Design of reinforced concrete sections according to EN and EN


 Ursula Carr
 1 years ago
 Views:
Transcription
1 Design of reinforced concrete sections according to EN and EN Validation Examples Brno, IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, BRNO tel.: , fax: ,
2 Foreword The introduction of European standards is a significant event as, for the first time, all design and construction codes within the EU will be harmonized. These Eurocodes will affect all design and construction activities. The aim of this publication, Design of reinforced concrete sections according to EN and EN , is to illustrate how the Code is treated on practical examples. In order to explain the use of all relevant clauses of Eurocode 2, an example of a simply supported oneway ribshaped slab and an example of column with high axial load and biaxial bending is introduced. IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, BRNO tel.: , fax: ,
3 Design of reinforced concrete sections according to EN and EN October 2010 Contents 1. Rib T Project details... 4 Actions and analysis of Rib T Section forces Cross section Ultimate section resistance Shear check Torsional check Interaction Crack width calculation Crack width according to EN Example  Calculation of crack width according to EN Calculating stiffness Example  calculating the stiffness of the Tsection according to EN Column Project details Second order effects Simplified method based on nominal stiffness Simplified method based on nominal curvature Biaxial bending Page 3
4 Validation Examples Reinforced Concrete Section October Rib T Project details Example is taken from: Ing. Miloš Zich, Ph.D. and others, others online publication "Konstrukční ční Eurokódy  Příklady posouzení betonových prvkůů dle Eurokódů", Eurokódů nakl. Verlag Dashöfer s. r. o., 2010, First floor slab Figure Schematic layout of structure Page 4
5 Section A Section B Figure 1.2 Sections Actions and analysis of Rib T1 Figure 1.3 Static schema of Rib T1 Page 5
6 Figure Floor composition for the calculation of loads Figure Permanent load calculation Variable load: quasipermanent value: q k = 10 kn/m 2 * 2.0m = 20 kn/m ψ = 0,6 20 = 12 / Factors defining the representative values of variable actions, ψ 0, ψ 1, ψ 2 are shown in table. A1.1 of EN1990 (also in attachment A4 in this document) Page 6
7 Actions for Serviceability limit states (SLS) Loads for serviceability limit state are determined acc. to EN 1990 clause There are 3 SLScombinations: Characteristic combination of loads (Unacceptable cracking or deformation), "+"" + ", " + " ψ,,,ψ = 9, = 29,87 Frequent load combination, "+"" + "ψ,, " + " ψ,,,ψ = 9, , = 23,87 Quasipermanent load combination, "+"γ " + ψ,,,ψ = 9, ,6 20 = 21,87 Actions for Ultimate limit states (ULS) It is considered as a persistent design situation for ultimate limit state where partial factors are: γ G = 1,35, γ Q = 1,50. To determine the design load in Article EN 1990 is prescribed the following equation marked as the equation (6.10) γ,, "+"γ " + "γ,, " + " γ, ψ,, Substituting, we get the value of design load = 1,35 9, , = 43,32 Alternatively, load can be further reduced according to equation (6.10) and (6.10b) and consider the less favorable value of both terms: γ,,"+"γ " + "γ, ψ, " + " γ, ψ,,, ξ,, "+"γ " + "γ,, " + " γ, ψ,, = 1 2 = 1,35 9, ,5 0, = 34,32 = 1,35 0,85 9, , = 41, Section forces = 1 8 Page 7
8 Combination/Value Loads [kn/m] Vz(a) [kn] My (b) [knm] SLS characteristic SLS frequent SLS quasipermanent ULS Table Internal forces for individual SLS and ULS load combinations The shear force is calculated at distance d from the face of the support. Estimated value of d is based on the assumption that the moment near the support will be positive. Value d = 458 mm. Values: V Ed1 and M Ed1 are calculated at distance l x = = m from the theoretical support.v Ed1 = 105,05 kn, M Ed1 = 84,29 knm. Page 8
9 1.2. Cross section Figure 1.6 Cross section Materials Concrete C25/30 Steel B500B f ck = 25 MPa f cd = f ck / γ c = 25 / 1,5 = 16,66 MPa f ctm = 2,6 MPa f ctd = 0,7 f ctm / γ c = 0,7 2,6 / 1,5 = 1,213 MPa f yk = 500 MPa f yd = f yk / γ s = 500 / 1,15 = 434,78 MPa Page 9
10 1.3. Ultimate section resistance The cross section resistance (capacity) is the calculation of stress, strain and internal forces status on the calculated cross section for its limit state. For concrete the stressstrain relation is assumed to bilinear. For reinforcing steel the stressstrain relation is assumed to be bilinear without strain hardening. Bending moment at middle section from basic combination of loads. Figure Response  given by program IDEA RCS Input data, Plane of strain: ε x = 0, ε y =0,0 ε z =  0, Figure Resulted plane of strain calculated by IDEA RCS Strain calculation in end fibers: ε = ε + ε + ε = 0, , = 0, Figure 1.9 Strain in ultimate compression fiber (picture from program IDEA RCS) Modulus of elasticity is calculated from stressstrain diagram = /ε = 16,7/ 0,00175 = 9,52 Page 10
11 σ = ε = 0, ,52 10 = 7,27 Defining the depth of compression zone (depth to neutral axis) in concrete, follow from: = + ε = 0, , = 0, ε 0, Concrete force in compression (as, the strain in concrete is outside the plastic branch, the stress along the section is linear in concrete) = 2 = 0, ,85 16,7 2 = 495,83 Concrete lever arm in the compression = 3 = 0,1305 0, = 0, Concrete moment in compression = = 495,83 0, = 52,52 Strain in reinforcing steel ε = ε + ε + ε = 0, , = 0, Figure 1.10 Stress in reinforcing steel ( Diagram is taken from program IDEA RCS) Calculating of stress in reinforcing steel (whereas, the section is loaded in the plane of symmetry and reinforcement is not in one layer, these layers can be replaced by one layer with an area equal to the sum of all areas of reinforcement) σ = ε = 0, = 559,34 > 434,78 434,78 MPa Tensile force in reinforcement Page 11
12 = σ = 0, ,783 = 495,83 KN Moment in tensile reinforcement M = F z = 495, = 162,134 knm Figure 1.11 Comparing with results calculated by IDEA RCS program Equilibrium of forces + = = 495,83 495,83 = 0 Equilibrium of moments + = = 162,13452,52 = 214,654 Note: Due to coordination system that is used inside the program, the design moment My has opposite sign. Page 12
13 1.4. Shear check Resistance without shear reinforcement in zones without cracks under bending loads Calculated in center of gravity of concrete section I = 1/12*1,85*0, ,85*0,08*0, /12*0,2*0, ,2*0,42*0,159 2 = 7,8933e5+0, , , = 0,004684m 4 S = 1,85 * 0,08 * 0, ,2 * 0,051 *0,051/2 = 0,01373 m 3 b w = 0,2 m σ cp = 0,0 MPa α l = 1, = + = 0, ,2 1, , = 82,76, = 82,76 <, = 105,05 Deriving from the above text, the concrete part does not carry all the shear force, hence shear reinforcement will be required. Figure Comparing with results calculated by RCS program Resistance without shear reinforcement in zones with cracks under bending loads C Rd,c = 0,18 / γ c = 0,18 / 1,5 = 0,12 = = = 1,661 = = 760 = 0, , k 1 = 0,15 σ cp = 0,0 MPa b w = 0,2 m d = 0,458 m ν min = k 3/2 fck 1/2 = ,661 3/2 25 1/2 = 0,3745 MPa Page 13
14 , =. (100 ) Minimally + = 0,12 1,661 (100 0, ) + 0 0,2 0,458 = 50,15, = + = 0, ,2 0,458 = 34,30, = 50,15 <, = 105,05 Deriving from the above text, the concrete part does not carry all the shear force, hence shear reinforcement will be required. Resistance without shear reinforcement = min (,,, ) A sw = 2 * * PI /4 = 5,655e5 m 2 s = 0.24m z = 0.9*0.458 = m exact value is 0,437 m f ywd = f yd = 434,7MPa θ = 21,8, = cot = 2 2,827e 5 0, , ,8 0,24 = 105,70 >, = 105,05 h α cw = 1,0 b w = 0,2 m z = 0.9*0.458 = m exact value is 0,437m For calculation of strength reduction factor for concrete cracked in shear ν 1 must be checked if the design stress of the shear reinforcement is over the 80% of the characteristic yield stress f ywk, = =,,, = = = 0,54.,, 434,74 > 0.8 = 400, = 1,0 0,2 0,412 0,54 16,66 10 = cot + tan cot 21,8 + tan 21,8 = 255,76 >, = 133,27 h Page 14
15 Figure 1.13 Comparison of results calculated by RCS program Page 15
16 1.5. Torsional check Section characteristics for torsional check u = 2 * ( ) = 4.7 m A = 2 * ( ) = m 2 t ef = A / u = / 4.7 = m = ± 16 = 4.7 ± = 4 4 2b. h = =.m ± = = m = = 4.504m. =.m Torsional capacity without shear reinforcement, = 2 = = Torsional capacity with shear reinforcement ν = 0.6 α cw = 1,0, = 2 = ,0 16, , sin 21.8 cos 21.8 = 36,09, = 2 = 2 0,1187 2,827e 5 0,24 7,603e 4 434, , ,507 = 14,59 Figure Comparison of results calculated by RCS program Page 16
17 1.6. Interaction Combined shear and torsion, +, =,, +. Shear reinforcement is not allowed to design according to detailing rules = 2,09 > 1,0 => Compression strut check for combined shear and torsion + = 105,05,, 255, = 0,41 < 1,0 => 36,09 Shear reinforcement check for combined shear and torsion, = Σ = 2,827e 5 0,24 434,78 10 = 51,21 = + tan = 105, , tan 21,8 = 50,99 2 0,1187 = 50,99 = 0,99 < 1,0 =>, 51,21 Longitudinal reinforcement check for shear, torsion and bending, = Σ =7,603e 4 (434,78 253,9) 10 = 137,52 = tan + 2 tan = 105,05 tan 21, ,1187 tan 21,8 = 262,64 = 262,64 = 1,91 > 1,0 =>, 137,52 Page 17
18 Figure Comparing with results calculated by RCS program Page 18
19 1.7. Crack width calculation Crack width according to EN Check is introduced at midsection of beam M y = 113,73 knm Plane of strain calculated by program IDEA RCS: ε x = 0, ε y = 0,0 ε z = 0, Defining the depth of compression zone (depth to neutral axis) in concrete, follow from: = + ε = 0, , = 0,0565 ε 0, Figure Strainstress diagram on fully cracked cross section Strain calculation in end concrete fibres: ε = ε + ε + ε = 0, , ,1305 = 0, Stress calculation in end concrete fibres: σ = ε = 0, = 4,954 Concrete force in compression: = σ 2 = σ 0,0565 1,85 4,954 = 2 2 = 0,259 kn Concrete moment in compression: M = F z = F z x 3 = ,1305 0, = 28,92 knm Strain in reinforcing steel: ε = ε + ε + ε = 0, , ,32748 = 0, Page 19
20 Calculating of stress in reinforcing steel (whereas, the section is loaded in the plane of symmetry and reinforcement is in one layer, this layer can be replaced by one bar with an area equal to the sum of all areas of reinforcement) σ = ε = 0, = 227,1 Tensile force in the bar: = σ = 0, = 258,97 kn Moment in tensile reinforcement: M = F z = 258, = 84,81 knm Equilibrium of forces: + = = 258,97 258,97 = 0 Equilibrium of moments: + = = 84,81 28,92 = 113,725 knm Example  Calculation of crack width according to EN Effective ratio of reinforcement: ρ, = = 11,40 10 = 0,05429, 0,021 Maximal spacing of the cracks:, = + φ/ρ,, = 3,4 0, ,8 0,5 0,425 0,022/0,05649 = 0,1743 Factors: k 1 = k 2 = k 3 = 3,4 k 4 = 0,5 0,8 in example is considered steel B500B 0,5 Cross section loaded by bending moment, pure bending Effective height (3) h c,ef : h, = 2,5h ; h 3 ; h 2 = 2,50,5 0,458; 0,5 0,05649 ; 0,5 3 2 = 0,105; 0,1478; 0,25 = 0,105 Page 20
21 Effective area: Mean strain in the reinforcement ε ε = ε ε =, = h, = 0,105 0,2 = 0,021 σ, ρ, α ρ, 227,17 0,4, 1 + 6,45 0,05429, 0,6 227, ε ε = 0, > 0, ε ε = 0, ,6 σ Mean value of the tensile strength of the concrete effective at the time when the cracks may first be expected to occur:, = = 2,6 factor: = 0,4, long term action Crack width according to (EN , clause 7.3.4) is : =, ε ε = 174,3 0, = 0,175 Figure Comparison of values with IDEA RCS results Page 21
22 1.8. Calculating stiffness Example  calculating the stiffness of the Tsection according to EN Considering the strain, stress and internal forces in the previous examples are already calculated, the plane of strain is computed for a cracked section loaded by internal forces at the time when the cracks may first be expected to occur from the quasipermanent combination. To calculate, for shortterm stiffness, the difference in the calculation of shortand longterm stiffness is only taking into account the effective modulus of elasticity:, = where: ϕ, ϕ(,t 0 ) is the final value of creep coefficient Calculation will be carried out at midspan section of quasipermanent combination My = 113,73 knm ε x = , ε y = 0.0, ε z = Figure Strain stress diagram on cracked concrete cross section Sectional characteristics of transformed concrete section without cracks Cross sectional area of transformed cross section (steel area is transformed to concrete) = + = h h h + α = 210 1,85 0,5 1,85 0,20,5 0, ,40 10 = 0, Center of gravity of transformed cross section = α = 11, ,4516 0,327 = 0, , Page 22
23 Moment of inertia of original cross section = 1 12 h + h h h h h h + h h 2 = ,85 0,5 + 1,85 0,5 0,1305 0, ,85 0,20,5 0, ,85 0,20,5 0,08 0, ,5 0,08 = 0, Moment of inertia of transformed cross section = + + α = 0, ,85 0,20,5 0,08 + 0, , ,4516 0,3274 = 0, Sectional characteristics of transformed concrete section with cracks Compression zone: = + ε = 0, , = 0,0565 ε Cross sectional area of transformed cross section (steel area is transformed to concrete) = + α = 1,85 0, , ,4516 = 0, Center of gravity of transformed cross section = ( 2) α = 1,85 0,0565 0,1305 0, , ,4516 0,327 = 0, , Moment of inertia of original cross section = = 1 1,85 0, ,85 0,5650,1305 0, = I = 0, m Moment of inertia of transformed cross section = + + α = 0,0565 1,85 0, , ,4516 0,327 = 0, Page 23
24 Rematk: Current IDEA RCS version calculates cross sectional characteristics related to original center of gravity of cross section Since the same assumptions for calculating the limit state and stiffness and width of cracks were used, we assume the stress in the reinforcement from the example of the calculation of crack width: σ = 227,1 Now we calculate the tensile force from ultimate load on the cracked section immediately prior to cracking. This plane is taken over from program IDEA RCS. ε x = , ε y = 0.0, ε z = Strain in reinforcing steel: ε = ε + ε + ε = 0, , ,32748 = 0, Stress in reinforcing steel σ = ε = 0, = 78,3 Reduction factor/distribution coefficientξ = 1 β σ σ = 1 1,, = 0,8808 bending stiffness of uncracked cross section:, = = 0, = 169 Page 24
25 bending stiffness of fully cracked cross section:, =, = 0, = 40,215 Stiffness is interpolated according to following expresion (Interpolation is done on level of stiffnesses) α = ξα + 1 ξα = ξ + 1 ξ α = 0, , = 55,48 Page 25
26 2. Column 2.1. Project details Square cross section 0.4 x 0, 4 m 2 reinforced in four corners by bars of 25 mm, stirrup with diameter 10 mm. Material C35/45, Reinforcements B 500B, concrete cover 25 mm, creep coefficient in infinity φ (, t0) = 1,68. Column 5 m, one Laterally fixed in the XY plane, and bothsidedly fixed in the plane XZ. It is standalone element that is unbraced perpendicular to the Yaxis and braced to the Z axis. Figure Cross section and column geometry The internal forces obtained by calculating a linear structure in the investigated section: Combination for the ultimate limit state: = 800,, = 50,, = 0. Quasipermanent combination for the serviceability limit state:, = 700,,, = 45,,, = 0. First order end moments: At the beginning: At the end:, = 60,, = 0,, = 0., = 0. Page 26
27 Calculating geometrical imperfections: Effective length l 0, = 2 = 2 5 = 10,, = 0,5 = 0,5 5 = 2,5. Reduction factor for length:, =, = 2/ = 2/ 5 = 0,894, 2/3 0, Reduction factor for number of members,, = 0,51 + 1/ = 0,51 + 1/1 = 1. Inclination,, = = ,894 1=0, Eccentricity:, =, /2 = 0, /2 = 0,02235,, =, /2 = 0, ,5/2 = 0, Total eccentricity including effects of geometrical imperfections:, +, =, / +, = 50/ ,02235 = 0, ,02235 = 0,08485,, +, =, / +, = 0/ , = 0, Minimum eccentricity according to paragraph 6.1 (4):,, = maxh/30; 0,02 = max0,4/30; 0,02 = max0,0133 ; 0,02 = 0,02,, = max, +, ;, = max0,08485; 0,02 = 0,08485,, = max, +, ;, = max0, ; 0,02 = 0,02. The first order moment with geometrical imperfections:, =, = 800 0,08485 = 67,88,, =, = 800 0,02 = 16. Page 27
28 2.2. Second order effects Slenderness and limit slenderness: Slenderness ratio =, =, = 86,6, =, =,, = 21,65,, = h = 0,4 = 0,1155. Necessary values for calculating the limit slenderness: End moments ratio:, = 1, because member is unbraced perpendicularly to Y axis,, = 1, because end moments are equal (,, =,, ). Relative normal force = =,, Mechanical reinforcement ratio = = 0,214. =,,,, = 0,229. The effect of creep may be ignored, if the following free conditions are met (,) = 1,68 2 = 86,6 75, = 21,65 < 75, =, = 0,08485 h = 0,4,, = = 0,02 h = 0,4. Conditions are not fulfilled, the effect of creep must not be ignored Effective creep ratio:, =,,,,, =,,,, = 1,68,, = 1,501, = 1,68, = 0,411, the moment from the quasipermanent combination, including the effects of the first order we received from the same calculation as for the design moment, only difference is we are not taking account the condition for minimum eccentricity. =,, =,, = 0,769, = = = ,229 = 1,207,, = 1,7,, = 1,7 1 = 0,7 Limit slenderness:,, = 0,924,, = 20 / = 20 0,769 1,207 0,7/ 0,214 = 28,09,, = 20 / = 20 0,924 1,207 0,7/ 0,214 = 33,75, Slenderness criterion: = 86,6 >, = 28,09 = 21,65 <, = 33,75 slender column, nonslender column, 2nd order effects can be neglected. Page 28
29 Simplified method based on nominal stiffness Necessary factors: = / = 0,00196/0,16 = 0,01225 > 0,002, method can be used. = /20 = 35/20 = 1,323,, = /170 = 0,214 86,6/170 = 0,109, = 1,, =, /(1 +, ) = 1,323 0,109/(1 + 1,501) = 0,0577, = =, = 28,397,, = / = /9,6 = 1,028 Nominal stiffness: =,, +, = 0, , , , = 12,631. Euler critical load:, =, Second order moment:, =, = 12, = 1246,63, / 1 = 67,88 1,028 = 124,99, 1246,63/800 1 Total design moment including second order moment:, =, +, = 67, ,99 = 192,87,, =, = Simplified method based on nominal curvature Necessary factors: = 1 + = 1 + 0,229 = 1,229, = 0,4, = / = 1,229 0,214/1,229 0,4 = 1,31 1, = 0,35 + = 0,35 +, = 0,052,, = 1 +, = 1 + 0,052 1,501 = 0, Effective depth: = (h/2) + = 0,3525 m, = =, = 0,00217, 1/ = /(0,45 ) = 0,00217/(0,45 0,3525) = 0,0137, Page 29
30 1/ =, 1/ = 1 1 0,0137 = 0,0137. Deflection:, = 1, / = 0, /10 = 0,137. The nominal second order moment:, =, = 800 0,137 = 109,6. Total design moment including second order moment:, =, +, = 67, ,6 = 177,48,, =, = Biaxial bending No further check is necessary if the slenderness ratios satisfy the following conditions =,, = 4 2, first condition is not fulfilled, biaxial bending must be taken account according to paragraph (4). Page 30
Eurocode Training EN : Reinforced Concrete
Eurocode Training EN 199211: Reinforced Concrete Eurocode Training EN 199211 All information in this document is subject to modification without prior notice. No part of this manual may be reproduced,
More informationBending and Shear in Beams
Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,
More informationSERVICEABILITY LIMIT STATE DESIGN
CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise
More informationPractical Design to Eurocode 2
Practical Design to Eurocode 2 The webinar will start at 12.30 (Any questions beforehand? use Questions on the GoTo Control Panel) Course Outline Lecture Date Speaker Title 1 21 Sep Jenny Burridge Introduction,
More informationCHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS
4.1. INTRODUCTION CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS A column is a vertical structural member transmitting axial compression loads with or without moments. The cross sectional dimensions of a column
More informationCivil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7
Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...
More informationBridge deck modelling and design process for bridges
EURussia Regulatory Dialogue Construction Sector Subgroup 1 Bridge deck modelling and design process for bridges Application to a composite twingirder bridge according to Eurocode 4 Laurence Davaine
More informationFlexure: Behavior and Nominal Strength of Beam Sections
4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kipin.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015
More informationReinforced concrete structures II. 4.5 Column Design
4.5 Column Design A nonsway column AB of 300*450 crosssection resists at ultimate limit state, an axial load of 700 KN and end moment of 90 KNM and 0 KNM in the X direction,60 KNM and 27 KNM in the Y
More informationSTRUCTURAL ANALYSIS CHAPTER 2. Introduction
CHAPTER 2 STRUCTURAL ANALYSIS Introduction The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify
More informationCRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES
S. Kakay et al. Int. J. Comp. Meth. and Exp. Meas. Vol. 5 No. (017) 116 14 CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES SAMDAR KAKAY DANIEL BÅRDSEN
More informationInfluence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes
October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:
More informationExample 4.1 [Uniaxial Column Design] Solution. Step 1 Material Step 2Determine the normalized axial and bending moment value
Example 4.1 [Uniaxial Column Design] 1. Design the braced short column to sustain a design load of 1100 KN and a design moment of 160KNm which include all other effects.use C5/30 and S460 class 1 works
More informationDEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8  PART 3 PROVISIONS
DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8  PART 3 PROVISIONS Konstantinos CHRISTIDIS 1, Emmanouil VOUGIOUKAS 2 and Konstantinos TREZOS 3 ABSTRACT
More informationStructural Steelwork Eurocodes Development of A Transnational Approach
Structural Steelwork Eurocodes Development of A Transnational Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads
More information6. Bending CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where
More informationDetailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2
Detailing Lecture 9 16 th November 2017 Reinforced Concrete Detailing to Eurocode 2 EC2 Section 8  Detailing of Reinforcement  General Rules Bar spacing, Minimum bend diameter Anchorage of reinforcement
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationSERVICEABILITY OF BEAMS AND ONEWAY SLABS
CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach  Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONEWAY SLABS A. J. Clark School of Engineering Department of Civil
More informationCHAPTER 6: ULTIMATE LIMIT STATE
CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.
More informationJob No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design  Steel Composite Beam XX 22/09/2016
CONSULTING Engineering Calculation Sheet jxxx 1 Member Design  Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite
More informationChapter 8. Shear and Diagonal Tension
Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.14.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR
More informationRETAINING WALL ANALYSIS
GEODOMISI Ltd. Dr. Costas Sachpazis Consulting Company for Tel.: (+30) 20 523827, 20 57263 Fax.:+30 20 5746 Retaining wall Analysis & Design (EN997:2004 App'd by RETAINING WALL ANALYSIS In accordance with
More informationCode_Aster. Calculation algorithm of the densities of reinforcement
Titre : Algorithme de calcul des densités de ferraillage Date : 05/08/2013 Page : 1/11 Calculation algorithm of the densities of reinforcement Summary: One presents the calculation algorithm of the densities
More informationThis Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.
COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 CONCRETE FRAME DESIGN ACI31899 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced
More informationFinite Element Modelling with Plastic Hinges
01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated postyield behaviour in one or more degrees of freedom. Hinges only
More informationFailure interaction curves for combined loading involving torsion, bending, and axial loading
Failure interaction curves for combined loading involving torsion, bending, and axial loading W M Onsongo Many modern concrete structures such as elevated guideways are subjected to combined bending, torsion,
More informationJob No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet
E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 35 N/mm 2 OK Yield strength of longitudinal steel, f y 460 N/mm 2 Yield
More informationNUMERICAL SIMULATIONS OF CORNERS IN RC FRAMES USING STRUTANDTIE METHOD AND CDP MODEL
Numerical simulations of corners in RC frames using StrutandTie Method and CDP model XIII International Conference on Computational Plasticity. Fundamentals and Applications COMPLAS XIII E. Oñate, D.R.J.
More informationEN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland.
EN 1997 1: Sections 3 and 6 Your logo Brussels, 1820 February 2008 Dissemination of information workshop 1 EN 19971 Eurocode 7 Section 3 Geotechnical Data Section 6 Spread Foundations Trevor L.L. Orr
More informationRoadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement.
Example on Design of Slab Bridge Design Data and Specifications Chapter 5 SUPERSTRUCTURES Superstructure consists of 10m slab, 36m box girder and 10m Tgirder all simply supported. Only the design of Slab
More informationModule 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur
Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to
More informationJob No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design  RC Two Way Spanning Slab XX
CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 35 N/mm 2 OK Yield strength of
More informationSymmetric Bending of Beams
Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationFIXED BEAMS IN BENDING
FIXED BEAMS IN BENDING INTRODUCTION Fixed or builtin beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported
More informationChapter 12. Static Equilibrium and Elasticity
Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial
More informationLIMITATIONS OF THE STANDARD INTERACTION FORMULA FOR BIAXIAL BENDING AS APPLIED TO RECTANGULAR STEEL TUBULAR COLUMNS
LIMITATIONS OF THE STANDARD INTERACTION FORMULA FOR BIAXIAL BENDING AS APPLIED TO RECTANGULAR STEEL TUBULAR COLUMNS Ramon V. Jarquio 1 ABSTRACT The limitations of the standard interaction formula for biaxial
More informationRigid and Braced Frames
RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram
More informationINFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER
International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 115 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE
More informationTHEME IS FIRST OCCURANCE OF YIELDING THE LIMIT?
CIE309 : PLASTICITY THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT? M M  N N + + σ = σ = + f f BENDING EXTENSION Ir J.W. Welleman page nr 0 kn Normal conditions during the life time WHAT HAPPENS DUE TO
More informationParametric analysis and torsion design charts for axially restrained RC beams
Structural Engineering and Mechanics, Vol. 55, No. 1 (2015) 127 DOI: http://dx.doi.org/10.12989/sem.2015.55.1.001 1 Parametric analysis and torsion design charts for axially restrained RC beams Luís F.A.
More informationThe Local Web Buckling Strength of Coped Steel IBeam. ABSTRACT : When a beam flange is coped to allow clearance at the
The Local Web Buckling Strength of Coped Steel IBeam Michael C. H. Yam 1 Member, ASCE Angus C. C. Lam Associate Member, ASCE, V. P. IU and J. J. R. Cheng 3 Members, ASCE ABSTRACT : When a beam flange
More informationChapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
More informationSeismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design
Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department
More informationChapter 6: CrossSectional Properties of Structural Members
Chapter 6: CrossSectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross
More informationMaterials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.
Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie
More information7.4 The Elementary Beam Theory
7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be
More informationPractical Design to Eurocode 2. The webinar will start at 12.30
Practical Design to Eurocode 2 The webinar will start at 12.30 Course Outline Lecture Date Speaker Title 1 21 Sep Jenny Burridge Introduction, Background and Codes 2 28 Sep Charles Goodchild EC2 Background,
More informationMECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola
MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the
More informationBE Semester I ( ) Question Bank (MECHANICS OF SOLIDS)
BE Semester I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)
More informationAPPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS
APPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS D1 An extensive literature search revealed many methods for the calculation of live load distribution factors. This appendix will discuss, in detail,
More informationFundamentals of Structural Design Part of Steel Structures
Fundamentals of Structural Design Part of Steel Structures Civil Engineering for Bachelors 133FSTD Teacher: Zdeněk Sokol Office number: B619 1 Syllabus of lectures 1. Introduction, history of steel structures,
More informationJob No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design  Reinforced Concrete Beam BS8110 v Member Design  RC Beam XX
CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Effects From Structural Analysis Design axial force, F (tension ve and compression +ve) (ensure < 0.1f cu b w h 0
More informationJeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS
MECHANICS OF MATERIALS Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA Keywords: Solid mechanics, stress, strain, yield strength Contents 1. Introduction 2. Stress
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationEvaluation of Flexural Stiffness for RC Beams During Fire Events
3 rd International Structural Specialty Conference 3 ième conférence internationale spécialisée sur le génie des structures Edmonton, Alberta June 69, 202 / 6 au 9 juin 202 Evaluation of Flexural Stiffness
More informationNote on the moment capacity in a Bubble deck joint
Tim GudmandHøyer Note on the moment capacity in a Bubble deck joint DANMARKS TEKNISKE UNIVERSITET Rapport BYG DTU R074 2003 ISSN 16012917 ISBN 8778771374 Note on the moment capacity in a Bubble
More informationTower Cranes & Foundations The Interface & CIRIA C654 Stuart Marchand C.Eng. FICE FIStructE Director Wentworth House Partnership
Tower Cranes & Foundations The Interface & CIRIA C654 Stuart Marchand C.Eng. FICE FIStructE Director Wentworth House Partnership EXAMPLES OF TOWER CRANE FOUNDATION TYPES Rail mounted Pad Base Piled Base
More informationUnit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir
Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata
More informationStrength of Material. Shear Strain. Dr. Attaullah Shah
Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume
More informationInitial Stress Calculations
Initial Stress Calculations The following are the initial hand stress calculations conducted during the early stages of the design process. Therefore, some of the material properties as well as dimensions
More informationSeismic Assessment of a RC Building according to FEMA 356 and Eurocode 8
1 Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 Ioannis P. GIANNOPOULOS 1 Key words: Pushover analysis, FEMA 356, Eurocode 8, seismic assessment, plastic rotation, limit states
More informationtwo structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS
APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture two structural analysis (statics & mechanics) Analysis 1 Structural Requirements strength serviceability
More informationExample 2.2 [Ribbed slab design]
Example 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. The joists which are spaced at 400mm are supported by girders. The overall depth of the slab
More informationAim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels
METNET Workshop October 1112, 2009, Poznań, Poland Experimental and numerical analysis of sandwich metal panels Zbigniew Pozorski, Monika ChudaKowalska, Robert Studziński, Andrzej Garstecki Poznan University
More informationCHAPTER 6 BENDING Part 1
Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER 6 BENDING Part 11 CHAPTER 6 Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and
More informationMechanics of Materials
Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics
More informationChapter 5 Elastic Strain, Deflection, and Stability 1. Elastic StressStrain Relationship
Chapter 5 Elastic Strain, Deflection, and Stability Elastic StressStrain Relationship A stress in the xdirection causes a strain in the xdirection by σ x also causes a strain in the ydirection & zdirection
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationFCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering
FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress
More informationFailure from static loading
Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable
More informationMECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT  I
MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT  I Engineering Mechanics Branch of science which deals with the behavior of a body with the state of rest or motion, subjected to the action of forces.
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More informationCivil Engineering Design (1) Analysis and Design of Slabs 2006/7
Civil Engineering Design (1) Analysis and Design of Slabs 006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Elastic Methods... 3 1.1 Introduction... 3 1. Grillage Analysis... 4 1.3 Finite Element
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More informationDynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models
Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models I. Rhee, K.J. Willam, B.P. Shing, University of Colorado at Boulder ABSTRACT: This paper examines the global
More informationTherefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by:
5.11. Underreinforced Beams (Read Sect. 3.4b oour text) We want the reinforced concrete beams to fail in tension because is not a sudden failure. Therefore, following Figure 5.3, you have to make sure
More informationSeismic performance evaluation of existing RC buildings designed as per past codes of practice
Sādhanā Vol. 37, Part 2, April 2012, pp. 281 297. c Indian Academy of Sciences Seismic performance evaluation of existing RC buildings designed as per past codes of practice 1. Introduction K RAMA RAJU,
More informationProperties of Sections
ARCH 314 Structures I Test Primer Questions Dr.Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body
More informationAPPENDIX 1 MODEL CALCULATION OF VARIOUS CODES
163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n
More informationVTU EDUSAT PROGRAMME Lecture Notes on Design of Columns
VTU EDUSAT PROGRAMME 17 2012 Lecture Notes on Design of Columns DESIGN OF RCC STRUCTURAL ELEMENTS  10CV52 (PART B, UNIT 6) Dr. M. C. Nataraja Professor, Civil Engineering Department, Sri Jayachamarajendra
More informationDESIGN OF SLENDER COLUMNS
Slovak Chamber of Civil Engineers DESIGN OF SLENDER COLUMNS Prof. Dipl.  Ing. Dr. Vladimír BENKO, PhD. Slovak University of Technology in Bratislava ECEC European Council of Engineer s Chambers CPDLectures
More informationMECE 3321 MECHANICS OF SOLIDS CHAPTER 3
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.
More informationMarch 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE
Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano
More informationΙApostolos Konstantinidis Diaphragmatic behaviour. Volume B
Volume B 3.1.4 Diaphragmatic behaviour In general, when there is eccentric loading at a floor, e.g. imposed by the horizontal seismic action, the inplane rigidity of the slab forces all the inplane points
More informationFailure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas
Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!
More informationPLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder
16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders
More informationSeismic Performance of RC Building Using Spectrum Response and Pushover Analyses
Seismic Performance of RC Building Using Spectrum Response and Pushover Analyses Mehani Youcef (&), Kibboua Abderrahmane, and Chikh Benazouz National Earthquake Engineering Research Center (CGS), Algiers,
More information999 TOWN & COUNTRY ROAD ORANGE, CALIFORNIA TITLE PUSHOVER ANALYSIS EXAMPLE BY R. MATTHEWS DATE 5/21/01
DESCRIPTION Nonlinear static (pushover) analysis will be performed on a railroad bridge bent using several methods to determine its ultimate lateral deflection capability. 1. SAP2000 Nonlinear with axialmoment
More informationMechanics of Solids notes
Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any crosssection of a beam may consists of a resultant normal force,
More informationSeismic design of bridges
NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour
More informationNonlinear static analysis PUSHOVER
Nonlinear static analysis PUSHOVER Adrian DOGARIU European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events 520121120111CZERA MUNDUSEMMC Structural
More information7.5 Elastic Buckling Columns and Buckling
7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented
More informationSIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE
SIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE M.A. Youssef a, S.F. ElFitiany a a Western University, Faculty of Engineering, London, Ontario, Canada Abstract Structural
More information14. *14.8 CASTIGLIANO S THEOREM
*14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by
More informationMECH 401 Mechanical Design Applications
MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (11708) Last time Introduction Units Reliability engineering
More information