Bridge deck modelling and design process for bridges


 Avice Bradford
 1 years ago
 Views:
Transcription
1 EURussia Regulatory Dialogue Construction Sector Subgroup 1 Bridge deck modelling and design process for bridges Application to a composite twingirder bridge according to Eurocode 4 Laurence Davaine PhD, Bridge structural engineer, INGEROP, Paris, France
2 General design process of a bridge 2 1. Global analysis a. Calculate the internal forces and moments according to Eurocode s principles b. By modelling the bridge deck (geometry and stiffness to represent its actual behaviour in the best way) c. And by applying the load cases 2. Section and member analysis a. Stress limitations at ULS and SLS b. Concrete crack width control c. Stability (plate or member buckling) d. Connection at the steel concrete interface e. Fatigue
3 Steel concrete composite bridges 3 The twingirder composite bridge represents a large majority of the new road and railway bridges built in France: Usual span length: 40 m < L < 80 m Deck width up to 22 m (2 x 2 highway lanes) with connected crossgirders Setra Competitive solution Simple design Quick construction process Reliable structure Setra
4 Global analysis of a composite bridge deck 4 1. Bridge deck modelling Geometry and bridge structural behaviour Effective width (shear lag effect) Modular ratios (concrete creep) Crosssectional mechanical properties 2. Apply the loads Construction phases Concrete shrinkage Transversal traffic load distribution between main girders 3. Global cracked analysis according to EN Determination of the cracked zones around internal supports Results from the global analysis
5 Twingirder bridge modelling 5 C3 G P2 y z x P1 C0 simply supported bar element model halfbridge crosssection represented by its centre of gravity G (neutral fibre) structural steel alone, or composite, mechanical properties according to the construction phases of the bridge slab
6 Shear lag in composite bridges 6 b slab b eff,slab x Concrete slab in EN Same effective s width b eff at SLS and ULS Steel flange in EN Used for the bottom flange of a boxgirder bridge Different effective s width at SLS and ULS b eff,flange b flange
7 Effective slab width in Eurocode 4 7 Equivalent span length L e L e is the approximate distance between points of zero bending moment. Global analysis (determining internal forces and moments) : effective width constant for each span (equal to the value at midspan) for simplification Section analysis (calculation of stresses) : effective width linearly variable on both sides of the vertical supports over a length L i /4
8 Shear lag in the concrete slab according to Eurocode 4 xy 8 b eff xx,max Nonuniform transverse distribution of the longitudinal stresses xx xx be1 b e 2 Le equivalent span length b 0 b m b m b ei Le 8 b i b 0 2 b mm b b0 eff b ei i
9 Shear lag in the concrete slab according to Eurocode 4 9 C0 P1 P2 C3 60 m 80 m 60 m L e (m) 0.85 x 60 = x 80 = x 60 = x (60+80) = x (60+80) = 35 L e (m) b e1 (m) b e2 (m) b eff (m) Inspan 1 and Inspan Internal supports P1 and P The concrete slab is fully effective (no reduction) because, for each steel main girder, its width (6 m) is small compared to the span length (60 m or 80 m).
10 Mechanical properties of the composite crosssections Uncracked behaviour (midspan regions: M c,ed > 0) 10 b eff Reinforcement neglected (in compression) y Gc y G y Ga G c G G a elastic neutral axis Ac A A a n Ay A y A n y c G a Ga Gc y a a ( G Ga ) c c G Gc I I A y y I A y n Cracked behaviour (support regions: M c,ed < 0) n = E a / E c is the modular ratio between elasticity moduli. b eff E a = E s = N/mm² G s y Gs y G y Ga G G a elastic neutral axis A A A a s Ay G Aa yga As ygs 2 I I A ( y y ) I A y y 2 a a G Ga s s G Gs I s 0
11 Concrete creep effect : modular ratios 11 Shortterm loading (no creep): Longterm loading (creep to be considered): E a with E cm f cm 10 Ecm n n L n 1 0 L t t t t 0 is the creep coefficient according to EN 1992 with : t = age of concrete at the considered design date during the bridge life t 0 = age of concrete when the considered loading is applied to the bridge L depends on the load case: Permanent loads Shrinkage Imposed deformations
12 Creep coefficient according to EN 1992 t t 0, fcm, RH, h0,t 0 12 End of construction All loading cases are applied to the bridge model using the shortterm mechanical properties (n 0 ). Design life of the bridge Shortterm loading : n 0 Longterm loading : n L
13 Worked example: modular ratios 1 st 16 th t = 0 Phase 1 3 Phase t = 66 t = 80 t = 110 Time (in days) Phase Mean value of the ages of concrete segments : t phases days used for all concreting phases (simplification of EN19942). t,t 1 0 t days days,t days t days,t 3 0 n n L,1 0 1 n n L,2 0 2 n n L,3 0 3 Note : t 0 = 1 day when shrinkage is applied to a concrete segment.,t nl,4 n
14 Worked example: modular ratios 14 Shortterm loading : Ea n0 6.2 E cm Longterm loading (permanent loads, shrinkage, imposed deformations) : Load case L t 0 (days) t = 0 n L Concrete slab segment (selfweight) Settlement Shrinkage Bridge equipments (safety barriers, road pavement, )
15 Global analysis of a composite bridge deck 1. Bridge deck modelling Geometry and global bridge behaviour Effective width (shear lag effect) Modular ratios (concrete creep) Crosssectional mechanical properties Apply the loads Construction phases Concrete shrinkage Transversal traffic load distribution between main girders 3. Global cracked analysis according to EN Determination of the cracked zones around internal supports Results from the global analysis
16 Applied loads for the road bridge example 16 Permanent loads (taking creep into account if relevant) G max, G min S Self weight: structural steel concrete (by segments in a selected order) non structural equipments (safety barriers, pavement, ) Shrinkage (drying, autogenous and thermal shrinkage strains) EN1991 part 11 EN1992 part 11 EN1994 part 2 P Prestressing by imposed deformations (for instance, jacking on internal supports) Variable loads (no creep effect) T k Temperature effects EN1991 part 15 UDL, TS Road traffic EN1991 part 2 FLM3 Fatigue load model (for instance, the equivalent lorry FLM3) EN1991 part 2
17 Construction slab stages 17 imposed concreting order to reduce the concrete tension around internal supports For the example, 16 concreting phases (12.5 m long slab segment) C0 P1 P2 C3 Setra Setra
18 Construction slab stages 18 During the 10 th concreting phase, the load case is the selfweight of the 10 th concrete segment m 50 m 24 m C0 P1 P2 C3 () Mechanical properties of the composite uncracked crosssection Mechanical properties of the structural steel alone crosssection In the crosssection (), the stress distribution should take into account the construction history. M a,ed M c,ed M M M Ed a,ed c,ed + =
19 Effects of shrinkage in a composite bridge 19 cs Ncs E ccs.b chc N cs h c + e.n.a. z cs Free shrinkage strain applied on concrete slab only (no steel concrete interaction) Shrinkage strain applied on the composite section (after steel concrete interaction) 1 Autoequilibrated stress diagram in every section and an imposed rotation due to the bending moment M iso = N cs z cs : e.n.a. bc  + z  steel 1 N N. csz cs cs E n A I concrete c cs Ncs A Ncs z cs. z I. z
20 Effects of shrinkage in a composite bridge Curvature in an isostatic bridge due to the imposed deformations : L M iso M iso P1 vx P2 3 Compatibility of deformations to be considered in an hyperstatic bridge : v P3 0 P1 P3 L1 2 L P2 M hyper Effects of shrinkage 1+2 = isostatic (or primary) effects 3 = hyperstatic (or secondary) effects
21 Shrinkage and cracked global analysis Concrete in tension Cracked zone 21 Isostatic effects neglected in cracked zones for calculating hyperstatic effects Miso Miso M iso M iso SLS combinations ULS combinations iso + hyper effects hyper (if class 1) hyper iso + hyper hyper Hyper (if class 1) M hyper M hyper
22 Thermal gradient from Eurocode 1 Part 15 could be neglected if all crosssections are in Class 1 or 2 3 options: have to be chosen in the National Annex Non linear gradients : 2 Linear gradients : 0.6h 400 mm 16 C 5 C 4 C 8 C +15 C 18 C 3 Difference +/ 10 C : +/ 10 C
23 Transversal distribution of live load between the two girders 23 Influence line of the support reaction on girder no. 1 1 a F e a 0 Bridge axle Girder no.1 (modelled) e / 2 e / 2 girder no. 2 R1 F1 a e R 2 a F e No warping stress calculations and slab torsional stiffness neglected
24 Application to the traffic load model LM Conventional traffic lanes positioning Safety barrier 1 m 0.5 m Lane no.1 Lane no.2 Lane no.3 Residual area 3 m 3 m 3 m 2 m Safety barrier Bridge axis Girder no.1 (modelled) girder no m 3.5 m 3.5 m 2.5 m
25 Application to the traffic load model LM Tandem System TS Bridge axis 1 TS 2 = 200 kn/axle TS 1 = 300 kn/axle TS 3 = 100 kn/axle 0 R1 0.5 m 1 m 2 m R2 Influence line of the support reaction on girder no. 1 Support reaction on each main girder : R 1 = kn R 2 = kn
26 Application to the traffic load model LM Uniform Design Load UDL Bridge axis Load on lane no.1 : 9 kn/m² x 3 m = 27 kn/ml 1 Load on lane no.2 : 2.5 kn/m² x 3 m = 7.5 kn/ml LANE 1 LANE 2 LANE 3 Load on lane no.3 : 2.5 kn/m² x 3 m = 7.5 kn/ml R1 R2 0.5 m 1 m 2 m 0 Transverse distribution line Support reaction for each main girder : R 1 = kn/ml R 2 = 6.64 kn/ml
27 Application to the traffic load model LM1 4. Bending Moment (MN.m) for UDL and TS 27
28 Combinations of actions 28 For every permanent design situation, two limit states of the bridge should be considered : Serviceability Limit States (SLS) Quasi permanent SLS G max + G min + S + P T k Frequent SLS G max + G min + S + P TS UDL T k G max + G min + S + P T k Characteristic SLS G max + G min + S + P + (TS+UDL) T k G max + G min + S + P + Q lk TS UDL T k G max + G min + S + P + T k TS UDL Ultime Limite State (ULS) other than fatigue 1.35 G max + G min + S + P (TS + UDL) (0.6 T k ) 1.35 G max + G min + S + P Q lk (0.75 TS UDL) (0.6 T k ) 1.35 G max + G min + S + P T k (0.75 TS UDL)
29 Global analysis of a composite bridge deck Bridge deck modelling Geometry and global bridge behaviour Effective width (shear lag effect) Modular ratios (concrete creep) Crosssectional mechanical properties 2. Apply the loads Construction phases Concrete shrinkage Transversal traffic load distribution between main girders 3. Global cracked analysis according to EN Determination of the cracked zones around internal supports Results from the global analysis
30 Classification of crosssections (EC3) 30 M Cl.1 M pl M el Cl.3 Cl.2 Cl > 6 / el F M = F L / 4
31 Classification of crosssections CLASS 1 sections which can form a plastic hinge with the rotation capacity required for a global plastic analysis Not for bridges Except accidental design situation 31 CLASS 2 sections which can develop M pl,rd with limited rotation capacity CLASS 3 sections which can develop M el,rd CL. 1 CL.3/4 COMPOSITE BRIDGES Nonuniform section (except for small spans)
32 Actual behaviour of a composite bridge 32 When performing the elastic global analysis, two aspects of the nonlinear behaviour are indirectly considered. F Cracking of concrete 1 M Yielding 2 M pl,rd M at midspan with increase of F M el,rd Class 1
33 Cracked global analysis 1 33 Determination of the stresses c in the extreme fibre of the concrete slab under SLS characteristic combination according to a noncracked global analysis In sections where c <  2 f ctm, the concrete is assumed to be cracked and its resistance is neglected EI 1 EI 2 EI1 EI 1 = uncracked composite inertia (structural steel + concrete in compression) EI 2 = cracked composite inertia (structural steel + reinforcement)! No iteration is needed!
34 Cracked global analysis 1 Simplified method usable if :  no prestressing by imposed deformation  L min /L max > (L EI 1 + L 2 ) 2 34 A s L 1 L 2 EI 1 A c = 0 In the cracked zones EI 2 : the resistance of the concrete in tension is neglected the resistance of the reinforcement is taken into account
35 Stresses in concrete slab (N/mm²) Characteristic SLS combination Worked example: Cracked zones around internal supports 35 Stresses calculated including the construction phasing and the uncracked composite behaviour Cracked 14 4 zones 5 for the 6 global analysis f ctm 6.4 N/mm 215 x = 35.0 m x = 76.0 m x = m x = m Cracked zone for P % 19.5 % Cracked zone for P % 20.0 %
36 Yielding 2 Yielding at midspan induces bending redistribution which should be considered if : 36 Class 1 or 2 crosssection at midspan (and M Ed > M el,rd ) Class 3 or 4 near intermediate support L min /L max < 0.6 L max L min Class 1 or 2 Class 3 or 4 Elastic linear analysis with an additional verification for the crosssections in sagging bending zone (M>0) : M Ed < 0.9 M pl,rd or Non linear global analysis (Finite Elements for instance)
37 Global analysis  Synthesis To calculate the internal forces and moments for the ULS combination of actions 37 elastic global analysis (except for accidental loads) cracking of the concrete slab shear lag (in the concrete slab : L e /8 constant value for each span) neglecting plate buckling (except for an effective p area of an element 0.5 * gross area) To calculate the internal forces and moments for the SLS combinations of actions as for ULS To calculate the longitudinal shear per unit length (SLS and ULS) at the steelconcrete interface Cracked global analysis, elastic and linear Always uncracked section analysis
38 Bending moment (MN.m) Results for the twingirder bridge example 38 SLS and ULS bending moment distribution M Ed (= M a,ed + M c,ed ) Characteristic SLS Fundamental ULS
39 Shear forces (MN) Results for the twingirder bridge example 39 SLS and ULS shear force distribution V Ed Characteristic SLS Fundamental ULS
40 Results for the twingirder bridge example 40 ULS stresses (N/mm²) Fondamental along ULS the  Flanges steel (extreme flanges, fiber) calculated  Without concrete without resistance concrete resistance
41 41 The results from the global analysis will be used for :  the bridge deck crosssection analysis,  the abutments and piers check,  the foundation calculations,  Thank you for your attention!
Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design  Steel Composite Beam XX 22/09/2016
CONSULTING Engineering Calculation Sheet jxxx 1 Member Design  Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite
More informationDesign of reinforced concrete sections according to EN and EN
Design of reinforced concrete sections according to EN 199211 and EN 19922 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420511
More informationRoadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement.
Example on Design of Slab Bridge Design Data and Specifications Chapter 5 SUPERSTRUCTURES Superstructure consists of 10m slab, 36m box girder and 10m Tgirder all simply supported. Only the design of Slab
More informationStructural Steelwork Eurocodes Development of A Transnational Approach
Structural Steelwork Eurocodes Development of A Transnational Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads
More informationSTRUCTURAL ANALYSIS CHAPTER 2. Introduction
CHAPTER 2 STRUCTURAL ANALYSIS Introduction The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify
More informationInfluence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes
October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:
More informationSERVICEABILITY LIMIT STATE DESIGN
CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise
More informationSeismic design of bridges
NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour
More informationFundamentals of Structural Design Part of Steel Structures
Fundamentals of Structural Design Part of Steel Structures Civil Engineering for Bachelors 133FSTD Teacher: Zdeněk Sokol Office number: B619 1 Syllabus of lectures 1. Introduction, history of steel structures,
More informationPLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder
16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders
More informationFinite Element Modelling with Plastic Hinges
01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated postyield behaviour in one or more degrees of freedom. Hinges only
More informationLongitudinal strength standard
(1989) (Rev. 1 199) (Rev. Nov. 001) Longitudinal strength standard.1 Application This requirement applies only to steel ships of length 90 m and greater in unrestricted service. For ships having one or
More informationAPPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS
APPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS D1 An extensive literature search revealed many methods for the calculation of live load distribution factors. This appendix will discuss, in detail,
More informationFIXED BEAMS IN BENDING
FIXED BEAMS IN BENDING INTRODUCTION Fixed or builtin beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported
More informationFire resistance assessment of composite steelconcrete structures
Workshop Structural Fire Design of Buildings according to the Eurocodes Brussels, 78 November 0 Fire resistance assessment of composite steelconcrete structures Basic design methods Worked examples CAJOT
More information1C8 Advanced design of steel structures. prepared by Josef Machacek
1C8 Advanced design of steel structures prepared b Josef achacek List of lessons 1) Lateraltorsional instabilit of beams. ) Buckling of plates. 3) Thinwalled steel members. 4) Torsion of members. 5)
More informationSERVICEABILITY OF BEAMS AND ONEWAY SLABS
CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach  Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONEWAY SLABS A. J. Clark School of Engineering Department of Civil
More informationModule 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur
Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to
More informationTHE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS
EUROSTEEL 2002, Coimbra, 1920 September 2002, p.987996 THE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS Fernando C. T. Gomes 1 ABSTRACT The Eurocode 3 proposes a classification of beamtocolumn
More informationAvailable online at ScienceDirect. Procedia Engineering 172 (2017 )
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 172 (2017 ) 1093 1101 Modern Building Materials, Structures and Techniques, MBMST 2016 Iterative Methods of BeamStructure Analysis
More informationC6 Advanced design of steel structures
C6 Advanced design of steel structures prepared b Josef achacek List of lessons 1) Lateraltorsional instabilit of beams. ) Buckling of plates. 3) Thinwalled steel members. 4) Torsion of members. 5) Fatigue
More informationDesign of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar
5.10 Examples 5.10.1 Analysis of effective section under compression To illustrate the evaluation of reduced section properties of a section under axial compression. Section: 00 x 80 x 5 x 4.0 mm Using
More informationEurocode Training EN : Reinforced Concrete
Eurocode Training EN 199211: Reinforced Concrete Eurocode Training EN 199211 All information in this document is subject to modification without prior notice. No part of this manual may be reproduced,
More informationSeismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design
Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department
More informationCurved Steel Igirder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003
Curved Steel Igirder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Guide Specifications (19932002) 2.3 LOADS 2.4 LOAD COMBINATIONS
More informationBasis of Design, a case study building
Basis of Design, a case study building Luís Simões da Silva Department of Civil Engineering University of Coimbra Contents Definitions and basis of design Global analysis Structural modeling Structural
More informationExample 2.2 [Ribbed slab design]
Example 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. The joists which are spaced at 400mm are supported by girders. The overall depth of the slab
More informationMechanics of Solids notes
Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any crosssection of a beam may consists of a resultant normal force,
More informationPractical Design to Eurocode 2
Practical Design to Eurocode 2 The webinar will start at 12.30 (Any questions beforehand? use Questions on the GoTo Control Panel) Course Outline Lecture Date Speaker Title 1 21 Sep Jenny Burridge Introduction,
More informationCivil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7
Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...
More informationDEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8  PART 3 PROVISIONS
DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8  PART 3 PROVISIONS Konstantinos CHRISTIDIS 1, Emmanouil VOUGIOUKAS 2 and Konstantinos TREZOS 3 ABSTRACT
More informationCivil Engineering Design (1) Analysis and Design of Slabs 2006/7
Civil Engineering Design (1) Analysis and Design of Slabs 006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Elastic Methods... 3 1.1 Introduction... 3 1. Grillage Analysis... 4 1.3 Finite Element
More informationSIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE
SIMPLIFIED METHOD FOR PREDICTING DEFORMATIONS OF RC FRAMES DURING FIRE EXPOSURE M.A. Youssef a, S.F. ElFitiany a a Western University, Faculty of Engineering, London, Ontario, Canada Abstract Structural
More informationFlexure: Behavior and Nominal Strength of Beam Sections
4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kipin.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015
More informationEAS 664/4 Principle Structural Design
UNIVERSITI SAINS MALAYSIA 1 st. Semester Examination 2004/2005 Academic Session October 2004 EAS 664/4 Principle Structural Design Time : 3 hours Instruction to candidates: 1. Ensure that this paper contains
More informationAPPENDIX 1 MODEL CALCULATION OF VARIOUS CODES
163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n
More informationEurocode 3 for Dummies The Opportunities and Traps
Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email tim.mccarthy@umist.ac.uk Slides available on the web http://www2.umist.ac.uk/construction/staff/
More informationPushover Seismic Analysis of Bridge Structures
Pushover Seismic Analysis of Bridge Structures Bernardo Frère Departamento de Engenharia Civil, Arquitectura e Georrecursos, Instituto Superior Técnico, Technical University of Lisbon, Portugal October
More informationBending and Shear in Beams
Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,
More informationINELASTIC RESPONSES OF LONG BRIDGES TO ASYNCHRONOUS SEISMIC INPUTS
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 16, 24 Paper No. 638 INELASTIC RESPONSES OF LONG BRIDGES TO ASYNCHRONOUS SEISMIC INPUTS Jiachen WANG 1, Athol CARR 1, Nigel
More informationMODELING THE EFFECTIVE ELASTIC MODULUS OF RC BEAMS EXPOSED TO FIRE
Journal of Marine Science and Technology, Vol., No., pp. 8 () MODELING THE EFFECTIVE ELASTIC MODULUS OF RC BEAMS EXPOSED TO FIRE JuiHsiang Hsu*, ***, CherngShing Lin**, and ChangBin Huang*** Key words:
More informationChapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
More informationExperimental Study and Numerical Simulation on Steel Plate Girders With Deep Section
6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 12, 2015, University of
More informationCHAPTER 6: ULTIMATE LIMIT STATE
CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.
More informationPROPOSED SATSANG HALL TECHNICAL REPORT
PROPOSED SATSANG HALL  VERTICAL STRIP V1 1  ADAPT CORPORATION STRUCTURAL CONCRETE SOFTWARE SYSTEM 1733 Woodside Road, Suite
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationSeismic Assessment of a RC Building according to FEMA 356 and Eurocode 8
1 Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 Ioannis P. GIANNOPOULOS 1 Key words: Pushover analysis, FEMA 356, Eurocode 8, seismic assessment, plastic rotation, limit states
More informationThis Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.
COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 CONCRETE FRAME DESIGN ACI31899 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced
More informationCOLUMN BASE WEAK AXIS ALIGNED ASYMMETRIC FRICTION CONNECTION CYCLIC PERFORMANCE
8 th International Conference on Behavior of Steel Structures in Seismic Areas Shanghai, China, July 13, 2015 COLUMN BASE WEAK AXIS ALIGNED ASYMMETRIC FRICTION CONNECTION CYCLIC PERFORMANCE J. Borzouie*,
More informationJob No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design  RC Two Way Spanning Slab XX
CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 35 N/mm 2 OK Yield strength of
More informationVALLOUREC & MANNESMANN TUBES. Designsupport for MSH sections
VALLOUREC & MANNESMANN TUBES Designsupport for MSH sections according to Eurocode 3, DIN EN 199311: 2005 and DIN EN 199318: 2005 DesignSupport for MSH sections according to Eurocode 3, DIN EN 199311:
More informationPlastic Design of Portal frame to Eurocode 3
Department of Civil and Structural Engineering Plastic Design of Portal frame to Eurocode 3 Worked Example University of Sheffield Contents 1 GEOMETRY... 3 2 DESIGN BRIEF... 4 3 DETERMINING LOADING ON
More informationEARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE
EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE J. Sakai 1, S. Unjoh 2 and H. Ukon 3 1 Senior Researcher, Center for Advanced Engineering Structural Assessment and
More informationCHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS
4.1. INTRODUCTION CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS A column is a vertical structural member transmitting axial compression loads with or without moments. The cross sectional dimensions of a column
More informationLaboratory 4 Bending Test of Materials
Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective
More informationTHEME IS FIRST OCCURANCE OF YIELDING THE LIMIT?
CIE309 : PLASTICITY THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT? M M  N N + + σ = σ = + f f BENDING EXTENSION Ir J.W. Welleman page nr 0 kn Normal conditions during the life time WHAT HAPPENS DUE TO
More informationParametric analysis and torsion design charts for axially restrained RC beams
Structural Engineering and Mechanics, Vol. 55, No. 1 (2015) 127 DOI: http://dx.doi.org/10.12989/sem.2015.55.1.001 1 Parametric analysis and torsion design charts for axially restrained RC beams Luís F.A.
More information7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses
7 TRANSVERSE SHEAR Before we develop a relationship that describes the shearstress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within
More informationUNITII MOVING LOADS AND INFLUENCE LINES
UNITII MOVING LOADS AND INFLUENCE LINES Influence lines for reactions in statically determinate structures influence lines for member forces in pinjointed frames Influence lines for shear force and bending
More informationCHAPTER 6 BENDING Part 1
Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER 6 BENDING Part 11 CHAPTER 6 Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and
More informationJob No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet
E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 35 N/mm 2 OK Yield strength of longitudinal steel, f y 460 N/mm 2 Yield
More information6. Bending CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where
More informationLocal Stresses in Belt Turnovers in Conveyor Belt
Local Stresses in Belt Turnovers in Conveyor Belt By: Conveyor Dynamics, Inc. personnel Conveyor Dynamics, Inc. 1111 W. Holly Street, Suite A Bellingham, WA 985 USA Abstract Belt turnovers are commonly
More informationS TRUCTUR A L PR E A N A LYSIS TA B LES
M a d e f o r b u i l d i n g b u i l t f o r l i v i n g S TRUTUR A L PR E A N A LYSIS TA LES I M P R I N T KLH Massivholz GmbH Publisher and responsible for the content: KLH Massivholz GmbH Version:
More informationINFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER
International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 115 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE
More informationELASTOPLASTIC STEEL BEAM BENDING ANALYSIS BY USING ABAQUS
11 ELASTOPLASTIC STEEL BEAM BENDING ANALYSIS BY USING ABAQUS Biswajit Jena * * Corresponding author: biswa.tech88@gmail.com Abstract: In recent years tremendous efforts have been made in development of
More informationDESIGN OF BEAMCOLUMNS  II
DESIGN OF BEACOLUNSII 14 DESIGN OF BEACOLUNS  II 1.0 INTRODUCTION Beamcolumns are members subjected to combined bending and axial compression. Their behaviour under uniaxial bending, biaxial bending
More informationUnit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir
Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata
More informationFatigue failure mechanisms of thinwalled hybrid plate girders
Fatigue failure mechanisms of thinwalled hybrid plate girders Pavol Juhás1,* 1Institute of Technology and Business in České Budějovice, Department of Civil Engineering, Okružní 517/10, 37001 České Budějovice,
More informationHarmonized European standards for construction in Egypt
Harmonized European standards for construction in Egypt EN 1998  Design of structures for earthquake resistance JeanArmand Calgaro Chairman of CEN/TC250 Organised with the support of the Egyptian Organization
More informationDesign of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar
7. BEAM COLUMNS 7.1 Introduction The Indian steel code is now in the process of revision as specificationbased design gives way to performancebased design. An expert committee mainly comprising eminent
More informationJob No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design  Reinforced Concrete Beam BS8110 v Member Design  RC Beam XX
CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Effects From Structural Analysis Design axial force, F (tension ve and compression +ve) (ensure < 0.1f cu b w h 0
More informationRigid pavement design
Rigid pavement design Lecture Notes in Transportation Systems Engineering Prof. Tom V. Mathew Contents 1 Overview 1 1.1 Modulus of subgrade reaction.......................... 2 1.2 Relative stiffness
More informationUNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.
UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude
More informationThe Lateral Torsional Buckling Strength of Steel I Girders with Corrugated Webs
Lehigh University Lehigh Preserve ATLSS Reports Civil and Environmental Engineering 516 The Lateral Torsional Buckling Strength of Steel I Girders with Corrugated Webs Daming Yu Richard Sause Follow
More informationOptimum Design of Plate Girder
IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE) eissn: 22781684,pISSN: 2320334X, Volume 13, Issue 6 Ver. III (Nov.  Dec. 2016), PP 2434 www.iosrjournals.org Optimum Design of Plate Girder
More information7.4 The Elementary Beam Theory
7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More informationFailure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas
Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!
More informationVerification Examples. FEMDesign. version
FEMDesign 6.0 FEMDesign version. 06 FEMDesign 6.0 StruSoft AB Visit the StruSoft website for company and FEMDesign information at www.strusoft.com Copyright 06 by StruSoft, all rights reserved. Trademarks
More information999 TOWN & COUNTRY ROAD ORANGE, CALIFORNIA TITLE PUSHOVER ANALYSIS EXAMPLE BY R. MATTHEWS DATE 5/21/01
DESCRIPTION Nonlinear static (pushover) analysis will be performed on a railroad bridge bent using several methods to determine its ultimate lateral deflection capability. 1. SAP2000 Nonlinear with axialmoment
More informationJob No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006
Job No. Sheet 1 of 6 Rev B, Route de Limours Tel : (0)1 0 85 5 00 Fax : (0)1 0 5 75 8 Revised by MEB Date April 006 DESIGN EXAMPLE 6 BOLTED JOINT A 0 0 angle loaded in tension is to be connected to a gusset
More informationDETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1
PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 46, NO. 1, PP. 125 148 (2002) DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1 Nándor LIEGNER Department of Highway and Railway Engineering
More informationMetal Structures Lecture XIII Steel trusses
Metal Structures Lecture XIII Steel trusses Contents Definition #t / 3 Geometry and crosssections #t / 7 Types of truss structures #t / 15 Calculations #t / 29 Example #t / 57 Results of calculations
More informationUNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE ED AMBIENTALE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA CIVILE
UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE ED AMBIENTALE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA CIVILE Tesi di laurea Magistrale in Ingegneria Civile Curriculum Strutture
More informationDesign of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar
6. BEAMS 6.1 Introduction One of the frequently used structural members is a beam whose main function is to transfer load principally by means of flexural or bending action. In a structural framework,
More informationPLAT DAN CANGKANG (TKS 4219)
PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, twodimensional structural components of which
More information14. *14.8 CASTIGLIANO S THEOREM
*14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by
More informationEN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland.
EN 1997 1: Sections 3 and 6 Your logo Brussels, 1820 February 2008 Dissemination of information workshop 1 EN 19971 Eurocode 7 Section 3 Geotechnical Data Section 6 Spread Foundations Trevor L.L. Orr
More informationUNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SAII (13A01505) Year & Sem: IIIB.Tech & ISem Course & Branch: B.Tech
More informationOnly for Reference Page 1 of 18
Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC  SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26122013 Subject
More informationBehaviour of the ColdformedTrapezoidal Sheet Overlap Jointin a Gerber Lapped Connection
Behaviour of the ColdformedTrapezoidal Sheet Overlap Jointin a Gerber Lapped Connection April Anne Acosta Sustainable Constructions under Natural Hazards and Catastrophic Events, master's level (60 credits)
More informationA Simply supported beam with a concentrated load at midspan: Loading Stages
A Simply supported beam with a concentrated load at midspan: Loading Stages P L/2 L PL/4 MOMNT F b < 1 lastic F b = 2 lastic F b = 3 lastoplastic 4 F b = Plastic hinge Plastic Dr. M.. Haque, P.. (LRFD:
More informationTower Cranes & Foundations The Interface & CIRIA C654 Stuart Marchand C.Eng. FICE FIStructE Director Wentworth House Partnership
Tower Cranes & Foundations The Interface & CIRIA C654 Stuart Marchand C.Eng. FICE FIStructE Director Wentworth House Partnership EXAMPLES OF TOWER CRANE FOUNDATION TYPES Rail mounted Pad Base Piled Base
More informationSymmetric Bending of Beams
Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications
More informationBE Semester I ( ) Question Bank (MECHANICS OF SOLIDS)
BE Semester I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)
More informationJob No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet
CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Effects From Structural Analysis Design axial force, F (tension ve and compression +ve) (ensure < 0.1f cu b w h 0
More information