Design of reinforced concrete sections according to EN and EN

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Design of reinforced concrete sections according to EN and EN"

Transcription

1 Design of reinforced concrete sections according to EN and EN Validation Examples Brno, IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, BRNO tel.: , fax: ,

2 Foreword The introduction of European standards is a significant event as, for the first time, all design and construction codes within the EU will be harmonized. These Eurocodes will affect all design and construction activities. The aim of this publication, Design of reinforced concrete sections according to EN and EN , is to illustrate how the Code is treated on practical examples. In order to explain the use of all relevant clauses of Eurocode 2, an example of a simply supported oneway rib-shaped slab and an example of column with high axial load and bi-axial bending is introduced. IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, BRNO tel.: , fax: ,

3 Design of reinforced concrete sections according to EN and EN October 2010 Contents 1. Rib T Project details... 4 Actions and analysis of Rib T Section forces Cross section Ultimate section resistance Shear check Torsional check Interaction Crack width calculation Crack width according to EN Example - Calculation of crack width according to EN Calculating stiffness Example - calculating the stiffness of the T-section according to EN Column Project details Second order effects Simplified method based on nominal stiffness Simplified method based on nominal curvature Biaxial bending Page 3

4 Validation Examples Reinforced Concrete Section October Rib T Project details Example is taken from: Ing. Miloš Zich, Ph.D. and others, others online publication "Konstrukční ční Eurokódy - Příklady posouzení betonových prvkůů dle Eurokódů", Eurokódů nakl. Verlag Dashöfer s. r. o., 2010, First floor slab Figure Schematic layout of structure Page 4

5 Section A Section B Figure 1.2 Sections Actions and analysis of Rib T1 Figure 1.3 Static schema of Rib T1 Page 5

6 Figure Floor composition for the calculation of loads Figure Permanent load calculation Variable load: quasi-permanent value: q k = 10 kn/m 2 * 2.0m = 20 kn/m ψ = 0,6 20 = 12 / Factors defining the representative values of variable actions, ψ 0, ψ 1, ψ 2 are shown in table. A1.1 of EN1990 (also in attachment A4 in this document) Page 6

7 Actions for Serviceability limit states (SLS) Loads for serviceability limit state are determined acc. to EN 1990 clause There are 3 SLS-combinations: Characteristic combination of loads (Unacceptable cracking or deformation), "+"" + ", " + " ψ,,,ψ = 9, = 29,87 Frequent load combination, "+"" + "ψ,, " + " ψ,,,ψ = 9, , = 23,87 Quasi-permanent load combination, "+"γ " + ψ,,,ψ = 9, ,6 20 = 21,87 Actions for Ultimate limit states (ULS) It is considered as a persistent design situation for ultimate limit state where partial factors are: γ G = 1,35, γ Q = 1,50. To determine the design load in Article EN 1990 is prescribed the following equation marked as the equation (6.10) γ,, "+"γ " + "γ,, " + " γ, ψ,, Substituting, we get the value of design load = 1,35 9, , = 43,32 Alternatively, load can be further reduced according to equation (6.10) and (6.10b) and consider the less favorable value of both terms: γ,,"+"γ " + "γ, ψ, " + " γ, ψ,,, ξ,, "+"γ " + "γ,, " + " γ, ψ,, = 1 2 = 1,35 9, ,5 0, = 34,32 = 1,35 0,85 9, , = 41, Section forces = 1 8 Page 7

8 Combination/Value Loads [kn/m] Vz(a) [kn] My (b) [knm] SLS characteristic SLS frequent SLS quasi-permanent ULS Table Internal forces for individual SLS and ULS load combinations The shear force is calculated at distance d from the face of the support. Estimated value of d is based on the assumption that the moment near the support will be positive. Value d = 458 mm. Values: V Ed1 and M Ed1 are calculated at distance l x = = m from the theoretical support.v Ed1 = 105,05 kn, M Ed1 = 84,29 knm. Page 8

9 1.2. Cross section Figure 1.6 Cross section Materials Concrete C25/30 Steel B500B f ck = 25 MPa f cd = f ck / γ c = 25 / 1,5 = 16,66 MPa f ctm = 2,6 MPa f ctd = 0,7 f ctm / γ c = 0,7 2,6 / 1,5 = 1,213 MPa f yk = 500 MPa f yd = f yk / γ s = 500 / 1,15 = 434,78 MPa Page 9

10 1.3. Ultimate section resistance The cross section resistance (capacity) is the calculation of stress, strain and internal forces status on the calculated cross section for its limit state. For concrete the stress-strain relation is assumed to bi-linear. For reinforcing steel the stress-strain relation is assumed to be bi-linear without strain hardening. Bending moment at middle section from basic combination of loads. Figure Response - given by program IDEA RCS Input data, Plane of strain: ε x = 0, ε y =0,0 ε z = - 0, Figure Resulted plane of strain calculated by IDEA RCS Strain calculation in end fibers: ε = ε + ε + ε = 0, , = 0, Figure 1.9 Strain in ultimate compression fiber (picture from program IDEA RCS) Modulus of elasticity is calculated from stress-strain diagram = /ε = 16,7/ 0,00175 = 9,52 Page 10

11 σ = ε = 0, ,52 10 = 7,27 Defining the depth of compression zone (depth to neutral axis) in concrete, follow from: = + ε = 0, , = 0, ε 0, Concrete force in compression (as, the strain in concrete is outside the plastic branch, the stress along the section is linear in concrete) = 2 = 0, ,85 16,7 2 = 495,83 Concrete lever arm in the compression = 3 = 0,1305 0, = 0, Concrete moment in compression = = 495,83 0, = 52,52 Strain in reinforcing steel ε = ε + ε + ε = 0, , = 0, Figure 1.10 Stress in reinforcing steel ( Diagram is taken from program IDEA RCS) Calculating of stress in reinforcing steel (whereas, the section is loaded in the plane of symmetry and reinforcement is not in one layer, these layers can be replaced by one layer with an area equal to the sum of all areas of reinforcement) σ = ε = 0, = 559,34 > 434,78 434,78 MPa Tensile force in reinforcement Page 11

12 = σ = 0, ,783 = 495,83 KN Moment in tensile reinforcement M = F z = 495, = 162,134 knm Figure 1.11 Comparing with results calculated by IDEA RCS program Equilibrium of forces + = = 495,83 495,83 = 0 Equilibrium of moments + = = -162,134-52,52 = -214,654 Note: Due to coordination system that is used inside the program, the design moment My has opposite sign. Page 12

13 1.4. Shear check Resistance without shear reinforcement in zones without cracks under bending loads Calculated in center of gravity of concrete section I = 1/12*1,85*0, ,85*0,08*0, /12*0,2*0, ,2*0,42*0,159 2 = 7,8933e-5+0, , , = 0,004684m 4 S = 1,85 * 0,08 * 0, ,2 * 0,051 *0,051/2 = 0,01373 m 3 b w = 0,2 m σ cp = 0,0 MPa α l = 1, = + = 0, ,2 1, , = 82,76, = 82,76 <, = 105,05 Deriving from the above text, the concrete part does not carry all the shear force, hence shear reinforcement will be required. Figure Comparing with results calculated by RCS program Resistance without shear reinforcement in zones with cracks under bending loads C Rd,c = 0,18 / γ c = 0,18 / 1,5 = 0,12 = = = 1,661 = = 760 = 0, , k 1 = 0,15 σ cp = 0,0 MPa b w = 0,2 m d = 0,458 m ν min = k 3/2 fck 1/2 = ,661 3/2 25 1/2 = 0,3745 MPa Page 13

14 , =. (100 ) Minimally + = 0,12 1,661 (100 0, ) + 0 0,2 0,458 = 50,15, = + = 0, ,2 0,458 = 34,30, = 50,15 <, = 105,05 Deriving from the above text, the concrete part does not carry all the shear force, hence shear reinforcement will be required. Resistance without shear reinforcement = min (,,, ) A sw = 2 * * PI /4 = 5,655e-5 m 2 s = 0.24m z = 0.9*0.458 = m exact value is 0,437 m f ywd = f yd = 434,7MPa θ = 21,8, = cot = 2 2,827e 5 0, , ,8 0,24 = 105,70 >, = 105,05 h α cw = 1,0 b w = 0,2 m z = 0.9*0.458 = m exact value is 0,437m For calculation of strength reduction factor for concrete cracked in shear ν 1 must be checked if the design stress of the shear reinforcement is over the 80% of the characteristic yield stress f ywk, = =,,, = = = 0,54.,, 434,74 > 0.8 = 400, = 1,0 0,2 0,412 0,54 16,66 10 = cot + tan cot 21,8 + tan 21,8 = 255,76 >, = 133,27 h Page 14

15 Figure 1.13 Comparison of results calculated by RCS program Page 15

16 1.5. Torsional check Section characteristics for torsional check u = 2 * ( ) = 4.7 m A = 2 * ( ) = m 2 t ef = A / u = / 4.7 = m = ± 16 = 4.7 ± = 4 4 2b. h = =.m ± = = m = = 4.504m. =.m Torsional capacity without shear reinforcement, = 2 = = Torsional capacity with shear reinforcement ν = 0.6 α cw = 1,0, = 2 = ,0 16, , sin 21.8 cos 21.8 = 36,09, = 2 = 2 0,1187 2,827e 5 0,24 7,603e 4 434, , ,507 = 14,59 Figure Comparison of results calculated by RCS program Page 16

17 1.6. Interaction Combined shear and torsion, +, =,, +. Shear reinforcement is not allowed to design according to detailing rules = 2,09 > 1,0 => Compression strut check for combined shear and torsion + = 105,05,, 255, = 0,41 < 1,0 => 36,09 Shear reinforcement check for combined shear and torsion, = Σ = 2,827e 5 0,24 434,78 10 = 51,21 = + tan = 105, , tan 21,8 = 50,99 2 0,1187 = 50,99 = 0,99 < 1,0 =>, 51,21 Longitudinal reinforcement check for shear, torsion and bending, = Σ =7,603e 4 (434,78 253,9) 10 = 137,52 = tan + 2 tan = 105,05 tan 21, ,1187 tan 21,8 = 262,64 = 262,64 = 1,91 > 1,0 =>, 137,52 Page 17

18 Figure Comparing with results calculated by RCS program Page 18

19 1.7. Crack width calculation Crack width according to EN Check is introduced at midsection of beam M y = 113,73 knm Plane of strain calculated by program IDEA RCS: ε x = 0, ε y = 0,0 ε z = -0, Defining the depth of compression zone (depth to neutral axis) in concrete, follow from: = + ε = 0, , = 0,0565 ε 0, Figure Strain-stress diagram on fully cracked cross section Strain calculation in end concrete fibres: ε = ε + ε + ε = 0, , ,1305 = 0, Stress calculation in end concrete fibres: σ = ε = 0, = 4,954 Concrete force in compression: = σ 2 = σ 0,0565 1,85 4,954 = 2 2 = 0,259 kn Concrete moment in compression: M = F z = F z x 3 = ,1305 0, = 28,92 knm Strain in reinforcing steel: ε = ε + ε + ε = 0, , ,32748 = 0, Page 19

20 Calculating of stress in reinforcing steel (whereas, the section is loaded in the plane of symmetry and reinforcement is in one layer, this layer can be replaced by one bar with an area equal to the sum of all areas of reinforcement) σ = ε = 0, = 227,1 Tensile force in the bar: = σ = 0, = 258,97 kn Moment in tensile reinforcement: M = F z = 258, = 84,81 knm Equilibrium of forces: + = = 258,97 258,97 = 0 Equilibrium of moments: + = = 84,81 28,92 = 113,725 knm Example - Calculation of crack width according to EN Effective ratio of reinforcement: ρ, = = 11,40 10 = 0,05429, 0,021 Maximal spacing of the cracks:, = + φ/ρ,, = 3,4 0, ,8 0,5 0,425 0,022/0,05649 = 0,1743 Factors: k 1 = k 2 = k 3 = 3,4 k 4 = 0,5 0,8 in example is considered steel B500B 0,5 Cross section loaded by bending moment, pure bending Effective height (3) h c,ef : h, = 2,5h ; h 3 ; h 2 = 2,50,5 0,458; 0,5 0,05649 ; 0,5 3 2 = 0,105; 0,1478; 0,25 = 0,105 Page 20

21 Effective area: Mean strain in the reinforcement ε ε = ε ε =, = h, = 0,105 0,2 = 0,021 σ, ρ, α ρ, 227,17 0,4, 1 + 6,45 0,05429, 0,6 227, ε ε = 0, > 0, ε ε = 0, ,6 σ Mean value of the tensile strength of the concrete effective at the time when the cracks may first be expected to occur:, = = 2,6 factor: = 0,4, long term action Crack width according to (EN , clause 7.3.4) is : =, ε ε = 174,3 0, = 0,175 Figure Comparison of values with IDEA RCS results Page 21

22 1.8. Calculating stiffness Example - calculating the stiffness of the T-section according to EN Considering the strain, stress and internal forces in the previous examples are already calculated, the plane of strain is computed for a cracked section loaded by internal forces at the time when the cracks may first be expected to occur from the quasi-permanent combination. To calculate, for short-term stiffness, the difference in the calculation of shortand long-term stiffness is only taking into account the effective modulus of elasticity:, = where: ϕ, ϕ(,t 0 ) is the final value of creep coefficient Calculation will be carried out at mid-span section of quasi-permanent combination My = 113,73 knm ε x = , ε y = 0.0, ε z = Figure Strain stress diagram on cracked concrete cross section Sectional characteristics of transformed concrete section without cracks Cross sectional area of transformed cross section (steel area is transformed to concrete) = + = h h h + α = 210 1,85 0,5 1,85 0,20,5 0, ,40 10 = 0, Center of gravity of transformed cross section = α = 11, ,4516 0,327 = 0, , Page 22

23 Moment of inertia of original cross section = 1 12 h + h h h h h h + h h 2 = ,85 0,5 + 1,85 0,5 0,1305 0, ,85 0,20,5 0, ,85 0,20,5 0,08 0, ,5 0,08 = 0, Moment of inertia of transformed cross section = + + α = 0, ,85 0,20,5 0,08 + 0, , ,4516 0,3274 = 0, Sectional characteristics of transformed concrete section with cracks Compression zone: = + ε = 0, , = 0,0565 ε Cross sectional area of transformed cross section (steel area is transformed to concrete) = + α = 1,85 0, , ,4516 = 0, Center of gravity of transformed cross section = ( 2) α = 1,85 0,0565 0,1305 0, , ,4516 0,327 = 0, , Moment of inertia of original cross section = = 1 1,85 0, ,85 0,5650,1305 0, = I = 0, m Moment of inertia of transformed cross section = + + α = 0,0565 1,85 0, , ,4516 0,327 = 0, Page 23

24 Rematk: Current IDEA RCS version calculates cross sectional characteristics related to original center of gravity of cross section Since the same assumptions for calculating the limit state and stiffness and width of cracks were used, we assume the stress in the reinforcement from the example of the calculation of crack width: σ = 227,1 Now we calculate the tensile force from ultimate load on the cracked section immediately prior to cracking. This plane is taken over from program IDEA RCS. ε x = , ε y = 0.0, ε z = Strain in reinforcing steel: ε = ε + ε + ε = 0, , ,32748 = 0, Stress in reinforcing steel σ = ε = 0, = 78,3 Reduction factor/distribution coefficientξ = 1 β σ σ = 1 1,, = 0,8808 bending stiffness of uncracked cross section:, = = 0, = 169 Page 24

25 bending stiffness of fully cracked cross section:, =, = 0, = 40,215 Stiffness is interpolated according to following expresion (Interpolation is done on level of stiffnesses) α = ξα + 1 ξα = ξ + 1 ξ α = 0, , = 55,48 Page 25

26 2. Column 2.1. Project details Square cross section 0.4 x 0, 4 m 2 reinforced in four corners by bars of 25 mm, stirrup with diameter 10 mm. Material C35/45, Reinforcements B 500B, concrete cover 25 mm, creep coefficient in infinity φ (, t0) = 1,68. Column 5 m, one- Laterally fixed in the XY plane, and both-sidedly fixed in the plane XZ. It is stand-alone element that is unbraced perpendicular to the Y-axis and braced to the Z axis. Figure Cross section and column geometry The internal forces obtained by calculating a linear structure in the investigated section: Combination for the ultimate limit state: = 800,, = 50,, = 0. Quasi-permanent combination for the serviceability limit state:, = 700,,, = 45,,, = 0. First order end moments: At the beginning: At the end:, = 60,, = 0,, = 0., = 0. Page 26

27 Calculating geometrical imperfections: Effective length l 0, = 2 = 2 5 = 10,, = 0,5 = 0,5 5 = 2,5. Reduction factor for length:, =, = 2/ = 2/ 5 = 0,894, 2/3 0, Reduction factor for number of members,, = 0,51 + 1/ = 0,51 + 1/1 = 1. Inclination,, = = ,894 1=0, Eccentricity:, =, /2 = 0, /2 = 0,02235,, =, /2 = 0, ,5/2 = 0, Total eccentricity including effects of geometrical imperfections:, +, =, / +, = 50/ ,02235 = 0, ,02235 = 0,08485,, +, =, / +, = 0/ , = 0, Minimum eccentricity according to paragraph 6.1 (4):,, = maxh/30; 0,02 = max0,4/30; 0,02 = max0,0133 ; 0,02 = 0,02,, = max, +, ;, = max0,08485; 0,02 = 0,08485,, = max, +, ;, = max0, ; 0,02 = 0,02. The first order moment with geometrical imperfections:, =, = 800 0,08485 = 67,88,, =, = 800 0,02 = 16. Page 27

28 2.2. Second order effects Slenderness and limit slenderness: Slenderness ratio =, =, = 86,6, =, =,, = 21,65,, = h = 0,4 = 0,1155. Necessary values for calculating the limit slenderness: End moments ratio:, = 1, because member is unbraced perpendicularly to Y axis,, = 1, because end moments are equal (,, =,, ). Relative normal force = =,, Mechanical reinforcement ratio = = 0,214. =,,,, = 0,229. The effect of creep may be ignored, if the following free conditions are met (,) = 1,68 2 = 86,6 75, = 21,65 < 75, =, = 0,08485 h = 0,4,, = = 0,02 h = 0,4. Conditions are not fulfilled, the effect of creep must not be ignored Effective creep ratio:, =,,,,, =,,,, = 1,68,, = 1,501, = 1,68, = 0,411, the moment from the quasi-permanent combination, including the effects of the first order we received from the same calculation as for the design moment, only difference is we are not taking account the condition for minimum eccentricity. =,, =,, = 0,769, = = = ,229 = 1,207,, = 1,7,, = 1,7 1 = 0,7 Limit slenderness:,, = 0,924,, = 20 / = 20 0,769 1,207 0,7/ 0,214 = 28,09,, = 20 / = 20 0,924 1,207 0,7/ 0,214 = 33,75, Slenderness criterion: = 86,6 >, = 28,09 = 21,65 <, = 33,75 slender column, non-slender column, 2nd order effects can be neglected. Page 28

29 Simplified method based on nominal stiffness Necessary factors: = / = 0,00196/0,16 = 0,01225 > 0,002, method can be used. = /20 = 35/20 = 1,323,, = /170 = 0,214 86,6/170 = 0,109, = 1,, =, /(1 +, ) = 1,323 0,109/(1 + 1,501) = 0,0577, = =, = 28,397,, = / = /9,6 = 1,028 Nominal stiffness: =,, +, = 0, , , , = 12,631. Euler critical load:, =, Second order moment:, =, = 12, = 1246,63, / 1 = 67,88 1,028 = 124,99, 1246,63/800 1 Total design moment including second order moment:, =, +, = 67, ,99 = 192,87,, =, = Simplified method based on nominal curvature Necessary factors: = 1 + = 1 + 0,229 = 1,229, = 0,4, = / = 1,229 0,214/1,229 0,4 = 1,31 1, = 0,35 + = 0,35 +, = 0,052,, = 1 +, = 1 + 0,052 1,501 = 0, Effective depth: = (h/2) + = 0,3525 m, = =, = 0,00217, 1/ = /(0,45 ) = 0,00217/(0,45 0,3525) = 0,0137, Page 29

30 1/ =, 1/ = 1 1 0,0137 = 0,0137. Deflection:, = 1, / = 0, /10 = 0,137. The nominal second order moment:, =, = 800 0,137 = 109,6. Total design moment including second order moment:, =, +, = 67, ,6 = 177,48,, =, = Biaxial bending No further check is necessary if the slenderness ratios satisfy the following conditions =,, = 4 2, first condition is not fulfilled, biaxial bending must be taken account according to paragraph (4). Page 30

Eurocode Training EN : Reinforced Concrete

Eurocode Training EN : Reinforced Concrete Eurocode Training EN 1992-1-1: Reinforced Concrete Eurocode Training EN 1992-1-1 All information in this document is subject to modification without prior notice. No part of this manual may be reproduced,

More information

Bending and Shear in Beams

Bending and Shear in Beams Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,

More information

SERVICEABILITY LIMIT STATE DESIGN

SERVICEABILITY LIMIT STATE DESIGN CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise

More information

Practical Design to Eurocode 2

Practical Design to Eurocode 2 Practical Design to Eurocode 2 The webinar will start at 12.30 (Any questions beforehand? use Questions on the GoTo Control Panel) Course Outline Lecture Date Speaker Title 1 21 Sep Jenny Burridge Introduction,

More information

CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS

CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS 4.1. INTRODUCTION CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS A column is a vertical structural member transmitting axial compression loads with or without moments. The cross sectional dimensions of a column

More information

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

More information

Bridge deck modelling and design process for bridges

Bridge deck modelling and design process for bridges EU-Russia Regulatory Dialogue Construction Sector Subgroup 1 Bridge deck modelling and design process for bridges Application to a composite twin-girder bridge according to Eurocode 4 Laurence Davaine

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

Reinforced concrete structures II. 4.5 Column Design

Reinforced concrete structures II. 4.5 Column Design 4.5 Column Design A non-sway column AB of 300*450 cross-section resists at ultimate limit state, an axial load of 700 KN and end moment of 90 KNM and 0 KNM in the X direction,60 KNM and 27 KNM in the Y

More information

STRUCTURAL ANALYSIS CHAPTER 2. Introduction

STRUCTURAL ANALYSIS CHAPTER 2. Introduction CHAPTER 2 STRUCTURAL ANALYSIS Introduction The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify

More information

CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES

CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES S. Kakay et al. Int. J. Comp. Meth. and Exp. Meas. Vol. 5 No. (017) 116 14 CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES SAMDAR KAKAY DANIEL BÅRDSEN

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

Example 4.1 [Uni-axial Column Design] Solution. Step 1- Material Step 2-Determine the normalized axial and bending moment value

Example 4.1 [Uni-axial Column Design] Solution. Step 1- Material Step 2-Determine the normalized axial and bending moment value Example 4.1 [Uni-axial Column Design] 1. Design the braced short column to sustain a design load of 1100 KN and a design moment of 160KNm which include all other effects.use C5/30 and S460 class 1 works

More information

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS Konstantinos CHRISTIDIS 1, Emmanouil VOUGIOUKAS 2 and Konstantinos TREZOS 3 ABSTRACT

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

6. Bending CHAPTER OBJECTIVES

6. Bending CHAPTER OBJECTIVES CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

More information

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2 Detailing Lecture 9 16 th November 2017 Reinforced Concrete Detailing to Eurocode 2 EC2 Section 8 - Detailing of Reinforcement - General Rules Bar spacing, Minimum bend diameter Anchorage of reinforcement

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

More information

CHAPTER 6: ULTIMATE LIMIT STATE

CHAPTER 6: ULTIMATE LIMIT STATE CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

Chapter 8. Shear and Diagonal Tension

Chapter 8. Shear and Diagonal Tension Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.1-4.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR

More information

RETAINING WALL ANALYSIS

RETAINING WALL ANALYSIS GEODOMISI Ltd. Dr. Costas Sachpazis Consulting Company for Tel.: (+30) 20 523827, 20 57263 Fax.:+30 20 5746 Retaining wall Analysis & Design (EN997:2004 App'd by RETAINING WALL ANALYSIS In accordance with

More information

Code_Aster. Calculation algorithm of the densities of reinforcement

Code_Aster. Calculation algorithm of the densities of reinforcement Titre : Algorithme de calcul des densités de ferraillage Date : 05/08/2013 Page : 1/11 Calculation algorithm of the densities of reinforcement Summary: One presents the calculation algorithm of the densities

More information

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected. COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 CONCRETE FRAME DESIGN ACI-318-99 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

Failure interaction curves for combined loading involving torsion, bending, and axial loading

Failure interaction curves for combined loading involving torsion, bending, and axial loading Failure interaction curves for combined loading involving torsion, bending, and axial loading W M Onsongo Many modern concrete structures such as elevated guideways are subjected to combined bending, torsion,

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 35 N/mm 2 OK Yield strength of longitudinal steel, f y 460 N/mm 2 Yield

More information

NUMERICAL SIMULATIONS OF CORNERS IN RC FRAMES USING STRUT-AND-TIE METHOD AND CDP MODEL

NUMERICAL SIMULATIONS OF CORNERS IN RC FRAMES USING STRUT-AND-TIE METHOD AND CDP MODEL Numerical simulations of corners in RC frames using Strut-and-Tie Method and CDP model XIII International Conference on Computational Plasticity. Fundamentals and Applications COMPLAS XIII E. Oñate, D.R.J.

More information

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland.

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland. EN 1997 1: Sections 3 and 6 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 3 Geotechnical Data Section 6 Spread Foundations Trevor L.L. Orr

More information

Roadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement.

Roadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement. Example on Design of Slab Bridge Design Data and Specifications Chapter 5 SUPERSTRUCTURES Superstructure consists of 10m slab, 36m box girder and 10m T-girder all simply supported. Only the design of Slab

More information

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - RC Two Way Spanning Slab XX

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - RC Two Way Spanning Slab XX CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 35 N/mm 2 OK Yield strength of

More information

Symmetric Bending of Beams

Symmetric Bending of Beams Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

LIMITATIONS OF THE STANDARD INTERACTION FORMULA FOR BIAXIAL BENDING AS APPLIED TO RECTANGULAR STEEL TUBULAR COLUMNS

LIMITATIONS OF THE STANDARD INTERACTION FORMULA FOR BIAXIAL BENDING AS APPLIED TO RECTANGULAR STEEL TUBULAR COLUMNS LIMITATIONS OF THE STANDARD INTERACTION FORMULA FOR BIAXIAL BENDING AS APPLIED TO RECTANGULAR STEEL TUBULAR COLUMNS Ramon V. Jarquio 1 ABSTRACT The limitations of the standard interaction formula for biaxial

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 1-15 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE

More information

THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT?

THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT? CIE309 : PLASTICITY THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT? M M - N N + + σ = σ = + f f BENDING EXTENSION Ir J.W. Welleman page nr 0 kn Normal conditions during the life time WHAT HAPPENS DUE TO

More information

Parametric analysis and torsion design charts for axially restrained RC beams

Parametric analysis and torsion design charts for axially restrained RC beams Structural Engineering and Mechanics, Vol. 55, No. 1 (2015) 1-27 DOI: http://dx.doi.org/10.12989/sem.2015.55.1.001 1 Parametric analysis and torsion design charts for axially restrained RC beams Luís F.A.

More information

The Local Web Buckling Strength of Coped Steel I-Beam. ABSTRACT : When a beam flange is coped to allow clearance at the

The Local Web Buckling Strength of Coped Steel I-Beam. ABSTRACT : When a beam flange is coped to allow clearance at the The Local Web Buckling Strength of Coped Steel I-Beam Michael C. H. Yam 1 Member, ASCE Angus C. C. Lam Associate Member, ASCE, V. P. IU and J. J. R. Cheng 3 Members, ASCE ABSTRACT : When a beam flange

More information

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

Chapter 6: Cross-Sectional Properties of Structural Members

Chapter 6: Cross-Sectional Properties of Structural Members Chapter 6: Cross-Sectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross

More information

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon. Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

Practical Design to Eurocode 2. The webinar will start at 12.30

Practical Design to Eurocode 2. The webinar will start at 12.30 Practical Design to Eurocode 2 The webinar will start at 12.30 Course Outline Lecture Date Speaker Title 1 21 Sep Jenny Burridge Introduction, Background and Codes 2 28 Sep Charles Goodchild EC2 Background,

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

APPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS

APPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS APPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS D-1 An extensive literature search revealed many methods for the calculation of live load distribution factors. This appendix will discuss, in detail,

More information

Fundamentals of Structural Design Part of Steel Structures

Fundamentals of Structural Design Part of Steel Structures Fundamentals of Structural Design Part of Steel Structures Civil Engineering for Bachelors 133FSTD Teacher: Zdeněk Sokol Office number: B619 1 Syllabus of lectures 1. Introduction, history of steel structures,

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Beam BS8110 v Member Design - RC Beam XX

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Reinforced Concrete Beam BS8110 v Member Design - RC Beam XX CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Effects From Structural Analysis Design axial force, F (tension -ve and compression +ve) (ensure < 0.1f cu b w h 0

More information

Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS

Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS MECHANICS OF MATERIALS Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA Keywords: Solid mechanics, stress, strain, yield strength Contents 1. Introduction 2. Stress

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

Evaluation of Flexural Stiffness for RC Beams During Fire Events

Evaluation of Flexural Stiffness for RC Beams During Fire Events 3 rd International Structural Specialty Conference 3 ième conférence internationale spécialisée sur le génie des structures Edmonton, Alberta June 6-9, 202 / 6 au 9 juin 202 Evaluation of Flexural Stiffness

More information

Note on the moment capacity in a Bubble deck joint

Note on the moment capacity in a Bubble deck joint Tim Gudmand-Høyer Note on the moment capacity in a Bubble deck joint DANMARKS TEKNISKE UNIVERSITET Rapport BYG DTU R-074 2003 ISSN 1601-2917 ISBN 87-7877-137-4 Note on the moment capacity in a Bubble

More information

Tower Cranes & Foundations The Interface & CIRIA C654 Stuart Marchand C.Eng. FICE FIStructE Director Wentworth House Partnership

Tower Cranes & Foundations The Interface & CIRIA C654 Stuart Marchand C.Eng. FICE FIStructE Director Wentworth House Partnership Tower Cranes & Foundations The Interface & CIRIA C654 Stuart Marchand C.Eng. FICE FIStructE Director Wentworth House Partnership EXAMPLES OF TOWER CRANE FOUNDATION TYPES Rail mounted Pad Base Piled Base

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material. Shear Strain. Dr. Attaullah Shah Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

More information

Initial Stress Calculations

Initial Stress Calculations Initial Stress Calculations The following are the initial hand stress calculations conducted during the early stages of the design process. Therefore, some of the material properties as well as dimensions

More information

Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8

Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 1 Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 Ioannis P. GIANNOPOULOS 1 Key words: Pushover analysis, FEMA 356, Eurocode 8, seismic assessment, plastic rotation, limit states

More information

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture two structural analysis (statics & mechanics) Analysis 1 Structural Requirements strength serviceability

More information

Example 2.2 [Ribbed slab design]

Example 2.2 [Ribbed slab design] Example 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. The joists which are spaced at 400mm are supported by girders. The overall depth of the slab

More information

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels METNET Workshop October 11-12, 2009, Poznań, Poland Experimental and numerical analysis of sandwich metal panels Zbigniew Pozorski, Monika Chuda-Kowalska, Robert Studziński, Andrzej Garstecki Poznan University

More information

CHAPTER -6- BENDING Part -1-

CHAPTER -6- BENDING Part -1- Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I Engineering Mechanics Branch of science which deals with the behavior of a body with the state of rest or motion, subjected to the action of forces.

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

Civil Engineering Design (1) Analysis and Design of Slabs 2006/7

Civil Engineering Design (1) Analysis and Design of Slabs 2006/7 Civil Engineering Design (1) Analysis and Design of Slabs 006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Elastic Methods... 3 1.1 Introduction... 3 1. Grillage Analysis... 4 1.3 Finite Element

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models I. Rhee, K.J. Willam, B.P. Shing, University of Colorado at Boulder ABSTRACT: This paper examines the global

More information

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by:

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by: 5.11. Under-reinforced Beams (Read Sect. 3.4b oour text) We want the reinforced concrete beams to fail in tension because is not a sudden failure. Therefore, following Figure 5.3, you have to make sure

More information

Seismic performance evaluation of existing RC buildings designed as per past codes of practice

Seismic performance evaluation of existing RC buildings designed as per past codes of practice Sādhanā Vol. 37, Part 2, April 2012, pp. 281 297. c Indian Academy of Sciences Seismic performance evaluation of existing RC buildings designed as per past codes of practice 1. Introduction K RAMA RAJU,

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES 163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n

More information

VTU EDUSAT PROGRAMME Lecture Notes on Design of Columns

VTU EDUSAT PROGRAMME Lecture Notes on Design of Columns VTU EDUSAT PROGRAMME 17 2012 Lecture Notes on Design of Columns DESIGN OF RCC STRUCTURAL ELEMENTS - 10CV52 (PART B, UNIT 6) Dr. M. C. Nataraja Professor, Civil Engineering Department, Sri Jayachamarajendra

More information

DESIGN OF SLENDER COLUMNS

DESIGN OF SLENDER COLUMNS Slovak Chamber of Civil Engineers DESIGN OF SLENDER COLUMNS Prof. Dipl. - Ing. Dr. Vladimír BENKO, PhD. Slovak University of Technology in Bratislava ECEC European Council of Engineer s Chambers CPD-Lectures

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

More information

ΙApostolos Konstantinidis Diaphragmatic behaviour. Volume B

ΙApostolos Konstantinidis Diaphragmatic behaviour. Volume B Volume B 3.1.4 Diaphragmatic behaviour In general, when there is eccentric loading at a floor, e.g. imposed by the horizontal seismic action, the in-plane rigidity of the slab forces all the in-plane points

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

Seismic Performance of RC Building Using Spectrum Response and Pushover Analyses

Seismic Performance of RC Building Using Spectrum Response and Pushover Analyses Seismic Performance of RC Building Using Spectrum Response and Pushover Analyses Mehani Youcef (&), Kibboua Abderrahmane, and Chikh Benazouz National Earthquake Engineering Research Center (CGS), Algiers,

More information

999 TOWN & COUNTRY ROAD ORANGE, CALIFORNIA TITLE PUSHOVER ANALYSIS EXAMPLE BY R. MATTHEWS DATE 5/21/01

999 TOWN & COUNTRY ROAD ORANGE, CALIFORNIA TITLE PUSHOVER ANALYSIS EXAMPLE BY R. MATTHEWS DATE 5/21/01 DESCRIPTION Nonlinear static (pushover) analysis will be performed on a railroad bridge bent using several methods to determine its ultimate lateral deflection capability. 1. SAP2000 Nonlinear with axial-moment

More information

Mechanics of Solids notes

Mechanics of Solids notes Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

More information

Seismic design of bridges

Seismic design of bridges NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour

More information

Nonlinear static analysis PUSHOVER

Nonlinear static analysis PUSHOVER Nonlinear static analysis PUSHOVER Adrian DOGARIU European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events 520121-1-2011-1-CZ-ERA MUNDUS-EMMC Structural

More information

7.5 Elastic Buckling Columns and Buckling

7.5 Elastic Buckling Columns and Buckling 7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented

More information

SIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE

SIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE SIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE M.A. Youssef a, S.F. El-Fitiany a a Western University, Faculty of Engineering, London, Ontario, Canada Abstract Structural

More information

14. *14.8 CASTIGLIANO S THEOREM

14. *14.8 CASTIGLIANO S THEOREM *14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by

More information

MECH 401 Mechanical Design Applications

MECH 401 Mechanical Design Applications MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (1-17-08) Last time Introduction Units Reliability engineering

More information