10/14/2011. Types of Shear Failure. CASE 1: a v /d 6. a v. CASE 2: 2 a v /d 6. CASE 3: a v /d 2

Size: px
Start display at page:

Download "10/14/2011. Types of Shear Failure. CASE 1: a v /d 6. a v. CASE 2: 2 a v /d 6. CASE 3: a v /d 2"

Transcription

1 V V Types o Shear Failure a v CASE 1: a v /d 6 d V a v CASE 2: 2 a v /d 6 d V a v CASE 3: a v /d 2 d V 1

2 Shear Resistance Concrete compression d V cz = Shear orce in the compression zone (20 40%) V a = Interlocking between aggregates (35 50%) V Steel tension V d = Dowel action (35 50%) Shear orce is transmitted through the crack member by a combination o the uncracked concrete in compression zone, V cz, the dowelling action o the lexural reinorcement, V d and aggregate interlocking across tension cracks, V a EC2 Shear Design EC 2 introduces the strut inclination method or shear capacity checks. In this method the shear is resisted by concrete struts acting in compression and shear reinorcement acting in tension. 2

3 z = 0.9d 10/14/2011 EC2: Cl EC2: Cl Assumed truss model or the strut inclination method Concrete strut in compression Vertical shear steel in tension d z cot Longitudinal steel in tension b w V Ed z z cos cd b w z cos V Rd, max V Ed sin V Ed cot V Ed 3

4 (1) Diagonal Compressive Strut V Rd, max = [ cd (b w z cos θ)] sin θ = cd b w z cos θ sin θ In EC2 this equation is modiied by the inclusion o a strength reduction actor or concrete cracked in shear v 1 and the introduction o coeicient taking account o the state o the stress in compression chord α cw thus, V Rd, max = α cw v 1 cd b w z / (cot θ + tan θ) = α cw v 1 ( ck /1.5) b w (0.9d) / (cot θ + tan θ) = α cw v ck b w d / (cot θ + tan θ) (1) Diagonal Compressive Strut It is set by the EC2 to limit the θ value between 22 to 45. The recommended value or α cw and v 1 are given in Cl EC2. For the purpose o this module the ollowing values are used: α cw = 1.0 and v 1 = 0.6 (1 ck /250), hence V Rd,max 0 ck.36 ckbwd (1 / 250) (cot tan ) 4

5 (2) Vertical Shear Reinorcement The shear resistance o the link is given by V Ed = V Rd, s = ywd A sw = ( yk / 1.15) A sw = 0.87 yk A sw (2) Vertical Shear Reinorcement I the links are spaced at a distance s apart, then the shear resistance o the link is increased proportionately and is given by; V Ed = V Rd, s = 0.87 yk A sw (z cot θ / s) = 0.87 yk A sw (0.9d cot θ / s) = 0.78 yk A sw d (cot θ / s) 5

6 (2) Vertical Shear Reinorcement Thus, rearranging them gives; A sw s V Ed 0.78 ykd cot (2) Vertical Shear Reinorcement EC2 (Cl ) speciies a minimum value or A sw /s such that; A sw s b w yk ck EC2 (Cl ) also speciies that the maximum spacing o vertical link, s should not exceed 0.75d. 6

7 Redesign section 10/14/2011 (3) Additional Longitudinal Force The longitudinal tensile orce, F td is caused by the horizontal component required to balance the compressive orce in the inclined concrete strut; Longitudinal orce = (V Ed /sin ) cos = V Ed cot Assumed hal o this orce is carried by the reinorcement in the tension zone o the beam, then the additional tensile orce provided in the tensile zone is given by; F td = 0.5V Ed cot θ Shear Design Procedure in EC2 Start Determine shear orce, V Ed Determine V Rd, max or cot = 1.0 ( = 45) and cot = 2.5 ( = 22) V Rd,max 0 ck.36 ckbwd (1 / 250) (cot tan ) I V Ed V Rd, max cot = 1.0 I V Ed V Rd, max cot = 2.5 I V Rd, max cot θ = 2.5 V Ed V Rd, max cot θ = 1.0 A B 7

8 Shear Design Procedure in EC2 A Calculate shear reinorcement using cot = 2.5 Asw VEd V s 0.78 d cot d yk yk Ed C Shear Design Procedure in EC2 B Calculate 0.5sin 1 VEd 0.18bwdck (1 ck / 250) Calculate shear links A s sw VEd.78 d cot 0 yk C 8

9 Shear Design Procedure in EC2 C Calculate minimum links required by EC2: Cl (5) and s 0.75d D Yes Flanged beam? No Calculate additional longitudinal tensile orce caused by shear End Example 1 Design the required shear reinorcement rom the beam section shown below. Take yk = 500 N/mm 2 and ck = 30 N/mm kn/m 225 mm 8 m 2H16 d = 500 mm 3H25 (1473 mm 2 ) 9

10 Example 1: Solution Maximum shear orce; V Ed = wl/2 = /2 = 400 kn Concrete strut capacity; V Rd, max = 0.36b w d ck (1 ck /250) / (cot + tan ) = (1 30/250) (cot + tan ) or = 22, cot = 2.5 V Rd, max = 371 kn = 45, cot = 1.0 V Rd, max = 535 kn V Rd, max cot = 2.5 (371 kn) V Ed (400 kn) V Rd, max cot = 1.0 (535 kn) Thereore, 22 Example 1: Solution = 0.5sin -1 [V Ed / 0.18b w d ck (1 ck /250)] = 0.5sin (1 30/250) = 24.2 tan = 0.45 ; cot = 2.22 Shear links; A sw /s = V Ed / 0.78 yk dcot = / ( ) =

11 Example 1: Solution Try link: H10 A sw = 157 mm 2 Spacing, s = 157/0.923 Minimum links; A sw /s = 170 mm s max = 0.75d (375 mm) = 0.08 ck 1/2 b w / yk = 0.08 (30) 1/2 225 / 500 = Try link: H10 A sw = 157 mm 2 Spacing, s = 157/0.197 Provide H mm = 797 mm s max = 0.75d (375 mm) Provide H mm Example 1: Solution V min = (A sw /s)(0.78d yk cot ) H H H m 4.33 m 1.83 m

12 Example 1: Solution Additional longitudinal reinorcement; Additional tensile orce, F td = 0.5V Ed cot = = 445 kn Additional tension reinorcement, A s = F td / 0.87 yk = / = 1022 mm 2 Provide 3H25 ( 1473 mm 2 ) Flanged Beam Shear between the web and langed o a langed section 12

13 Flanged Beam The longitudinal shear stress, v Ed at the web-lange interace is determine according to; where: F d v Ed M ( b b x ( d h / 2) b w ( h ) / 2 F d. x) M = the change in moment over the distance x x = hal the distance between the sections with zero moment and that where maximum moment occurs. Where point loads occur, x should not exceed the distance between the loads. Flanged Beam The concrete strut capacity o the lange is given by; v Rd = v cd sin cos = 0.6 (1 ck /250) ( ck /1.5) sin cos = 0.4 ck (1 ck /250) (cot + tan ) The permitted range o the values o cot are recommended as ollows: 1.0 cot 2.0 or compression langes ( ) 1.0 cot 1.25 or tension langes ( ) 13

14 Flanged Beam: Design Procedure D Calculate longitudinal design shear stress, v Ed v Ed Fd ( h. x) F Yes v Ed 0.27 ctk 0.4 ctd = 0.4( ctk /1.5) = 0.27 ctk No Check the stresses in the incline strut. Compare v Ed with v Rd, max F Yes No Use min v Ed v Rd, max E Flanged Beam: Design Procedure E Calculate and cot 0.5sin ck ved (1 ck / 250) F Calculate transverse shear reinorcement A s s vedh 0.87 cot yk Calculate minimum transverse steel area where b = 1000 mm Calculate additional longitudinal tensile orce caused by shear End 14

15 d = 530 mm d = 45 mm 10/14/2011 Example 2 Design the required shear reinorcement rom the beam section shown below. Take yk = 500 N/mm 2 and ck = 25 N/mm kn/m 9 m 600 mm 2H mm 3H mm Example 2: Solution Maximum shear orce; V Ed = wl/2 = /2 = 405 kn Concrete strut capacity; V Rd, max = 0.36b w d ck (1 ck /250) / (cot + tan ) = (1 25/250) (cot + tan ) or = 22, cot = 2.5 V Rd, max = 373 kn = 45, cot = 1.0 V Rd, max = 537 kn V Rd, max cot = 2.5 (373 kn) V Ed (405 kn) V Rd, max cot = 1.0 (537 kn) Thereore, 22 15

16 Example 2: Solution = 0.5sin -1 [V Ed / 0.18b w d ck (1 ck /250)] = 0.5sin (1 25/250) = 24.5 tan = 0.46 ; cot = 2.19 Shear links; A sw /s = V Ed / 0.78 yk dcot = / ( ) = Example 2: Solution Try link: H10 A sw = 157 mm 2 Spacing, s = 157/0.893 Minimum links; A sw /s = 176 mm s max = 0.75d (398 mm) = 0.08 ck 1/2 b w / yk = 0.08 (25) 1/2 250 / 500 = Try link: H10 A sw = 157 mm 2 Spacing, s = 157/0.200 Provide H mm = 786 mm s max = 0.75d (398 mm) Provide H mm 16

17 Example 2: Solution V min = (A sw /s)(0.78d yk cot ) H H H m 4.76 m 2.12 m Example 2: Solution Transverse steel in the lange; x = 0.5(L/2) = 9000/4 = 2250 mm Change o moment over distance x rom zero moment: M = (wl/2)(l/4) (wl/4)(l/8) = knm Change in longitudinal orce; M ( b bw ) / 2 Fd x ( d h / 2) b = ( ) (530 55) (2 600) = 420 kn 17

18 Example 2: Solution Longitudinal shear stress; v Ed = F td / (h x) = / ( ) = 1.70 N/mm 2 Since v Ed (1.70 N/mm 2 ) 0.27 ctk = = 0.49 N/mm 2 Transverse steel reinorcement is required Example 2: Solution Concrete strut capacity in the lange; v Rd, max = 0.4 ck (1 ck /250) / (cot + tan ) = (1 25/250) (cot + tan ) or = 27, cot = 2.0 v Rd, min = 3.59 N/mm 2 = 45, cot = 1.0 v Rd, max = 4.50 N/mm 2 v Ed (1.70 N/mm 2 ) v Rd, min cot = 2.0 (3.59 N/mm 2 ) and v Ed (1.70 N/mm 2 ) V Rd, max cot = 1.0 (4.50 N/mm 2 ) Thereore, use = 27 ; tan = 0.50 ; cot =

19 Example 2: Solution Transverse shear reinorcement; A s / s = v Ed h / 0.87 yk cot = / ( ) = 2.0 Try H10: A s = 79 mm 2 Spacing, s = 79/0.21 = 367 mm Minimum transverse steel area; A s, min = 0.26 ( ctm / yk ) bh = 0.26 (2.60/500) bh = bh bh = = 147 mm 2 Provide H (A s = 262 mm 2 /m) Example 2: Solution Additional longitudinal reinorcement; Additional tensile orce, F td = 0.5V Ed cot = = 444 kn Additional tension reinorcement, A s = F td / 0.87 yk = / = 1021 mm 2 Provide 3H25 ( 1473 mm 2 ) 19

20 20

- Rectangular Beam Design -

- Rectangular Beam Design - Semester 1 2016/2017 - Rectangular Beam Design - Department of Structures and Material Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction The purposes

More information

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 6: SHEAR AND TORSION Reinforced

More information

Bending and Shear in Beams

Bending and Shear in Beams Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,

More information

NAGY GYÖRGY Tamás Assoc. Prof, PhD

NAGY GYÖRGY Tamás Assoc. Prof, PhD NAGY GYÖRGY Tamás Assoc. Prof, PhD E mail: tamas.nagy gyorgy@upt.ro Tel: +40 256 403 935 Web: http://www.ct.upt.ro/users/tamasnagygyorgy/index.htm Office: A219 SIMPLE SUPORTED BEAM b = 15 cm h = 30 cm

More information

3.5 Analysis of Members under Flexure (Part IV)

3.5 Analysis of Members under Flexure (Part IV) 3.5 Analysis o Members under Flexure (Part IV) This section covers the ollowing topics. Analysis o a Flanged Section 3.5.1 Analysis o a Flanged Section Introduction A beam can have langes or lexural eiciency.

More information

Seismic Design, Assessment & Retrofitting of Concrete Buildings. fctm. h w, 24d bw, 175mm 8d bl, 4. w 4 (4) 2 cl

Seismic Design, Assessment & Retrofitting of Concrete Buildings. fctm. h w, 24d bw, 175mm 8d bl, 4. w 4 (4) 2 cl Seismic Design, Assessment & Retroitting o Concrete Buildings Table 5.1: EC8 rules or detailing and dimensioning o primary beams (secondary beams: as in DCL) DC H DCM DCL critical region length 1.5h w

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk Topics Addressed Shear Stresses in Rectangular Beams Diagonal Tension

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2 Detailing Lecture 9 16 th November 2017 Reinforced Concrete Detailing to Eurocode 2 EC2 Section 8 - Detailing of Reinforcement - General Rules Bar spacing, Minimum bend diameter Anchorage of reinforcement

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

Concise Eurocode 2 25 February 2010

Concise Eurocode 2 25 February 2010 Concise Eurocode 2 25 February 2010 Revisions required to Concise Eurocode 2 (Oct 06 edition) due to revisions in standards, notably Amendment 1 to NA to BS EN 1992-1-1:2004 dated Dec 2009, and interpretations.

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

Chapter 8. Shear and Diagonal Tension

Chapter 8. Shear and Diagonal Tension Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.1-4.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR

More information

CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES

CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES S. Kakay et al. Int. J. Comp. Meth. and Exp. Meas. Vol. 5 No. (017) 116 14 CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES SAMDAR KAKAY DANIEL BÅRDSEN

More information

Professor, Institute of Engineering Mechanics, Harbin. China 2. Ph.D Student, Institute of Engineering Mechanics, Harbin. China 3

Professor, Institute of Engineering Mechanics, Harbin. China 2. Ph.D Student, Institute of Engineering Mechanics, Harbin. China 3 The 14 th World Conerence on Earthquake Engineering COMPARISON OF FRP-RETROFITTING STRATEGIES IN CHINESE AND ITALIAN CODES J. W. DAI 1, Y.R. WANG 2, B. JIN 1, 3, D.F.ZU 4, Silvia Alessandri 5, Giorgio

More information

Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN and EN Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

More information

twenty one concrete construction: materials & beams ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014

twenty one concrete construction: materials & beams ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture twenty one concrete construction: http:// nisee.berkeley.edu/godden materials & beams Concrete Beams

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

Eurocode Training EN : Reinforced Concrete

Eurocode Training EN : Reinforced Concrete Eurocode Training EN 1992-1-1: Reinforced Concrete Eurocode Training EN 1992-1-1 All information in this document is subject to modification without prior notice. No part of this manual may be reproduced,

More information

Calculation Example. Strengthening for flexure

Calculation Example. Strengthening for flexure 01-08-1 Strengthening or lexure 1 Lat 1 L Sektion 1-1 (Skala :1) be h hw A bw FRP The beam i a part o a lab in a parking garage and need to be trengthened or additional load. Simply upported with L=8.0

More information

Design of AAC wall panel according to EN 12602

Design of AAC wall panel according to EN 12602 Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

More information

DESIGN OF STAIRCASE. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia

DESIGN OF STAIRCASE. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia DESIGN OF STAIRCASE Dr. Izni Syahrizal bin Ibrahim Faculty of Civil Engineering Universiti Teknologi Malaysia Email: iznisyahrizal@utm.my Introduction T N T G N G R h Flight Span, L Landing T = Thread

More information

Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension

Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension but strong in compression Steel tendon is first stressed

More information

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

More information

DIAGONAL TENSION RC BEAM without SHEAR REINFORCEMENT RC BEAM with WEB REINFORCEMENT KCI CODE PROVISION. ALTERNATIVE MODELS for SHEAR ANALYSIS

DIAGONAL TENSION RC BEAM without SHEAR REINFORCEMENT RC BEAM with WEB REINFORCEMENT KCI CODE PROVISION. ALTERNATIVE MODELS for SHEAR ANALYSIS DIAGONAL TENSION RC BEAM without SHEAR REINFORCEMENT RC BEAM with WEB REINFORCEMENT KCI CODE PROVISION DEEP BEAMS ALTERNATIVE MODELS for SHEAR ANALYSIS SHEAR FRICTION DESIGN METHOD &DESIGN 447.327 Theory

More information

CHAPTER 6: ULTIMATE LIMIT STATE

CHAPTER 6: ULTIMATE LIMIT STATE CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.

More information

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

More information

Practical Design to Eurocode 2

Practical Design to Eurocode 2 Practical Design to Eurocode 2 The webinar will start at 12.30 (Any questions beforehand? use Questions on the GoTo Control Panel) Course Outline Lecture Date Speaker Title 1 21 Sep Jenny Burridge Introduction,

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

CHAPTER 4. Stresses in Beams

CHAPTER 4. Stresses in Beams CHAPTER 4 Stresses in Beams Problem 1. A rolled steel joint (RSJ) of -section has top and bottom flanges 150 mm 5 mm and web of size 00 mm 1 mm. t is used as a simply supported beam over a span of 4 m

More information

An Analytical Design Method for Steel-Concrete Hybrid Walls Link Peer-reviewed author version

An Analytical Design Method for Steel-Concrete Hybrid Walls Link Peer-reviewed author version An Analytical Design Method for Steel-Concrete Hybrid Walls Link Peer-reviewed author version Made available by Hasselt University Library in Document Server@UHasselt Reference (Published version): Plumier,

More information

EXAMPLE CALCULATIONS DTF / DTS

EXAMPLE CALCULATIONS DTF / DTS MEMO 830 DTF / DTS EXAMPLE CALCULATIONS DESIGN Dato: Siste rev.: Dok. nr.: 19.09.013 5.05.016 K4-10/30E Sign.: Sign.: Control: sss ps CONTENT EXAMPLE CALCULATIONS DTF / DTS EXAMPLE CALCULATIONS DTF / DTS...

More information

A CONNECTION ELEMENT FOR MODELLING END-PLATE CONNECTIONS IN FIRE

A CONNECTION ELEMENT FOR MODELLING END-PLATE CONNECTIONS IN FIRE A CONNECTION ELEMENT OR MODELLING END-PLATE CONNECTIONS IN IRE Dr Zhaohui Huang Department of Civil & Structural Engineering, University of Sheffield 22 September 29 1. INTRODUCTION Three approaches for

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

3.2 Reinforced Concrete Slabs Slabs are divided into suspended slabs. Suspended slabs may be divided into two groups:

3.2 Reinforced Concrete Slabs Slabs are divided into suspended slabs. Suspended slabs may be divided into two groups: Sabah Shawkat Cabinet of Structural Engineering 017 3. Reinforced Concrete Slabs Slabs are divided into suspended slabs. Suspended slabs may be divided into two groups: (1) slabs supported on edges of

More information

8 ft. 5 k 5 k 5 k 5 k. F y = 36 ksi F t = 21 ksi F c = 10 ksi. 6 ft. 10 k 10 k

8 ft. 5 k 5 k 5 k 5 k. F y = 36 ksi F t = 21 ksi F c = 10 ksi. 6 ft. 10 k 10 k E 331, Fall 2004 HW 2.0 Solution 1 / 7 We need to make several decisions when designing a truss. First, we need to determine the truss shape. Then we need to determine the height of the truss and the member

More information

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding (1997) (Rev.1 1997) (Rev.1.1 Mar 1998 /Corr.1) (Rev. Sept 000) (Rev.3 eb 001) (Rev.4 Nov 001) (Rev.5 July 003) (Rev.6 July 004) (Rev.7 eb 006) (Corr.1 Oct 009) (Rev.8 May 010) (Rev.9 Apr 014) Evaluation

More information

Appendix K Design Examples

Appendix K Design Examples Appendix K Design Examples Example 1 * Two-Span I-Girder Bridge Continuous for Live Loads AASHTO Type IV I girder Zero Skew (a) Bridge Deck The bridge deck reinforcement using A615 rebars is shown below.

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Truss Model for Shear Strength of Structural Concrete Walls Author(s) Citation Chandra, Jimmy; Chanthabouala,

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19 CIVIL ENGINEERING

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

RETAINING WALL ANALYSIS

RETAINING WALL ANALYSIS GEODOMISI Ltd. Dr. Costas Sachpazis Consulting Company for Tel.: (+30) 20 523827, 20 57263 Fax.:+30 20 5746 Retaining wall Analysis & Design (EN997:2004 App'd by RETAINING WALL ANALYSIS In accordance with

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS

SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS Dr. Maurizio Guadagnini Dr. Kypros Pilakoutas Professor Peter Waldron Centre for Dept. of Civil and Structural Engineering The University of Sheffield, UK Outline

More information

RETAINING WALL ANALYSIS

RETAINING WALL ANALYSIS Retaining Wall Analysis Example (EN997:2004) GEODOMISI Ltd. Dr. Costas Sachpazis Consulting Company for Tel.: (+30) 20 523827, 20 57263 Fax.:+30 20 5746 App'd by RETAINING WALL ANALYSIS In accordance with

More information

UNIVERSITY OF CALGARY. Reinforced Concrete Beam Design for Shear. Hongge (Gordon) Wang A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

UNIVERSITY OF CALGARY. Reinforced Concrete Beam Design for Shear. Hongge (Gordon) Wang A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES UNIVERSITY OF CALGARY Reinforced Concrete Beam Design for Shear by Hongge (Gordon) Wang A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

More information

B U I L D I N G D E S I G N

B U I L D I N G D E S I G N B U I L D I N G D E S I G N 10.1 DESIGN OF SLAB P R I O D E E P C H O W D H U R Y C E @ K 8. 0 1 7 6 9 4 4 1 8 3 DESIGN BY COEFFICIENT METHOD Loads: DL = 150 pc LL = 85 pc Material Properties: c = 3000

More information

Explanatory Examples for Ductile Detailing of RC Buildings

Explanatory Examples for Ductile Detailing of RC Buildings Document No. :: IITK-GSD-EQ-V3.0 Final Report :: - Earthquake Codes IITK-GSD Project on Building Codes Explanatory Examples or Ductile Detailing o RC Buildings by Dr. R. K. Ingle Department o pplied echanics

More information

Shear Strength of Slender Reinforced Concrete Beams without Web Reinforcement

Shear Strength of Slender Reinforced Concrete Beams without Web Reinforcement RESEARCH ARTICLE OPEN ACCESS Shear Strength of Slender Reinforced Concrete Beams without Web Reinforcement Prof. R.S. Chavan*, Dr. P.M. Pawar ** (Department of Civil Engineering, Solapur University, Solapur)

More information

REINFORCED CONCRETE DESIGN 1. Design of Column (Examples and Tutorials)

REINFORCED CONCRETE DESIGN 1. Design of Column (Examples and Tutorials) For updated version, please click on http://ocw.ump.edu.my REINFORCED CONCRETE DESIGN 1 Design of Column (Examples and Tutorials) by Dr. Sharifah Maszura Syed Mohsin Faculty of Civil Engineering and Earth

More information

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections STRESS! Stress Evisdom! verage Normal Stress in an xially Loaded ar! verage Shear Stress! llowable Stress! Design of Simple onnections 1 Equilibrium of a Deformable ody ody Force w F R x w(s). D s y Support

More information

Design Guidelines A Scandinavian Approach

Design Guidelines A Scandinavian Approach Design Guidelines A Scandinavian Approach Pro. Björn Täljsten Luleå University o Technology SWEDEN Presented by Tech. Lic Anders Carolin 1 Pro. B. Täljsten Departmento Civiland Mining Engineering Division

More information

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

More information

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR: MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

More information

Example 2.2 [Ribbed slab design]

Example 2.2 [Ribbed slab design] Example 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. The joists which are spaced at 400mm are supported by girders. The overall depth of the slab

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

Entrance exam Master Course

Entrance exam Master Course - 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Beam BS8110 v Member Design - RC Beam XX

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Beam BS8110 v Member Design - RC Beam XX CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Effects From Structural Analysis Design axial force, F (tension -ve and compression +ve) (ensure < 0.1f cu b w h 0

More information

The European Concrete Platform ASBL, May 2008.

The European Concrete Platform ASBL, May 2008. EUROCODE WORKED EXAMPLES EUROCODE WORKED EXAMPLES The European Concrete Platform ASBL, May 008. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted

More information

O Dr Andrew Bond (Geocentrix)

O Dr Andrew Bond (Geocentrix) DECODING EUROCODES 2 + 7: DESIGN SG OF FOUNDATIONS O Dr Andrew Bond (Geocentrix) Outline of talk April 2010: the death of British Standards? UK implementation of Eurocodes Verification of strength: limit

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

Chapter Two: Mechanical Properties of materials

Chapter Two: Mechanical Properties of materials Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material

More information

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL When the height of the retaining wall exceeds about 6 m, the thickness of the stem and heel slab works out to be sufficiently large and the design becomes

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

mportant nstructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

9.5 Compression Members

9.5 Compression Members 9.5 Compression Members This section covers the following topics. Introduction Analysis Development of Interaction Diagram Effect of Prestressing Force 9.5.1 Introduction Prestressing is meaningful when

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

ULTIMATE SHEAR OF BEAMS STRENGTHENED WITH CFRP SHEETS

ULTIMATE SHEAR OF BEAMS STRENGTHENED WITH CFRP SHEETS ULTIMATE SHEAR OF BEAMS STRENGTHENED WITH CFRP SHEETS U. Ianniruberto and M. Imbimbo Department of Civil Engineering, University of Rome Tor Vergata Via di Tor Vergata 0, 0033, Rome, Italy SUMMARY: The

More information

SERVICEABILITY LIMIT STATE DESIGN

SERVICEABILITY LIMIT STATE DESIGN CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise

More information

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

More information

Standardisation of UHPC in Germany

Standardisation of UHPC in Germany Standardisation of UHPC in Germany Part II: Development of Design Rules, University of Siegen Prof. Dr.-Ing. Ekkehard Fehling, University of Kassel 1 Overvie Introduction: Work of the Task Group Design

More information

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur Module Stresses in machine elements Lesson Compound stresses in machine parts Instructional Objectives t the end of this lesson, the student should be able to understand Elements of force system at a beam

More information

National Exams May 2015

National Exams May 2015 National Exams May 2015 04-BS-6: Mechanics of Materials 3 hours duration Notes: If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite

More information

T2. VIERENDEEL STRUCTURES

T2. VIERENDEEL STRUCTURES T2. VIERENDEEL STRUCTURES AND FRAMES 1/11 T2. VIERENDEEL STRUCTURES NOTE: The Picture Window House can be designed using a Vierendeel structure, but now we consider a simpler problem to discuss the calculation

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 35 N/mm 2 OK Yield strength of longitudinal steel, f y 460 N/mm 2 Yield

More information

WELDED ALUMINUM ALLOY PLATE GIRDERS SUBJECTED TO SHEAR FORCE

WELDED ALUMINUM ALLOY PLATE GIRDERS SUBJECTED TO SHEAR FORCE Advanced Steel Construction Vol. 8, No. 1, pp. 71-94 (2012) 71 WELDED ALUMINUM ALLOY PLATE GIRDERS SUBJECTED TO SHEAR FORCE Feng Zhou 1a, 1b, Ben Young 2,* and Hin-Chung Lam 3 1a Department o Building

More information

Module 6. Shear, Bond, Anchorage, Development Length and Torsion. Version 2 CE IIT, Kharagpur

Module 6. Shear, Bond, Anchorage, Development Length and Torsion. Version 2 CE IIT, Kharagpur Module 6 Shear, Bond, Anchorage, Development Length and Torsion Lesson 15 Bond, Anchorage, Development Length and Splicing Instruction Objectives: At the end of this lesson, the student should be able

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

More information

8.3 Design of Base Plate for Thickness

8.3 Design of Base Plate for Thickness 8.3 Design o Base Plate or Thickness 8.3.1 Design o base plate or thickness (Elastic Design) Upto this point, the chie concern has been about the concrete oundation, and methods o design have been proposed

More information

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb 06 Solutions 46060_Part1 5/27/10 3:51 P Page 334 6 11. The overhanging beam has been fabricated with a projected arm D on it. Draw the shear and moment diagrams for the beam C if it supports a load of

More information

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

Einführung des EC2 in Belgien The introduction of EC2 in Belgium

Einführung des EC2 in Belgien The introduction of EC2 in Belgium Luc Taerwe 1 Einführung des EC2 in Belgien The introduction of EC2 in Belgium Luc Taerwe Univ.-Prof. Dr.-Ing. habil. Luc Taerwe - graduated as civil engineer at Ghent University (1975) where he also obtained

More information

Evaluation of size effect on shear strength of reinforced concrete deep beams using refined strut-and-tie model

Evaluation of size effect on shear strength of reinforced concrete deep beams using refined strut-and-tie model Sādhanā Vol. 7, Part, February, pp. 89 5. c Indian Academy of Sciences Evaluation of size effect on shear strength of reinforced concrete deep beams using refined strut-and-tie model GAPPARAO and R SUNDARESAN

More information

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8) Application nr. 7 (Connections) Strength of bolted connections to EN 1993-1-8 (Eurocode 3, Part 1.8) PART 1: Bolted shear connection (Category A bearing type, to EN1993-1-8) Structural element Tension

More information

Appendix J. Example of Proposed Changes

Appendix J. Example of Proposed Changes Appendix J Example of Proposed Changes J.1 Introduction The proposed changes are illustrated with reference to a 200-ft, single span, Washington DOT WF bridge girder with debonded strands and no skew.

More information

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads Running title (short title version up to 80 characters including

More information

DESIGN OF DOWELS FOR SHEAR TRANSFER AT THE INTERFACE BETWEEN CONCRETE CAST AT DIFFERENT TIMES: A CASE STUDY

DESIGN OF DOWELS FOR SHEAR TRANSFER AT THE INTERFACE BETWEEN CONCRETE CAST AT DIFFERENT TIMES: A CASE STUDY DESIGN OF DOWELS FOR SHEAR TRANSFER AT THE INTERFACE BETWEEN CONCRETE CAST AT DIFFERENT TIMES: A CASE STUDY Samayamanthree Mudiyanselage Premasiri Karunarathna 118614J Degree of Master of Engineering in

More information

Civil and Environmental Engineering. Title Shear strength of beams with loads close to supports. Sebastian Webb. Prof.

Civil and Environmental Engineering. Title Shear strength of beams with loads close to supports. Sebastian Webb. Prof. MASTER THESIS Master Civil and Environmental Engineering Title Shear strength of beams with loads close to supports Author Sebastian Webb Tutor Prof. Antonio Marí Speciality Structural Engineering Date

More information

NATIONAL PROGRAM ON TECHNOLOGY ENHANCED LEARNING (NPTEL) IIT MADRAS Offshore structures under special environmental loads including fire-resistance

NATIONAL PROGRAM ON TECHNOLOGY ENHANCED LEARNING (NPTEL) IIT MADRAS Offshore structures under special environmental loads including fire-resistance Week Eight: Advanced structural analyses Tutorial Eight Part A: Objective questions (5 marks) 1. theorem is used to derive deflection of curved beams with small initial curvature (Castigliano's theorem)

More information