Example 2.2 [Ribbed slab design]

Size: px
Start display at page:

Download "Example 2.2 [Ribbed slab design]"

Transcription

1 Example 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. The joists which are spaced at 400mm are supported by girders. The overall depth of the slab without finishing materials is 300mm. Imposed load of 1.5KN/m 2 for partition and fixture is considered in the design. In addition, the floor has a floor finish material of 3cm marble over a 2cm cement screed and it ha 2cm plastering as ceiling. Take the unit weight of ribbed block to be 2KN/m2. Use: C 20/25 S 300 Class 1 works a) Analyze the ribbed slab system, considering the effects of loading pattern b) Design the ribbed slab system 1

2 Solution: Step 1:Material property Concrete: fctk, 0.05 = 1.5Mpa fctm = 2.2Mpa ɤc = 1.5 Rebar fck = 20Mpa, fcu = 25Mpa fcd = = 11.33Mpa fyk = 300Mpa fyd = fyk 1.15 = Mpa ɛyd = fyd Es = = 1.74 Step 2: Verify if the general requirements for Rib slab are met using Euro Code 2 1. The centers of the ribs should not exceed 1.5 m: - This is satisfied, as the center-to-center spacing between the ribs is 400mm. 2. The depth of ribs excluding topping should not exceed four times their average width. - Also satisfied as 80 x 4 > 240 mm. 3. The minimum rib width should be determined by consideration of cover, bar spacing and fire resistance - BS 8110 code - recommends 125 mm, - Assume for this example the conditions are satisfied hence assume requirement satisfied. 4. The thickness of structural topping or flange should not be less than 50mm or one tenth of the clear distance between ribs mm satisfies this requirement. Step 3: Loading Dead load: Joist 0.2 * 0.08 * 25 = 0.4 Topping 0.4 * 0.06 * 25 = 0.6 Floor finish 0.4 * 0.03 * 27 = 0.32 Cement Screed 0.4 * 0.02 * 23 =

3 Plastering 0.4 * 0.02 * 23 = Partition and fittings 0.4*1.5 = 0.6 Ribbed block 0.4 * 2 = 0.8 Live load: G k = KN/m Q k = 4KN/m 2 * 0.4 = 1.6 KN/m Design load: Gd = 1.35 Gk = = 4.174KN/m Qd = 1.5 Qk = = 2.4KN/m Step 4: Analysis (for Ribs) i) Full design load ii) Maximum support moment [at B and C] 3

4 iii) For maximum span moment [ at span AB and CD] iv) Maximum span moment [ at BC] 4

5 v) Only dead load acting - Moment envelope diagram for the rib - Maximum reaction envelope - Minimum reaction envelope 5

6 Step 5.Loading on Girders - Assume Width of girders A, D.W=300mm B, C.W=600mm For all girders...d=300mm - Note: the section should be checked for serviceability Self-weight: A & D = 0.3 x 0.3 x 25 = 2.25 KN. m B&C = 0.6 x 0.3 x 25 = 4.5 KN. m Design loads: A & D Gd = 1.35 x2.25 = 3.04 KN. m B & C. Gd= 1.35 x4.5 = 6.08 KN. M Step 6. Analysis of Girders i. For Girder on axis A and D - To get to maximum support moment [at 2] From the maximum reaction of the Ribs divided by the rib spacing at A and D =10.67 KN.m Total load W= = KN.m 6

7 - To get maximum span moment on girder A & D at 12 & 23 From the maximum reaction of the Ribs divided by the rib spacing A & D =10.67 KN.m From the minimum reaction of the Ribs divided by the rib spacing 6.24 =15.52 KN.m Moment envelop for girder A and D 7

8 ii. For Girder on axis B and C - Loading: Self-weight = 6.08 KN.m Reactions from the ribs (divided by the rib spacing) 29.8 = 74.5 KN. mand = KN. m To get maximum support moment [at 2 ] - To get maximum span moment [at 12 or 23 ] 8

9 - Moment envelop diagram for girders on axis B and C Step 7.Loading on the Beam. Axis 1, 2 and 3 - Self-weight width= 200 mm Depth= 300 mm N.B: cross section should be checked for serviceability. Since there are columns at the intersection of the beams and girders, the beams will only support their own loads. DL = 0.2 x 0.3 x 25 = 1.5 KN/m Gd= 1.35 x 1.5 = KN/m - Beam analysis 9

10 Step 8. Design 1. Rib design Cross section at span h f = 60 mm b w = 80 mm h = 260 mm Take cover 15 mm d = = 233 mm - Effective width computation b eff,i = 0.2b i + 0.1l o 0.2l o I. For end span(sagging moment) l o = 0.85l 1 l o = = 3400mm b 1 = b 2 = 160 mm b eff 1 = b eff 2 = 372 < 680 < b 1 10

11 b eff = b eff,i + b w b b eff = NOT OK b eff = 400 mm II. For interior sagging moment (+ve) l o = 0.7l 2 l o = = 2800mm b 1 = b 2 = 160 mm b eff 1 = b eff 2 = 312 < 560 < b 1 b eff = b eff,i + b w b b eff = NOT OK III. For support hogging moment (-ve) l o = 0.15(l 1 + l 2 ) l o = 1200mm b 1 = b 2 = 160 mm b eff 1 = b eff 1 = 152 < 240 < b 1 b eff = b eff,i + b w b b eff = OK b eff = 400 mm b eff = 384 mm Note: However since it is a negative moment the width of the compression zone will be, b= 80mm - Design of the T-section A. Positive span moment AB and CD 11

12 M sd = KNm b eff = 400 mm d = 233mm f cd = mpa f yd = mpa µ sd = M sd f cd bd 2 = Nmm = μ sd < μ sd,lim = Singly reinforced K x = X = K x d = mm < h f design as a rectangular section K z = Z = K z d = mm A s = M sd f yd Z = Nmm = mm A smin = 0.26f ctm f yk b t d where b t = b w d = 233mm f ctm = 2.2 mpa f yk = 300 mpa A smin = mm 2 < A s OK! using 12 a s = 113.1mm 2 n = A s a s = use 2 12bottom bars B. Negative moment on the rib support B and C M sd = KNm b w = 80 mm d = 233mm f cd = mpa f yd = mpa µ sd = M sd f cd bd 2 = Nmm = μ sd < μ sd,lim = Singly reinforced K z = 0.88 Z = K z d = mm A s = M sd f yd Z = Nmm = mm2 A smin = 0.26f ctm f yk b t d where b t = b w d = 233mm f ctm = 2.2 mpa f yk = 300 mpa A smin = mm 2 < A s OK! 12

13 using 12 a s = 113.1mm 2 C. Span moment between B and C n = A s a s = use 2 12 bars at the top M sd = 4.63 KNm b eff = 400 mm d = 233mm f cd = mpa f yd = mpa µ sd = M sd f cd bd 2 = Nmm = μ sd < μ sd,lim = Singly reinforced K x = 0.07 X = K x d = mm < h f design as a rectangular section. K z = Z = K z d = mm A s = M sd f yd Z = Nmm = 77.33mm2 A smin = 0.26f ctm f yk b t d where b t = b w d = 233mm f ctm = 2.2 mpa f yk = 300 mpa A smin = mm 2 < A s OK! using 12 a s = 113.1mm 2 n = A s a s = use 2 12 bottom bars Note: For the shear design of the ribs, refer to Example 2.3 for ribbed slabs. 2. Girder design a. Girder at A and D - Positive span moment M sd = KNm b w = 300 mm D = 300 mm f cd = mpa f yd = mpa d = = 259 mm µ sd = M sd f cd bd 2 = Nmm = μ sd < μ sd,lim = Singly reinforced K z = Z = K z d = mm A s = M sd f yd Z = Nmm = mm2 13

14 A smin = 0.26f ctm f yk b t d where b t = b w d = 259 mm f ctm = 2.2 mpa f yk = 300 mpa A smin = mm 2 < A s OK! using 16a s = mm 2 n = A s a s = use 4 16 bottom bars - Negative support moment M sd = KNm b w = 300 mm D = 300 mm f cd = mpa f yd = mpa d = = 259 mm µ sd = M sd f cd bd 2 = Nmm = μ sd < μ sd,lim = Singly reinforced K z = Z = K z d = mm A s = M sd f yd Z = Nmm = mm2 A smin = 0.26f ctm f yk b t d where b t = b w d = 259 mm f ctm = 2.2 mpa f yk = 300 mpa A smin = mm 2 < A s OK! using 16 a s = mm 2 n = A s a s = use 6 16 bottom bars b. Girder at B and C Positive span moment M sd = KNm b w = 600 mm D = 300 mm f cd = mpa f yd = mpa d = = 257 mm µ sd = M sd f cd bd 2 = Nmm = μ sd < μ sd,lim = Singly reinforced K z = Z = K z d = mm A s = M sd f yd Z = Nmm = mm2 14

15 A smin = 0.26f ctm f yk b t d where b t = b w d = 259 mm f ctm = 2.2 mpa f yk = 300 mpa A smin = mm 2 < A s OK! using 20a s = 314mm 2 n = A s a s = use 6 20 bottom bars Negative support moment M sd = KNm b w = 600 mm D = 300 mm f cd = mpa f yd = mpa d = = 257 mm µ sd = M sd f cd bd 2 = Nmm = μ sd > μ sd,lim = Doubly reinforced section K z,lim = M sd,lim = µ sd,lim f cd bd 2 = = KNm Z = K z,lim d = = mm A s1 = M sd,lim Zf yd use Compression reinforcement design + M sd,s M sd,lim ( ) 106 = + f yd (d d 2) (257 35) = mm 2 - Check if the reinforcement has yielded d 2 d = = 0.14ε s2 = 2.6 (read from chart) ε s2 = 2.6 > ε yd use f yd = Calculate the stress in the concrete at the level of compression reinforcement to avoid double counting of area. ε cs2 = 2.6 2, Therefore, we take ε c = 3.5 and σ cd,s2 = mpa 15

16 A 1 s2= (σ s2 σcd,s2 ) (M sds M sd,lim d d2 = 1 ) ( ) (( ) 106 (257 35) = mm 2 use Beams Design i) Negative support moment M sd = 3.491KNm b w = 200 mm D = 300 mm f cd = mpa f yd = mpa d = = 261 mm µ sd = M sd f cd bd 2 = Nmm = μ sd < μ sd,lim = Singly reinforced K z = Z = K z d = mm A s = M sd f yd Z = Nmm = 52.04mm2 A smin = 0.26f ctm f yk b t d where b t = b w = 200 d = 261 mm f ctm = 2.2 mpa f yk = 300 mpa A smin = 99.52mm 2 > A s Not OK! using 12a s = mm 2 n = A s,min a s = 0.88 use 2 12 bottom bars Use 2 12 bottom and top bar for the total lenth of the beam. Step 8. Transverse reinforcement Secondary reinforcement is required for temperature and shrinkage. A s2 = 20% A s,min A s2 = 0.12% A topping Spacing S = ba s A s use 8 c c 200 mm 16

17 Step 9. Detailing 17

18 18

CHAPTER 4. Design of R C Beams

CHAPTER 4. Design of R C Beams CHAPTER 4 Design of R C Beams Learning Objectives Identify the data, formulae and procedures for design of R C beams Design simply-supported and continuous R C beams by integrating the following processes

More information

Design of AAC wall panel according to EN 12602

Design of AAC wall panel according to EN 12602 Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

More information

Bending and Shear in Beams

Bending and Shear in Beams Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,

More information

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0.

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0. Example (8.1): Using the ACI Code approximate structural analysis, design for a warehouse, a continuous one-way solid slab supported on beams 4.0 m apart as shown in Figure 1. Assume that the beam webs

More information

- Rectangular Beam Design -

- Rectangular Beam Design - Semester 1 2016/2017 - Rectangular Beam Design - Department of Structures and Material Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction The purposes

More information

Reinforced concrete structures II. 4.5 Column Design

Reinforced concrete structures II. 4.5 Column Design 4.5 Column Design A non-sway column AB of 300*450 cross-section resists at ultimate limit state, an axial load of 700 KN and end moment of 90 KNM and 0 KNM in the X direction,60 KNM and 27 KNM in the Y

More information

Annex - R C Design Formulae and Data

Annex - R C Design Formulae and Data The design formulae and data provided in this Annex are for education, training and assessment purposes only. They are based on the Hong Kong Code of Practice for Structural Use of Concrete 2013 (HKCP-2013).

More information

STRUCTURAL ANALYSIS CHAPTER 2. Introduction

STRUCTURAL ANALYSIS CHAPTER 2. Introduction CHAPTER 2 STRUCTURAL ANALYSIS Introduction The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify

More information

DESIGN OF STAIRCASE. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia

DESIGN OF STAIRCASE. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia DESIGN OF STAIRCASE Dr. Izni Syahrizal bin Ibrahim Faculty of Civil Engineering Universiti Teknologi Malaysia Email: iznisyahrizal@utm.my Introduction T N T G N G R h Flight Span, L Landing T = Thread

More information

Serviceability Limit States

Serviceability Limit States Serviceability Limit States www.eurocode2.info 1 Outline Crack control and limitations Crack width calculations Crack width calculation example Crack width calculation problem Restraint cracking Deflection

More information

Assignment 1 - actions

Assignment 1 - actions Assignment 1 - actions b = 1,5 m a = 1 q kn/m 2 Determine action on the beam for verification of the ultimate limit state. Axial distance of the beams is 1 to 2 m, cross section dimensions 0,45 0,20 m

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

REINFORCED CONCRETE DESIGN 1. Design of Column (Examples and Tutorials)

REINFORCED CONCRETE DESIGN 1. Design of Column (Examples and Tutorials) For updated version, please click on http://ocw.ump.edu.my REINFORCED CONCRETE DESIGN 1 Design of Column (Examples and Tutorials) by Dr. Sharifah Maszura Syed Mohsin Faculty of Civil Engineering and Earth

More information

3.2 Reinforced Concrete Slabs Slabs are divided into suspended slabs. Suspended slabs may be divided into two groups:

3.2 Reinforced Concrete Slabs Slabs are divided into suspended slabs. Suspended slabs may be divided into two groups: Sabah Shawkat Cabinet of Structural Engineering 017 3. Reinforced Concrete Slabs Slabs are divided into suspended slabs. Suspended slabs may be divided into two groups: (1) slabs supported on edges of

More information

Design of Reinforced Concrete Structures (II)

Design of Reinforced Concrete Structures (II) Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of one-way ribbed slabs After finding the value of total load (Dead and live loads), the elements are

More information

REINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING (ACE009)

REINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING (ACE009) LECTURE NOTES ON REINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING (ACE009) III B. Tech I semester (Regulation- R16) Mr. Gude Ramakrishna Associate Professor DEPARTMENT OF CIVIL ENGINEERING INSTITUTE OF

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - RC Two Way Spanning Slab XX

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - RC Two Way Spanning Slab XX CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 35 N/mm 2 OK Yield strength of

More information

Reinforced Concrete Structures

Reinforced Concrete Structures Reinforced Concrete Structures MIM 232E Dr. Haluk Sesigür I.T.U. Faculty of Architecture Structural and Earthquake Engineering WG Ultimate Strength Theory Design of Singly Reinforced Rectangular Beams

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

More information

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2 Detailing Lecture 9 16 th November 2017 Reinforced Concrete Detailing to Eurocode 2 EC2 Section 8 - Detailing of Reinforcement - General Rules Bar spacing, Minimum bend diameter Anchorage of reinforcement

More information

Practical Design to Eurocode 2

Practical Design to Eurocode 2 Practical Design to Eurocode 2 The webinar will start at 12.30 (Any questions beforehand? use Questions on the GoTo Control Panel) Course Outline Lecture Date Speaker Title 1 21 Sep Jenny Burridge Introduction,

More information

Serviceability Deflection calculation

Serviceability Deflection calculation Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

More information

CONSULTING Engineering Calculation Sheet. Job Title Member Design - Reinforced Concrete Column BS8110

CONSULTING Engineering Calculation Sheet. Job Title Member Design - Reinforced Concrete Column BS8110 E N G I N E E R S Consulting Engineers jxxx 1 Job Title Member Design - Reinforced Concrete Column Effects From Structural Analysis Axial force, N (tension-ve and comp +ve) (ensure >= 0) 8000kN OK Major

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Beam BS8110 v Member Design - RC Beam XX

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Beam BS8110 v Member Design - RC Beam XX CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Effects From Structural Analysis Design axial force, F (tension -ve and compression +ve) (ensure < 0.1f cu b w h 0

More information

10/14/2011. Types of Shear Failure. CASE 1: a v /d 6. a v. CASE 2: 2 a v /d 6. CASE 3: a v /d 2

10/14/2011. Types of Shear Failure. CASE 1: a v /d 6. a v. CASE 2: 2 a v /d 6. CASE 3: a v /d 2 V V Types o Shear Failure a v CASE 1: a v /d 6 d V a v CASE 2: 2 a v /d 6 d V a v CASE 3: a v /d 2 d V 1 Shear Resistance Concrete compression d V cz = Shear orce in the compression zone (20 40%) V a =

More information

Example 4.1 [Uni-axial Column Design] Solution. Step 1- Material Step 2-Determine the normalized axial and bending moment value

Example 4.1 [Uni-axial Column Design] Solution. Step 1- Material Step 2-Determine the normalized axial and bending moment value Example 4.1 [Uni-axial Column Design] 1. Design the braced short column to sustain a design load of 1100 KN and a design moment of 160KNm which include all other effects.use C5/30 and S460 class 1 works

More information

TABLE OF CONTANINET 1. Design criteria. 2. Lateral loads. 3. 3D finite element model (SAP2000, Ver.16). 4. Design of vertical elements (CSI, Ver.9).

TABLE OF CONTANINET 1. Design criteria. 2. Lateral loads. 3. 3D finite element model (SAP2000, Ver.16). 4. Design of vertical elements (CSI, Ver.9). TABLE OF CONTANINET 1. Design criteria. 2. Lateral loads. 2-1. Wind loads calculation 2-2. Seismic loads 3. 3D finite element model (SAP2000, Ver.16). 4. Design of vertical elements (CSI, Ver.9). 4-1.

More information

Bridge deck modelling and design process for bridges

Bridge deck modelling and design process for bridges EU-Russia Regulatory Dialogue Construction Sector Subgroup 1 Bridge deck modelling and design process for bridges Application to a composite twin-girder bridge according to Eurocode 4 Laurence Davaine

More information

PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT

PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT Structural Concrete Software System TN191_PT7_punching_shear_aci_4 011505 PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT 1. OVERVIEW Punching shear calculation applies to column-supported slabs, classified

More information

SERVICEABILITY LIMIT STATE DESIGN

SERVICEABILITY LIMIT STATE DESIGN CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL When the height of the retaining wall exceeds about 6 m, the thickness of the stem and heel slab works out to be sufficiently large and the design becomes

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Staircase BS8110

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Staircase BS8110 CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 30 N/mm 2 OK Yield strength of

More information

Mechanics of Structure

Mechanics of Structure S.Y. Diploma : Sem. III [CE/CS/CR/CV] Mechanics of Structure Time: Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1(a) Attempt any SIX of the following. [1] Q.1(a) Define moment of Inertia. State MI

More information

NAGY GYÖRGY Tamás Assoc. Prof, PhD

NAGY GYÖRGY Tamás Assoc. Prof, PhD NAGY GYÖRGY Tamás Assoc. Prof, PhD E mail: tamas.nagy gyorgy@upt.ro Tel: +40 256 403 935 Web: http://www.ct.upt.ro/users/tamasnagygyorgy/index.htm Office: A219 SIMPLE SUPORTED BEAM b = 15 cm h = 30 cm

More information

Composite bridge design (EN1994-2) Bridge modelling and structural analysis

Composite bridge design (EN1994-2) Bridge modelling and structural analysis EUROCODES Bridges: Background and applications Dissemination of information for training Vienna, 4-6 October 2010 1 Composite bridge design (EN1994-2) Bridge modelling and structural analysis Laurence

More information

Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension

Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension but strong in compression Steel tendon is first stressed

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet CONSULTING Engineering Calculation Sheet jxxx 1 Effects From Structural Analysis Design axial force, F (tension -ve and compression +ve) (ensure < 0.1f cu b w h 0 kn OK Design shear force, V d 4223 kn

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Effects From Structural Analysis Design axial force, F (tension -ve and compression +ve) (ensure < 0.1f cu b w h 0

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.10 Examples 5.10.1 Analysis of effective section under compression To illustrate the evaluation of reduced section properties of a section under axial compression. Section: 00 x 80 x 5 x 4.0 mm Using

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19 CIVIL ENGINEERING

More information

Appendix K Design Examples

Appendix K Design Examples Appendix K Design Examples Example 1 * Two-Span I-Girder Bridge Continuous for Live Loads AASHTO Type IV I girder Zero Skew (a) Bridge Deck The bridge deck reinforcement using A615 rebars is shown below.

More information

Practical Design to Eurocode 2

Practical Design to Eurocode 2 Practical Design to Eurocode 2 The webinar will start at 12.30 (I m happy to field individual questions beforehand Use Questions on the shown Control Panel) Course Outline Lecture Date Speaker Title 1

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

FRAME ANALYSIS. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia

FRAME ANALYSIS. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia FRAME ANALYSIS Dr. Izni Syahrizal bin Ibrahim Faculty of Civil Engineering Universiti Teknologi Malaysia Email: iznisyahrizal@utm.my Introduction 3D Frame: Beam, Column & Slab 2D Frame Analysis Building

More information

SPECIFIC VERIFICATION Chapter 5

SPECIFIC VERIFICATION Chapter 5 As = 736624/(0.5*413.69) = 3562 mm 2 (ADAPT 3569 mm 2, B29, C6) Data Block 27 - Compressive Stresses The initial compressive strength, f ci, is the strength entered in the Material/Concrete input screen.

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Staircase BS8110

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Staircase BS8110 CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 25 N/mm 2 OK Yield strength of

More information

Longitudinal strength standard

Longitudinal strength standard (1989) (Rev. 1 199) (Rev. Nov. 001) Longitudinal strength standard.1 Application This requirement applies only to steel ships of length 90 m and greater in unrestricted service. For ships having one or

More information

Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN and EN Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

More information

Dr. Hazim Dwairi. Example: Continuous beam deflection

Dr. Hazim Dwairi. Example: Continuous beam deflection Example: Continuous beam deflection Analyze the short-term and ultimate long-term deflections of end-span of multi-span beam shown below. Ignore comp steel Beam spacing = 3000 mm b eff = 9000/4 = 2250

More information

Two Way Beam Supported Slab

Two Way Beam Supported Slab Two Way Beam Supported Slab Part 2 The following example was done by Mr. Naim Hassan, 3 rd Year 2 nd Semester Student of CE Dept., AUST 16 The following Example was done by Md. Mahmudun Nobe, ID -.01.03.078,

More information

PROPOSED SATSANG HALL TECHNICAL REPORT

PROPOSED SATSANG HALL TECHNICAL REPORT PROPOSED SATSANG HALL - VERTICAL STRIP V1 1 ------------------------------------------------------------------------------ ADAPT CORPORATION STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

3.4 Reinforced Concrete Beams - Size Selection

3.4 Reinforced Concrete Beams - Size Selection CHAPER 3: Reinforced Concrete Slabs and Beams 3.4 Reinforced Concrete Beams - Size Selection Description his application calculates the spacing for shear reinforcement of a concrete beam supporting a uniformly

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

Roadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement.

Roadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement. Example on Design of Slab Bridge Design Data and Specifications Chapter 5 SUPERSTRUCTURES Superstructure consists of 10m slab, 36m box girder and 10m T-girder all simply supported. Only the design of Slab

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

9-3. Structural response

9-3. Structural response 9-3. Structural response in fire František Wald Czech Technical University in Prague Objectives of the lecture The mechanical load in the fire design Response of the structure exposed to fire Levels of

More information

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com Prof.

More information

UC Berkeley CE 123 Fall 2017 Instructor: Alan Kren

UC Berkeley CE 123 Fall 2017 Instructor: Alan Kren CE 123 - Reinforced Concrete Midterm Examination No. 2 Instructions: Read these instructions. Do not turn the exam over until instructed to do so. Work all problems. Pace yourself so that you have time

More information

mportant nstructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

Concrete and Masonry Structures 1 Office hours

Concrete and Masonry Structures 1 Office hours Concrete and Masonry Structures 1 Petr Bílý, office B731 http://people.fsv.cvut.cz/www/bilypet1 Courses in English Concrete and Masonry Structures 1 Office hours Credit receiving requirements General knowledge

More information

Generation of Biaxial Interaction Surfaces

Generation of Biaxial Interaction Surfaces COPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA AUGUST 2002 CONCRETE FRAE DESIGN BS 8110-97 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

From Table 1 4. DL = [12 lb/ft 2 # in.(6 in.)] (15 ft)(10 ft) = 10,800 lb. LL = (250 lb/ft 2 )(15 ft)(10 ft) = 37,500 lb.

From Table 1 4. DL = [12 lb/ft 2 # in.(6 in.)] (15 ft)(10 ft) = 10,800 lb. LL = (250 lb/ft 2 )(15 ft)(10 ft) = 37,500 lb. 1 1. The floor of a heavy storage warehouse building is made of 6-in.-thick stone concrete. If the floor is a slab having a length of 15 ft and width of 10 ft, determine the resultant force caused by the

More information

Tower Cranes & Foundations The Interface & CIRIA C654 Stuart Marchand C.Eng. FICE FIStructE Director Wentworth House Partnership

Tower Cranes & Foundations The Interface & CIRIA C654 Stuart Marchand C.Eng. FICE FIStructE Director Wentworth House Partnership Tower Cranes & Foundations The Interface & CIRIA C654 Stuart Marchand C.Eng. FICE FIStructE Director Wentworth House Partnership EXAMPLES OF TOWER CRANE FOUNDATION TYPES Rail mounted Pad Base Piled Base

More information

Plastic design of continuous beams

Plastic design of continuous beams Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 4: Plastic design of continuous

More information

Comparative Study of Strengths of Two-Way Rectangular Continuous Slabs with Two Openings Parallel to Long Side and Short Side

Comparative Study of Strengths of Two-Way Rectangular Continuous Slabs with Two Openings Parallel to Long Side and Short Side Volume 6, No. 2, February 17 9 Comparative Study of Strengths of Two-Way Rectangular Continuous Slabs with Two Openings Parallel to Long Side and Short Side D. Manasa, Assistant Professor, Gayatri Vidya

More information

CHAPTER 4. Stresses in Beams

CHAPTER 4. Stresses in Beams CHAPTER 4 Stresses in Beams Problem 1. A rolled steel joint (RSJ) of -section has top and bottom flanges 150 mm 5 mm and web of size 00 mm 1 mm. t is used as a simply supported beam over a span of 4 m

More information

Explanatory Examples for Ductile Detailing of RC Buildings

Explanatory Examples for Ductile Detailing of RC Buildings Document No. :: IITK-GSD-EQ-V3.0 Final Report :: - Earthquake Codes IITK-GSD Project on Building Codes Explanatory Examples or Ductile Detailing o RC Buildings by Dr. R. K. Ingle Department o pplied echanics

More information

spslab v3.11. Licensed to: STRUCTUREPOINT, LLC. License ID: D2DE-2175C File: C:\Data\CSA A Kt Revised.slb

spslab v3.11. Licensed to: STRUCTUREPOINT, LLC. License ID: D2DE-2175C File: C:\Data\CSA A Kt Revised.slb X Z Y spslab v3.11. Licensed to: STRUCTUREPOINT, LLC. License ID: 00000-0000000-4-2D2DE-2175C File: C:\Data\CSA A23.3 - Kt Revised.slb Project: CSA A23.3 - Kt Torsional Stiffness Illustration Frame: Engineer:

More information

ΙApostolos Konstantinidis Diaphragmatic behaviour. Volume B

ΙApostolos Konstantinidis Diaphragmatic behaviour. Volume B Volume B 3.1.4 Diaphragmatic behaviour In general, when there is eccentric loading at a floor, e.g. imposed by the horizontal seismic action, the in-plane rigidity of the slab forces all the in-plane points

More information

FLOW CHART FOR DESIGN OF BEAMS

FLOW CHART FOR DESIGN OF BEAMS FLOW CHART FOR DESIGN OF BEAMS Write Known Data Estimate self-weight of the member. a. The self-weight may be taken as 10 percent of the applied dead UDL or dead point load distributed over all the length.

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

3.5 Analysis of Members under Flexure (Part IV)

3.5 Analysis of Members under Flexure (Part IV) 3.5 Analysis o Members under Flexure (Part IV) This section covers the ollowing topics. Analysis o a Flanged Section 3.5.1 Analysis o a Flanged Section Introduction A beam can have langes or lexural eiciency.

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

Design of RC Sections with Single Reinforcement according to EC2-1-1 and the Rectangular Stress Distribution

Design of RC Sections with Single Reinforcement according to EC2-1-1 and the Rectangular Stress Distribution Design of RC Sections with Single Reinforcement according to EC-1-1 and the Rectangular Stress Distribution Vagelis Plevris 1 and George Papazafeiropoulos 1 Department of Civil Engineering and Energy Technology

More information

Note: For further information, including the development of creep with time, Annex B may be used.

Note: For further information, including the development of creep with time, Annex B may be used. ..4 Creep and shrinkage ()P Creep and shrinkage of the concrete depend on the ambient humidity, the dimensions of the element and the composition of the concrete. Creep is also influenced by the maturity

More information

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR: MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

More information

UNIT 2 PRINCIPLES OF LIMIT STATE DESIGN AND ULTIMATE STRENGTH OF R.C. SECTION: 2.1 Introduction:

UNIT 2 PRINCIPLES OF LIMIT STATE DESIGN AND ULTIMATE STRENGTH OF R.C. SECTION: 2.1 Introduction: UNIT 2 PRINCIPLES OF LIMIT STATE DESIGN AND ULTIMATE STRENGTH OF R.C. SECTION: 2.1 Introduction: A beam experiences flexural stresses and shear stresses. It deforms and cracks are developed. ARC beam should

More information

PASSIVE COOLING DESIGN FEATURE FOR ENERGY EFFICIENT IN PERI AUDITORIUM

PASSIVE COOLING DESIGN FEATURE FOR ENERGY EFFICIENT IN PERI AUDITORIUM PASSIVE COOLING DESIGN FEATURE FOR ENERGY EFFICIENT IN PERI AUDITORIUM M. Hari Sathish Kumar 1, K. Pavithra 2, D.Prakash 3, E.Sivasaranya 4, 1Assistant Professor, Department of Civil Engineering, PERI

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A )

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A ) Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A23.3-94) Slender Concrete Column Design in Sway Frame Buildings Evaluate slenderness effect for columns in a

More information

Design of a Multi-Storied RC Building

Design of a Multi-Storied RC Building Design of a Multi-Storied RC Building 16 14 14 3 C 1 B 1 C 2 B 2 C 3 B 3 C 4 13 B 15 (S 1 ) B 16 (S 2 ) B 17 (S 3 ) B 18 7 B 4 B 5 B 6 B 7 C 5 C 6 C 7 C 8 C 9 7 B 20 B 22 14 B 19 (S 4 ) C 10 C 11 B 23

More information

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and DYB 654: ADVANCED STEEL STRUCTURES - II Assoc.Prof.Bülent AKBAŞ Crown Hall at IIT Campus Chicago. Illinois Ludwig Mies van der Rohe Department of Earthquake and Structuralt Engineering i Composite Beams

More information

S TRUCTUR A L PR E- A N A LYSIS TA B LES

S TRUCTUR A L PR E- A N A LYSIS TA B LES M a d e f o r b u i l d i n g b u i l t f o r l i v i n g S TRUTUR A L PR E- A N A LYSIS TA LES I M P R I N T KLH Massivholz GmbH Publisher and responsible for the content: KLH Massivholz GmbH Version:

More information

Module 13. Working Stress Method. Version 2 CE IIT, Kharagpur

Module 13. Working Stress Method. Version 2 CE IIT, Kharagpur Module 13 Working Stress Method Lesson 35 Numerical Problems Instructional Objectives: At the end of this lesson, the student should be able to: employ the equations established for the analysis and design

More information

Chapter. Materials. 1.1 Notations Used in This Chapter

Chapter. Materials. 1.1 Notations Used in This Chapter Chapter 1 Materials 1.1 Notations Used in This Chapter A Area of concrete cross-section C s Constant depending on the type of curing C t Creep coefficient (C t = ε sp /ε i ) C u Ultimate creep coefficient

More information

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

More information

Strengthening of columns with FRP

Strengthening of columns with FRP with FRP Professor Dr. Björn Täljsten Luleå University of Technology Sto Scandinavia AB 9/12/2013 Agenda Case study Restrained transverse expansion (confinement) Circular and rectangular cross sections

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk Topics Addressed Shear Stresses in Rectangular Beams Diagonal Tension

More information

Beam Design and Deflections

Beam Design and Deflections Beam Design and Deflections tation: a = name for width dimension A = name for area Areq d-adj = area required at allowable stress when shear is adjusted to include self weight Aweb = area of the web of

More information

Characteristic Cylinder Strength. Characteristic axial tensile strength of concrete. coefficient related to bond condition

Characteristic Cylinder Strength. Characteristic axial tensile strength of concrete. coefficient related to bond condition Customer: Job No.: Date: 0..8 Reinforcement Design for TSS 4G fck : 35 MPa 5076.3 psi Characteristic Cylinder Strength fcd : Design Compressive Strength fctk0_05 fctd.0 f ck 3384.4 psi.5 :. MPa Characteristic

More information

Civil Engineering 16/05/2008

Civil Engineering 16/05/2008 1 App'd by RAFT FOUNDATION DESIGN (BS8110 : Part 1 : 1997) TEDDS calculation version 1.0.02; Library item - Raft title A sedgetop A sslabtop A sedgelink h slab h edge h hcoreslab a edge A sslabbtm h hcorethick

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by:

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by: 5.11. Under-reinforced Beams (Read Sect. 3.4b oour text) We want the reinforced concrete beams to fail in tension because is not a sudden failure. Therefore, following Figure 5.3, you have to make sure

More information