t lustr rvs r 5 1 y (R0) n r 8 y (R1), rsultn n postv nl r. Otrws, t ntl r on ts lustr s 4. By (R1), t lustr rvs r 4 8, rsultn n r 5. Lt v t 4-vrtx nnt to ll our -s. Lt u 1, u, u, n u 4 t vrts jnt to v, orr yllly su tt vu u +1 s t ounry o t - or {1,, } n vu 4 u 1 s t ounry o 4. Sn t lustr os not ontn t prolor, v s not prolor vrtx. Sn G ontns no (C), u s ull vrtx. Wn u s 5-vrtx, t s nnt to two 7 + -s, so u sns r 1 to nnt - y (R). Tus, u sns r t lst 1 to t lustr y (R0) or (R), rsultn n nonntv nl r. Cs 5: (K6) Lt 1,,, n 4 -s n 4-strp lustr (K6). I t lustr ontns t prolor, tn t ntl r on t lustr s. I 1 or 4 s prolor, tn t lustr rvs r 1 y (R0) n r 4 8 y (R1); or s prolor, tn t lustr rvs r 5 1 y (R0) n r 5 8 y (R1). In tr s, t rsultn nl r s nonntv. I t lustr os not ontn t prolor, tn t ntl r on ts lustr s 4. By (R1), t lustr rvs r 6 8, rsultn n r 7 4. Not tt or {1,, }, t s n +1 orm mon. Sn G ontns no (C), tr xsts ull vrtx v nnt to ot n +1. Lt u 1 ull vrtx nnt to n. Wtout loss o nrlty, u 1 s not nnt to 4, so tr s ull vrtx u nnt to 1 n. I u 1 s vy vrtx, t lustr rvs r 1 rom u 1 y (R0) or (R), n r t lst 1 rom u y (R0) or (R), rsultn n postv nl r. Otrws, 4 u 4

25 u 1 s 5-vrtx, so u 1 sns r 1 y (R), rsultn n r 4. I u s nnt to, tn u sns r t lst 1 y (R0) or (R), rsultn n postv nl r. Otrws, u s nnt wt 1 n ut not. I u s lr vrtx, t sns r 1 y (R0) or (R). Otrws, sn G ontns ntr (C) or (C4), tr s tr ull vrtx u. T lustr rvs r 1 rom u y (R) n r t lst 1 rom u y (R0) or (R). In s, t rsultn nl r s nonntv. Cs 6: (K6) Lt 1,,, n 4 -s n 4-n lustr (K6). Lt v t ntr o t n, wt nors u 1, u, u, u 4, n u 5 wr or {1,, }, n +1 r jnt on t vu +1. I t lustr ontns t prolor, tn t ntl r on t lustr s. I 1 or 4 s prolor, tn t lustr rvs r 4 1 y (R0) n r 4 8 y (R1); or s prolor, tn t lustr rvs r 5 1 y (R0) n r 5 8 y (R1). In tr s, t rsultn nl r s postv. I t lustr os not ontn t prolor, tn t ntl r on ts lustr s 4. By (R1), t lustr rvs r 6 8, rsultn n r 7 4. I v s vy vrtx, tn y (R0) or (R) v sns r 4 1 to t lustr, rsultn n postv r. Otrws, v / V (P ) n v s 5-vrtx, so v sns r 1 to t lustr y (R), rsultn n r 4. I tr s vy vrtx n {u, u, u 4 }, tn tt vrtx ontruts r 1 to t lustr, rsultn n postv r. I tr s no vy vrtx n {u, u, u 4 }, tn tr s t lst on 5-vrtx n {u, u, u 4 } sn G ontns no (C4). I tr r multpl 5-vrts n {u, u, u 4 }, tn sns r 1 to t lustr y (R), rsultn n postv r. I tr s only 5-vrtx w mon u, u, n u 4, tn tr s ull vrtx z {u 1, u 5 } sn G os not ontn (C4) or (C5); t lustr rvs r 1 rom w y (R) n t lst 1 rom z y (R0) or (R), rsultn n postv nl r. u 1 u u 1 u 6 u 4 u 5 u 4 u (K6) v 4 1 u 1 u 4 (K6) w Fur 1: Clustrs (K6) n (K6). Cs 7: (K6) Lt 1,,, n 4 t -s o ts lustr (K6) wr 4 s jnt to or {1,, }. I t lustr ontns t prolor, tn t ntl r on t lustr s. I on o 1, or s prolor, t lustr rvs r 4 1 y (R0) n r 4 8 y (R1). I 4 s prolor, tn t lustr rvs r 6 1 y (R0). In tr s, t rsultn nl r s nonntv. I t lustr os not ontn t prolor, tn t ntl r on t lustr s 4. By (R1), t lustr rvs r 6 8, rsultn n r 7 4. Lt u 1, u, u, u 4, u 5, n u 6 t vrts on t ounry o t lustr orr su tt u, u 4, u 6 r t vrts nnt to 1 n, n, n n 1, rsptvly. Sn G ontns no (C), tr r t lst two ull vrts n {u, u 4, u 6 }. By (R0) or (R), ts vrts sn r t lst 1 to t lustr, rsultn n postv totl r. 5

26 Cs 8: (K6) Lt 1,,, n 4 yllly-orr -s n 4-wl wt ntr vrtx v wr n +1 sr ommon or {1,,, 4}, wr ns r tkn moulo 4; lt - jnt to 4 ut not nnt to v, ompltn our lustr (K6). I t lustr ontns t prolor, tn t ntl r on t lustr s 4. I 1 or s prolor, tn t lustr rvs r 6 1 y (R0) n r 4 8 y (R1). I s prolor, tn t lustr rvs r 5 1 y (R0) n r 4 8 y (R1). I 4 s prolor, tn t lustr rvs r 7 1 y (R0) n r 5 8 y (R1). In o t ov ss, t nl r s nonntv. I s prolor, tn t lustr rvs r 4 1 y (R0) n r 8 y (R1), rsultn n r 7 8. Lt N(v) = {u 1, u, u, u 4 } wr u s nnt to n +1 or ll {1,,, 4}. Sn G os not ontn (C), u 1 n u r ull vrts. E o u 1 n u sns r t lst 1 to t lustr y (R), rsultn n nonntv r. I t lustr os not ontn t prolor, tn t ntl r on ts lustr s 5 n v / V (P ). By (R1), t lustr rvs r 5 8, rsultn n r 5 8. Sn G os not ontn (C), u 1, u, u, n u 4 r ull vrts. By (R0) or (R), t lustr rvs r t lst 1 rom o u 1 n u n r t lst 1 rom o u n u 4, rsultn n postv nl r. u 4 u 5 1 u 1 5 v u 1 4 u u (K6) z 1 w (K6) u Fur 14: Clustrs (K6) n (K6). Cs 9: (K6) Lt 1,,, 4, n 5 t yllly-orr -s n 5-wl wt ntr vrtx v wr n +1 sr ommon or {1,,, 4, 5}, wr ns r tkn moulo 5. Lt N(v) = {u 1, u, u, u 4, u 5 } wr u s nnt to n +1 or {1,,, 4, 5}. I t lustr ontns t prolor, tn t ntl r on t lustr s 4. T lustr rvs r 6 1 y (R0) n r 4 8 y (R1), rsultn n postv nl r. I t lustr os not ontn t prolor, tn t ntl r s 5 n v / V (P ). By (R1), t lustr rvs r 5 8, n y (R), t lustr rvs r 1 rom v, rsultn n r Sn G os not ontn (C4) or (C6), tr r t lst tr ull vrts n N(v). I N(v) ontns t lst tr vy vrts, tn t lustr rvs r t lst 6 1 y (R0) or (R), rsultn n postv nl r. I N(v) ontns xtly two vy vrts, tn t lustr rvs r y (R0) or (R) n r rom ull vrtx y (R), rsultn n postv r. I N(v) ontns xtly on vy vrtx, tn t lustr rvs r 1 1 y (R0) or (R) n r rom o two ull vrts y (R), rsultn n postv nl r. I N(v) ontns no vy vrts, tn tr r t lst tr ull vrts n N(v). Sn G os not ontn (C4), tr r t lst two nonjnt 5-vrts n N(v). Furtr, sn G os not ontn (C6), (C7), or (C8), tr r t lst our 5-vrts n N(v). T lustr 6

27 rvs r 1 rom o ts vrts y (R), rsultn n postv nl r. Cs 10: (K6) Lt 1 n t ntror -s n t two ovrlppn 4-wls tt mk up t lustr (K6). Lt u 1 n u t sr vrts o 1 n n lt z n w t vrts nnt wt 1 n, rsptvly, tt v not yt n ll. Sn G ontns no (C), t lst on o u 1 n u s n V (P ). Tn sn ll t prolor vrts l on ommon, t lustr ontns t prolor, so t ntl r s 5. I 1 or s prolor, tn t lustr rvs r 8 1 y (R0) n r 4 8 y (R1), rsultn n postv nl r. I on o t otr -s s prolor, tn t lustr rvs r 6 1 y (R0) n r 8 y (R1), rsultn n r 7 8. Sn G ontns no (C), on o w n z s non-prolor 5 + -vrtx. Ts vrtx sns r t lst 1 to t lustr y (R), rsultn n postv nl r. W v vr tt t totl r tr srn s nonntv, ontrtn t ntv ntl r sum. Tus, mnml ountrxmpl os not xst n vry plnr rp wt no or 7-yl s (4, )-oosl. 7 Conluson n Futur Work W prov tt, or k {5, 6, 7}, plnr rps wt no or k-yls r (4, )-oosl. Our mtos or provn rul onurtons rt svrl lr lsss o rul onurtons, su s tmplts; nturlly, tr r mny mor rul onurtons tn t ons w xpltly us. On oul lkly prov tt G s plnr rp wt no or 4-yl n no ouly-or 7-yl, tn G s (4,)-oosl usn mtos smlr to tos n ts ppr. W wr unl to xtn ts rsults to prov Conjtur 1., tt ll plnr rps r (4, )-oosl. Aknowlmnts W tnk Ryn R. Mrtn, Alx Nowk, Alx Sult, n Sns Wlkr or prtpton n t rly sts o t projt. Rrns [1] N. Alon n M. Trs. Colorns n ornttons o rps. Comntor, 1():15 14, 199. [] O. V. Boron. Colorns o pln rps: survy. Dsrt Mtmts, 1(4):517 59, 01. [] O. V. Boron n A. O. Ivnov. Plnr rps wtout trnulr 4-yls r 4-oosl. S. Élktron. Mt. Izv., 5:75 79, 008. [4] I. Co, B. Lký, n D. Stol. On ooslty wt sprton o plnr rps wt orn yls. Journl o Grp Tory. to ppr. [5] D. Crnston n D. B. Wst. A u to t srn mto. rxv: [mt.co]. [6] B. Frz. Plnr rps wtout 7-yls r 4-oosl. SIAM Journl o Dsrt Mtmts, (): ,

28 [7] G. Fjvz, M. Juvn, B. Mor, n R. Škrkovsk. Plnr rps wtout yls o sp lnts. Europn Journl o Comntors, (4):77 88, 00. [8] H. Krst n B. Lký. On ooslty wt sprton o plnr rps wt lsts o rnt szs. Dsrt Mtmts, 9(10): , 015. [9] J. Krtovíl, Z. Tuz, n M. Vot. Brooks-typ torms or ooslty wt sprton. Journl o Grp Tory, 7(1):4 49, [10] P. Lm, B. Xu, n J. Lu. T 4-ooslty o pln rps wtout 4-yls. Journl o Comntorl Tory, Srs B, 76(1):117 16, [11] C. Tomssn. Evry plnr rp s 5-oosl. Journl o Comntorl Tory, Srs B, 6(1): , [1] M. Vot. Lst olourns o plnr rps. Dsrt Mtmts, 10(1):15 19, 199. [1] R. Škrkovsk. A not on ooslty wt sprton or plnr rps. Ars Comntor, 58: , 001. [14] W. Wn n K. L. Cooslty n ooslty o plnr rps wtout v yls. Appl Mtmts Lttrs, 15(5): , 00. [15] D. B. Wst. Introuton to rp tory, Son ton. Prnt Hll, 001. A Lr Rul Conurtons In t proo o Torm 4.1, w monstrt tt no mnml ountrxmpl xsts y sown tt tr xsts rul onurton (C, X, x) wr G ontns opy o C[X] s n nu surp (n lso t opy rs wt t xtrnl rs). In ts ppnx, w prov t tls tt lry ts ssumpton. By Lmm., w n rlx t onton tt C[X] s n nu surp. W wll monstrt tt t onurtons tt ppr tr som vrts n X r mr (wl lso prsrvn t lnts, vrtx rs, n lk o or 5-yl) rsult n rul onurtons. Lt (C, X, x) rul onurton n lt {x 1, x 1},..., {x t, x t} lst o vrtx prs n X. For ts onurtons, w my nty som -yls n 5-yls tt r rqur to 5-s (n t ontxt o t proo o Torm 4.1). T rsultn onurton (C, X, x) wr C n X r mo rom C n X y mrn x wt x n rmovn ny mults or loops tt rsult. W sy lst {x 1, x 1},..., {x t, x t} s vl or (C, X, x) t rsultn onurton (C, X, x) my ppr n plnr rp o mnmum r t lst our ontnn no or 5-yl. Tr r tr stutons tt n our wn w prorm ts ton. Prs too los: I som pr {x, x } v (x, x ), tn tr w rt loop or mult wn mrn x n x. Ts wll ru t r o t rsultn vrtx, n ton to possly sortnn known - n 5-yls. Sn stns only rs s vrts r mr, pr ln ts proprty wll not ppr n ny vl lst o prs. Prs rtn or: I mrn x n x rts or 5-yl, tn ts onurton woul not ppr n t mnml ountrxmpl rom Torm 4.1. Sn stns only rs s vrts r mr, pr ln ts proprty wll not ppr n ny vl lst o prs. Rul prs: I mrn x n x os not t n t ov two ss, tn w wll monstrt tt t rsultn onurton s rul. Evn mrn on pr o vrts rts rul onurton, w n to k ll possl lsts o prs tt ontn tt pr. Atr onsrn ll prs tt oul nt, osrv tt n s tr s no st o tr or mor vrts wr vry pr n nt. In t ollown tls, w lst on o t onurtons (C10) (C1), ll t vrts, n lst ll prs o vrts nto t tr tors ov. In t s o rul prs, w prsnt t ontrt rp. Most o ts ontrt rps ontn opy o (C1), (C), (C10), (C11), or (C1). T only xptons 8

29 r t ontrt rps rv rom (C16), ut o ts onurtons s n Alon-Trs orntton n n s rul. (C10) Prs too los:,,,,,,,,,,,,,. Prs rtn or: Rul prs: Non rmn. (C11) Prs too los:,,,,,,,,,,,,,,,,,,. Prs rtn or:, Rul prs: Non rmn. (C1) Prs too los:,,,,,,,,,,,,,,. Prs rtn or: Non rmn. Rul prs: Non rmn. (C1) Prs too los:,,,,,,,,,,,,,,,,,. Prs rtn or:,,,,.. Rul prs: (ontns (C1)) Contns (C1) on 4-yl,,,. 9

30 (C14) Prs too los:,,,,,,,,,,,,,,,,,,,,,,,,,. Prs rtn or:,,,,,. Rul prs: (ontns (C11)), (ontns (C11)), n (ontns (C1)). Contns (C11) Contns (C11) Contns (C1) tr ltn vrtx. tr ltn vrtx. tr ltn vrtx. (C15) Prs too los:,,,,,,,,,,,,,,,,,,,,,,,,,,,. Prs rtn or:,,, (,,,,, ),, (,,,,, ),,. Rul prs: (ontns (C)), (ontns (C1)), n (ontns (C1)). Contns (C) Contns (C1) Contns (C1) on 6-yl,,,,,. on 4-yl,,,. on 4-yl,,,. 0

31 (C16) k j l m k j l m Prs too los:,,,,,,, j, k, m,,,,,j, k, l, m,,, j, m,,,,,,,, j,,,, j,,,, jk, jl, jm, kl, km, lm. Prs rtn or:, l,,,,, k,,, l,,, j, k, m, k, l, m, k, l, m, j,k, m, j, j, k, m. Rul prs: (s Alon-Trs orntton), l (symmtr to ), k (s Alon-Trs orntton), m (s Alon-Trs orntton), l (s Alon-Trs orntton), l (symmtr to k), l (symmtr to m). l m j k j k j k m l l m (C17) Prs too los:,,,,,,,,,,,,,,,,,,,,. Prs rtn or:,,,,,. Rul prs: Non rmnn. 1

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

(4, 2)-Choosability of Planar Graphs with Forbidden Structures

(4, 2)-Choosability of Planar Graphs with Forbidden Structures Mtmtcs Publctons Mtmtcs 7-017 (4, )-Coosblty o Plnr Grps wt Forbn Structurs Znr Brkkyzy Iow Stt Unvrsty Crstopr Cox Crn Mllon Unvrsty Mcl Dryko Iow Stt Unvrsty, mryko@stt.u Krstn Honson Coloro Coll Mot

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

2 Trees and Their Applications

2 Trees and Their Applications Trs n Tr Appltons. Proprts o trs.. Crtrzton o trs Dnton. A rp s ll yl (or orst) t ontns no yls. A onnt yl rp s ll tr. Quston. Cn n yl rp v loops or prlll s? Notton. I G = (V, E) s rp n E, tn G wll not

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures 1 (4, )-oosility o plnr rps wit orin struturs 4 5 Znr Brikkyzy 1 Cristopr Cox Mil Diryko 1 Kirstn Honson 1 Moit Kumt 1 Brnr Liiký 1, Ky Mssrsmit 1 Kvin Moss 1 Ktln Nowk 1 Kvin F. Plmowski 1 Drrik Stol

More information

Lecture II: Minimium Spanning Tree Algorithms

Lecture II: Minimium Spanning Tree Algorithms Ltur II: Mnmum Spnnn Tr Alortms Dr Krn T. Hrly Dprtmnt o Computr Sn Unvrsty Coll Cork Aprl 0 KH (/0/) Ltur II: Mnmum Spnnn Tr Alortms Aprl 0 / 5 Mnmum Spnnn Trs Mnmum Spnnn Trs Spnnn Tr tr orm rom rp s

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Rll t nton o spnnn tr: Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Any unrt, onnt rp s spnnn tr. Atully, rp

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Clm: Any unrt, onnt rp s spnnn tr (n nrl rp my v mny spnnn trs).

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H T Constrn Lonst Common Susqun Prolm Rotm.R n Rotm.H Prsntton Outln. LCS Alortm Rmnr Uss o LCS Alortm T CLCS Prolm Introuton Motvton For CLCS Alortm T CLCS Prolm Nïv Alortm T CLCS Alortm A Dynm Prormmn

More information

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments Ston 7 - Rpr Prours Srv Mnul - Son Eton Pltorm Controls 1-1 Joystk Controllrs Mntnn oystk ontrollrs t t propr sttns s ssntl to s mn oprton. Evry oystk ontrollr soul oprt smootly n prov proportonl sp ontrol

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

MATERIAL SEE BOM ANGLES = 2 FINISH N/A 9 NOTS:. SSML N NSPT PR SOP 0-9... NSTLL K STKR N X L STKR TO NS O SROU WT TP. 3. PR-PK LNR RNS WT P (XTRM PRSSUR NL R ) RS OR NNRN PPROV QUVLNT. 4. OLOR TT Y T SLS ORR. RRN T MNS OM OR OMPONNTS ONTNN

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

Phylogenetic Tree Inferences Using Quartet Splits. Kevin Michael Hathcock. Bachelor of Science Lenoir-Rhyne University 2010

Phylogenetic Tree Inferences Using Quartet Splits. Kevin Michael Hathcock. Bachelor of Science Lenoir-Rhyne University 2010 Pylont Tr Inrns Usn Qurtt Splts By Kvn Ml Htok Blor o Sn Lnor-Ryn Unvrsty 2010 Sumtt n Prtl Fulllmnt o t Rqurmnts or t Dr o Mstr o Sn n Mtmts Coll o Arts n Sns Unvrsty o Sout Croln 2012 Apt y: Év Czrk,

More information

Applications of trees

Applications of trees Trs Apptons o trs Orgnzton rts Attk trs to syst Anyss o tr ntworks Prsng xprssons Trs (rtrv o norton) Don-n strutur Mutstng Dstnton-s orwrng Trnsprnt swts Forwrng ts o prxs t routrs Struturs or nt pntton

More information

CSE 332. Data Structures and Parallelism

CSE 332. Data Structures and Parallelism Am Blnk Ltur 20 Wntr 2017 CSE 332 Dt Struturs n Prlllsm CSE 332: Dt Struturs n Prlllsm Grps 1: Wt s Grp? DFS n BFS LnkLsts r to Trs s Trs r to... 1 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus,

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 19 Summr 2015 CSE 332: Dt Astrtons CSE 332 Grps 1: Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... 1 A Grp s Tny... 2 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps,

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

Single Source Shortest Paths (with Positive Weights)

Single Source Shortest Paths (with Positive Weights) Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

Graphs Depth First Search

Graphs Depth First Search Grp Dpt Frt Sr SFO 337 LAX 1843 1743 1233 802 DFW ORD - 1 - Grp Sr Aort - 2 - Outo Ø By unrtnn t tur, you ou to: q L rp orn to t orr n w vrt r ovr, xpor ro n n n pt-rt r. q Cy o t pt-rt r tr,, orwr n ro

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

An Introduction to Clique Minimal Separator Decomposition

An Introduction to Clique Minimal Separator Decomposition Alortms 2010, 3, 197-215; o:10.3390/3020197 Rvw OPEN ACCESS lortms ISSN 1999-4893 www.mp.om/ournl/lortms An Introuton to Clqu Mnml Sprtor Domposton Ann Brry 1,, Romn Poorln 1 n Gnvèv Smont 2 1 LIMOS UMR

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Straight-line Grid Drawings of 3-Connected 1-Planar Graphs

Straight-line Grid Drawings of 3-Connected 1-Planar Graphs Strt-ln Gr Drwns o 3-Connt 1-Plnr Grs M. Jwrul Alm 1, Frnz J. Brnnur 2, n Stn G. Koourov 1 1 Drtmnt o Comutr Sn, Unvrsty o Arzon, USA {mlm, koourov}@s.rzon.u 2 Unvrsty o Pssu, 94030 Pssu, Grmny rnn@normtk.un-ssu.

More information

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V,  = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =? xmpl : An 8-gug oppr wr hs nomnl mtr o. mm. Ths wr rrs onstnt urrnt o.67 A to W lmp. Th nsty o r ltrons s 8.5 x 8 ltrons pr u mtr. Fn th mgntu o. th urrnt nsty. th rt vloty xmpl D. mm,.67 A, n N 8.5" 8

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 0 Autumn 0 CSE 33: Dt Astrtons CSE 33 Grps : Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... A Grp s Tny... Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps, Vnll Trs,

More information

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP MN POST SRS LUSTR SYSTM NSTLLTON U PROUT O: MPS-RP 0 R0 WLL LN 0 RONT LVTON VW R0 N P 0 T RUR LOK LOT ON LSS. SLON SL TYP. OT SS 000 LSS T 0 00 SRS LSS WT 00/00 (0mm NRMNTS VLL) MX. 000 00-0 (ROMMN) 00

More information

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland Yu To ITEE Unvrsty o Qunsln W wll stuy nw strutur ll t R-tr, w n tout o s mult-mnsonl xtnson o t B-tr. T R-tr supports ntly vrty o qurs (s w wll n out ltr n t ours), n s mplmnt n numrous ts systms. Our

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

One-Dimensional Computational Topology

One-Dimensional Computational Topology Wr rltn so n Stz: Dnn un nur nn, wnn s Sm s Grpn I) ur nn Umsltunsoprton U n BZ-R lrt, II) ur Umrunsoprton wr us r BZ-R ntstt, stllt s Sm nn u r Kullä rlsrrn Grpn r. Dmt st n Gusss Prolm ür n llmnstn Grpn

More information

MATERIAL SEE BOM ANGLES = 2 > 2000 DATE MEDIUM FINISH

MATERIAL SEE BOM ANGLES = 2 > 2000 DATE MEDIUM FINISH NOTS:. LN MTN SUR WT NTUR/SOPROPYL LOOL PROR TO RN L OR LOO. PPLY LOTT 4 ON TRS. TORQU TO. Nm / 00 lb-in 4. TORQU TO 45-50 Nm / - lb-ft 5. TORQU TO Nm / 4.5 lb-ft. TORQU TO 0 Nm / lb-in. TORQU TO 5.5 Nm

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE N URY T NORTON PROV N RRONOUS NORTON NVRTNTY PROV. SPY S NY TY OR UT T TY RY OS NOT URNT T S TT T NORTON PROV S ORRT, NSR S POSS, VRY ORT S N ON N T S T TY RY. TS NORTON S N OP RO RORS RT SU "" YW No.

More information

DOCUMENT STATUS: RELEASE

DOCUMENT STATUS: RELEASE RVSON STORY RV T SRPTON O Y 0-4-0 RLS OR PROUTON 5 MM -04-0 NS TRU PLOT PROUTON -- S O O OR TLS 30 MM 03-3-0 3-044 N 3-45, TS S T TON O PROTTV RM OVR. 3 05--0 LT 3-004, NOT, 3-050 3 0//00 UPT ST ROM SN,

More information

17 Basic Graph Properties

17 Basic Graph Properties Ltur 17: Bs Grp Proprts [Sp 10] O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 0, No. 0, pp. 000 000 2009 Soity or Inustril n Appli Mtmtis THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS HAL KIERSTEAD, BOJAN MOHAR, SIMON ŠPACAPAN, DAQING

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

PRECAST APPROACH SLAB NOTES

PRECAST APPROACH SLAB NOTES ULNS TS ULN RWNS RPRSNT TYPL TLS OR T SN N TLN O PRST PPRO SLS. TS STS R NLU TO PROV N XMPL O T RTN LYOUT O TYPL PRST PPRO SL. TWO RNT PPRO SL SYSTMS R SOWN: SUR PPRO SLS: SLS TT R PL WT T TOP SUR T OR

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

A Simple Method for Identifying Compelled Edges in DAGs

A Simple Method for Identifying Compelled Edges in DAGs A Smpl Mto or Intyn Compll Es n DAGs S.K.M. Won n D. Wu Dprtmnt o Computr Sn Unvrsty o Rn Rn Ssktwn Cn S4S 0A2 Eml: {won, nwu}@s.urn. Astrt Intyn ompll s s mportnt n lrnn t strutur (.., t DAG) o Bysn ntwork.

More information

DOCUMENT STATUS: LA-S5302-XXXXS LA, SSS, TRICEPS EXTENSION VERY

DOCUMENT STATUS: LA-S5302-XXXXS LA, SSS, TRICEPS EXTENSION VERY RVSON STORY RV T SRPTON O Y //0 RLS OR PROUTON T LN MR ----- L /0/0 UPT SN N OMPONNTS US: S 3-03 (*N TWO PLS ONLY) WS 3-5, PRT 3-00 TO SSMLY. T OLLOWN UPT: 3-30, 3-403, 3-403, 3-40, 3-45, 3-4, 3-5. 30

More information

Computer Graphics. Viewing & Projections

Computer Graphics. Viewing & Projections Vw & Ovrvw rr : rss r t -vw trsrt: st st, rr w.r.t. r rqurs r rr (rt syst) rt: 2 trsrt st, rt trsrt t 2D rqurs t r y rt rts ss Rr P usuy st try trsrt t wr rts t rs t surs trsrt t r rts u rt w.r.t. vw vu

More information

Data-Parallel Primitives for Spatial Operations Using PM. Quadtrees* primitives that are used to construct the data. concluding remarks.

Data-Parallel Primitives for Spatial Operations Using PM. Quadtrees* primitives that are used to construct the data. concluding remarks. Dt-rlll rmtvs or Sptl Oprtons Usn M Qutrs* Erk G. Hol Hnn Smt Computr Sn Dprtmnt Computr Sn Dprtmnt Cntr or Automton Rsr Cntr or Automton Rsr Insttut or Avn Computr Sns Insttut or Avn Computr Sns Unvrsty

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

18 Basic Graph Properties

18 Basic Graph Properties O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

D t r l f r th n t d t t pr p r d b th t ff f th l t tt n N tr t n nd H n N d, n t d t t n t. n t d t t. h n t n :.. vt. Pr nt. ff.,. http://hdl.handle.net/2027/uiug.30112023368936 P bl D n, l d t z d

More information

Graph Search Algorithms

Graph Search Algorithms Grp Sr Aortms 1 Grp 2 No ~ ty or omputr E ~ ro or t Unrt or Drt A surprsny r numr o omputton proms n xprss s rp proms. 3 Drt n Unrt Grps () A rt rp G = (V, E), wr V = {1,2,3,4,5,6} n E = {(1,2), (2,2),

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION RV T RVSON STORY SRPTON O Y 0-0-0 PROUTON RLS K. N NOTS:. SRL LL NORMTON: a) VOLTS: V b) MPS:.0 c) YLS: N/ d) WTTS: W e) PS: N/ f) PX #: PX. RTTON LOOS: S / / LN R WT SOPROPYL LOLOL PROR TO PLN.. PK M:

More information

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 orthstar expressly reserves its common law copyright and other property rights for all ideas, provisions and plans represented or indicated by these drawings,

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

A New Interface to Render Graphs Using Rgraphviz

A New Interface to Render Graphs Using Rgraphviz A Nw Intr to Rnr Grps Usn Rrpvz Florn Hn Otor 30, 2017 Contnts 1 Ovrvw 1 2 Introuton 1 3 Dult rnrn prmtrs 3 3.1 Dult no prmtrs....................... 4 3.2 Dult prmtrs....................... 6 3.3 Dult

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Isomorphism In Kinematic Chains

Isomorphism In Kinematic Chains Intrntonl Journl o Rsr n Ennrn n Sn (IJRES) ISSN (Onln): 0-, ISSN (Prnt): 0- www.rs.or Volum Issu ǁ My. 0 ǁ PP.0- Isomorpsm In Knmt Cns Dr.Al Hsn Asstt.Prossor, Dprtmnt o Mnl Ennrn, F/O- Ennrn & Tnoloy,

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

T H E S C I E N C E B E H I N D T H E A R T

T H E S C I E N C E B E H I N D T H E A R T A t t R u r s - L x C t I. xtr turs t Lx Ct Rurs. Rr qurtr s s r t surt strutur. Ts Att Rurs rv ut us, s srt t tr t rtt rt yur t w yu ru. T uqu Lx st ut rv ss ts ss t t y rt t tys t r ts w wr rtts. Atrx

More information

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

More information

DOCUMENT STATUS: CORE HEALTH & FITNESS, LLC IL-D2002-XXAAX IP,DUAL ADJUSTIBLE PULLEY MATERIAL SEE BOM FINISH N/A N/A SHEET SIZE: B SCALE: 1:33.

DOCUMENT STATUS: CORE HEALTH & FITNESS, LLC IL-D2002-XXAAX IP,DUAL ADJUSTIBLE PULLEY MATERIAL SEE BOM FINISH N/A N/A SHEET SIZE: B SCALE: 1:33. NOTS: RVSON STORY RV T SRPTON O Y //04 RLS OR PROUTON 433 P 34 55 033 OUMNT STTUS: NOT O PROPRTRY NORMTON TS OUMNT SLL NOT RPROU NOR SLL T NORMTON ONTN RN US Y OR SLOS TO OTR XPT S XPRSSLY UTORZ Y OR LT

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

More information

NUCON NRNON CONRNC ON CURRN RN N CHNOOGY, 011 oo uul o w ul x ol volv y y oll. y ov,., - o lo ll vy ul o Mo l u v ul (G) v Gl vlu oll. u 3- [11]. 000

NUCON NRNON CONRNC ON CURRN RN N CHNOOGY, 011 oo uul o w ul x ol volv y y oll. y ov,., - o lo ll vy ul o Mo l u v ul (G) v Gl vlu oll. u 3- [11]. 000 NU O HMB NRM UNVRY, HNOOGY, C 8 0 81, 8 3-1 01 CMBR, 0 1 1 l oll oll ov ll lvly lu ul uu oll ul. w o lo u uol u z. ul l u oll ul. quk, oll, vl l, lk lo, - ul o u v (G) v Gl o oll. ul l u vlu oll ul uj

More information

Dental PBRN Study: Reasons for replacement or repair of dental restorations

Dental PBRN Study: Reasons for replacement or repair of dental restorations Dntl PBRN Stuy: Rsons or rplmnt or rpr o ntl rstortons Us ts Dt Collton Form wnvr stuy rstorton s rpl or rpr. For nrollmnt n t ollton you my rpl or rpr up to 4 rstortons, on t sm ptnt, urn snl vst. You

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

A Gentle Introduction to Matroid Algorithmics

A Gentle Introduction to Matroid Algorithmics A Gntl Introuton to Mtro Alortms Mtts F. Stllmnn Aprl, 06 Mtro xoms T trm mtro ws rst us n 9 y Hsslr Wtny []. ovrvw oms rom t txtooks o Lwlr [] n Wls []. Most o t mtrl n ts A mtro s n y st o xoms wt rspt

More information