SERVICEABILITY OF BEAMS AND ONEWAY SLABS


 Eugene Amos McDaniel
 1 years ago
 Views:
Transcription
1 CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach  Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONEWAY SLABS A. J. Clark School of Engineering Department of Civil and Environmental Engineering 8a SPRING 004 By Dr. Ibrahim. Assakkaf ENCE 454 Design of Concrete Structures Department of Civil and Environmental Engineering University of Maryland, College Park CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 1 Introduction Serviceability of a structure is determined by its Deflection Cracking Etent of corrosion of its reinforcement Surface deterioration of its concrete Surface deterioration can be minimized by proper control of miing, placing, and curing of concrete.
2 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. Introduction This chapter deals with the evaluation of deflection and cracking behavior of beams and oneway slabs. It should give adequate background on the effect of cracking on the stiffness of the member, the shortand longterm deflection performance. Deflection of twoway slabs and plates is presented in Chapter 11. CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 3 Significant of Deflection Significant of Deflection Observation The working stress (WSM) method of design limited the stress in concrete to about 45% of its compressive strength and the stress in the steel to less than 50% of its yield strength. As a result, heavier sections with higher reserve strength resulted as compared to those obtained by the current ultimate strength design.
3 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 4 Significant of Deflection Significant of Deflection Observation Higher strength concrete having values in ecess of 1,000 psi (83 MPa) and higherstrength steels that are used in strength design have resulted in lower values of load factors (e.g., 1.4 to 1. for dead load) and reduced reserve strength. Hence, more slender and efficient members are specified, with deflection becoming a more obvious controlling criteria. CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 5 Significant of Deflection Significant of Deflection Observation Ecessive deflection of floor slab may cause dislocation in the partitions it supports. Ecessive deflection of a beam can damage a partition below. Ecessive deflection of a lintel beam above a window opening could crack the glass panels. In the case of open floors and roofs such as top garage floors, ponding of water can result. Therefore, deflection control criteria are needed.
4 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 6 Significant of Deflection Theoretical Background There are important relations between applied load and stress (fleural and shear) and the amount of deformation or deflection that a beam can ehibit. In design of beams, it is important sometimes to limit the deflection for specified load. So, in these situations, it is not enough only to design for the strength (fleural normal and shearing stresses), but also for ecessive deflections of beams. CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 7 Significant of Deflection Theoretical Background (cont d) P 1 w 1 Figure 1 w P (a) w >> w 1 (b) P >> P 1
5 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 8 Significant of Deflection Theoretical Background (cont d) Figure CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 9 Significant of Deflection Theoretical Background (cont d) Figure 1 shows generally two eamples of how the amount of deflections increase with the applied loads. Failure to control beam deflections within proper limits in building construction is frequently reflected by the development of cracks in plastered walls and ceilings.
6 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 10 Significant of Deflection Theoretical Background (cont d) Beams in many structures and machines must deflect just right amount for gears or other parts to make proper contact. In many instances the requirements for a beam involve: A given loadcarrying capacity, and A specified maimum deflection CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 11 Significant of Deflection Methods for Determining Beam Deflections The deflection of a beam depends on four general factors: 1. Stiffness of the materials that the beam is made of,. Dimensions of the beam, 3. Applied loads, and 4. Supports
7 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 1 Significant of Deflection Methods for Determining Beam Deflections Three methods are commonly used to find beam deflections: 1) The double integration method, ) The singularity function method, and 3) The superposition method CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 13 Beam Deflection The Differential Equation y of the Elastic Curve for a Beam d y EI = M d ( ) (1) E = modulus of elsticity for the material I = moment of inertia about the neutral ais of cross section M() = bending moment along the beam as a function of
8 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 14 Beam Deflection The Differential Equation of the Elastic Curve for a Beam (cont d) Relationship between bending moment and curvature for pure bending remains valid for general transverse loadings. 1 M ( ) = ρ EI Cantilever beam subjected to concentrated load at the free end, 1 P = ρ EI CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 15 Beam Deflection The Differential Equation of the Elastic Curve for a Beam (cont d) From elementary calculus, simplified for beam parameters, d y 1 d y = d ρ 3 dy d 1 + Substituting and integrating, d 1 d y EI = EI = M ( ) ρ d dy EIθ EI = M d 0 EI y = d M 0 0 ( ) d + C1 ( ) d + C1 + C
9 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 16 Beam Deflection Sign Convention y y M  negative M  positive d y negative d y d negative d Figure 3. Elastic Curve CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 17 Beam Deflection Sign Convention y M M L.H.F R.H.F V V (a) Positive Shear & Moment M V Figure 4 V (b) Positive Shear (clockwise) (c) Positive Moment (concave upward) M
10 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 18 Beam Deflection by Integration Eample Boundary Conditions y y Figure 5 y (a) Slope = 0 at = 0 Deflection = 0 at = 0 (b) Slope at L/ = 0 Deflection = 0 at = 0, and L y (c) Slope at rollers? Deflection at rollers = 0 (d) Slope = 0 at =0 Deflection = 0 at = 0 and = L CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 19 Beam Deflection by Integration Eample 1 A beam is loaded and supported as shown in the figure. a) Derive the equation of the elastic curve in terms of P, L,, E, and I. b) Determine the slope at the left end of the beam. c) Determine the deflection at = L/.
11 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 0 Beam Deflection by Integration Eample 1 (cont d) y P A B L L FBD P P R A = P R A = CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 1 Beam Deflection by Integration Eample 1 (cont d) P R A = y A y s V P M P + M S = 0; M + = 0 P M = for 0 L / (a) P R A = A L/ M s V M P L = P for L / L (b)
12 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. Beam Deflection by Integration Eample 1 (cont d) Boundary conditions: θ = 0 at = L/ (from symmetry) y = 0 at = 0 and = L Using Eqs 1 and a: d y P EI = M ( ) = d dy P EI = EIθ = M ( ) d d = P P EIθ = + C1 = + C1 4 (c) CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 3 Beam Deflection by Integration Eample 1 (cont d) Epression for the deflection y can be found by integrating Eq. c: P EIy = EIθd = 4 3 P EIy = + C1 + C 4 3 P 3 EIy = + C1 + C 1 + C1 (d)
13 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 4 Beam Deflection by Integration Eample 1 (cont d) The objective now is to evaluate the constants of integrations C 1 and C : EIθ ( L / ) = 0 P 4 P L + C1 = 0 C PL C1 = 16 (e) = 0 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 5 Beam Deflection by Integration Eample 1 (cont d) y( 0) = 0 P 3 + C1 + C 1 C = 0 P = 0 1 (f) ( 0) + C ( 0) = 0 (a)the equation of elastic curve from Eq. d P 3 EIy = + C1 + C 1 1 P 3 PL y = EI C 0 (g)
14 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 6 Beam Deflection by Integration Eample 1 (cont d) (b) Slope at the left end of the beam: From Eq. c, the slope is given by P P PL EIθ = + C1 = P PL θ = EI 4 16 Therefore, θ A =θ 1 P EI 4 ( 0) = ( 0) PL PL = CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 7 Beam Deflection by Integration Eample 1 (cont d) (c) Deflection at = L/: From Eq. g of the elastic curve: 1 P y = EI 1 y ( L / ) 3 PL 16 1 P L = EI 1 3 PL = 48EI 3 PL 16 L
15 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 8 Beam Deflection by Superposition and Tables The slope or deflection of a beam is the sum of the slopes or deflections produced by the individual loads. The superposition method provides a means of quickly solving a wide range of more complicated problems by various combinations of known results. CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 9 Beam Deflection by Superposition and Tables To facilitate the task of designers or practicing engineers, most structural and mechanical handbooks include tables giving the deflections and slopes of beams for various loadings and types of support. Such a table can be found in your tetbook (Table 8.3) and provided herein in the net few viewgraphs in Table 1.
16 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 30 Beam Deflection by Superposition and Tables Slopes and Deflection Tables Table 1a (Beer and Johnston 199) CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 31 Beam Deflection by Superposition and Tables Slopes and Deflection Tables Table 1b (Beer and Johnston 199)
17 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 3 Beam Deflection by Superposition and Tables Slopes and Deflection Tables Table 1c (Beer and Johnston 199) CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 33 The loaddeflection relationship of a reinforced concrete beam is basically trilinear, as shown in Figure 6. It is composed of three regions prior to rupture: Region I Region II Region III
18 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 34 Load I II III Deflection Figure 6. Beamdeflection relationship, Region I, precracking stage; region II, postcracking stage; region III, postserviceability stage (steel yields). CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 35 Region I: precracking stage, where a structural member is crackfree. Region II: postcracking stage, where the structural member develops acceptable controlled cracking both in distribution and width. Region III: postserviceability cracking stage, where the stress in the tension reinforcement reaches the limit state of yielding.
19 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 36 Precracking Stage: Region I The maimum tensile stress is less than its tensile strength in fleure, that is less than the modulus of rupture f r of concrete. The fleural stiffness EI can be estimated using the Young s modulus of concrete and the uncracked reinforced concrete crosssection. The loaddeflection behavior depends on the stressstrain relationship of the concrete. CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 37 Precracking Stage: Region I (cont d) The value of E c can be estimated using the ACI empirical epression as was discussed in Chapter 3: or E = 33w f c 1.5 c c (3a) E c = 57,000 f c for normal weight concrete (3b)
20 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 38 Precracking Stage: Region I (cont d) The precracking region stops at the initiation of the first fleural crack when the concrete stress reaches its modulus of rupture f r. The value of f r for normalweight concrete is f =. 5 7 (3c) r f c For all lightweight concrete, multiply the value of f r by 0.75 For sandlightweight concrete, multiply the value of f r by 0.85 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 39 Precracking Stage: Region I (cont d) Estimation of the moment of inertia I in this region: Basically there are two approaches: 1. Gross section (simplified): where I g is calculated neglecting the presence of any reinforcing steel.. Transformed section (more accurate): where I gt is calculated taking into account the additional stiffness contributed by the steel reinforcement. I g = moment of inertia of the gross cross section I gt = moment of inertia of the gross cross section, including steel reinforcement stiffness
21 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 40 Precracking Stage: Region I (cont d) Estimation of the moment of inertia I in this region: The moment of inertia I g for a rectangular section can be computed as 3 bh I g = (4a) 1 And the corresponding cracking moment M cr is M cr I g f = y t r I g f = h Note that y t = h/ for rectangular section r (4b) CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 41 Precracking Stage: Region I (cont d) Estimation of the moment of inertia I in this region: Figure 7 h b d Neglect the stiffness provided by steel M cr 3 bh I g = 1 I g f = y t r I g f = h r
22 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 4 Precracking Stage: Region I (cont d) Estimation of the moment of inertia I in this region: The calculation of the moment of inertia I gt for a rectangular section in this case is dependent on the location of the neutral ais y of the transformed section as shown in Figure 8 The value of y for a rectangular section can be computed by ( bh / )( n 1) Asd y = (5) bh + ( n 1) A s Note that n = E s /E c = modular ratio CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 43 Precracking Stage: Region I (cont d) Estimation of the moment of inertia I in this region: ( bh / )( n 1) Asd y = bh + ( n 1) A s Figure 8 b Es b h d n = E c y C.G na s y t d Do not neglect the stiffness provided by steel Transformed Section
23 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 44 Precracking Stage: Region I (cont d) Estimation of the moment of inertia I in this region: Once I gt has been computed based on the location of the center of gravity, the cracking moment can be estimated from the fleure formula. The corresponding cracking moment M cr is M = cr I gt y t f r (6) CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 45 Postcracking Stage: Region II The precracking region ends at the initiation of the first crack and moves into region II. Most beams lie in this region at service loads. Cracks are wider and deeper at midspan. At limit state of service load cracking, the contribution of tensionzone concrete to fleural stiffness is neglected (see Figure 9). The moment of inertia of the cracked section is designated I cr.
24 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 46 Postcracking Stage: Region II Figure 9 b Stresses Elastic and Section Cracked ε c ( comp. ) Reinforced Concrete Beam f c ( comp. ) h d N.A. ε s ( tens. ) f s ( tens. ) Tensile stresses of concrete will be eceeded. Concrete will crack (hairline crack), and steel bars will resist tensile stresses. This will occur at approimately 0.5 f. c CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 47 Postcracking Stage: Region II (cont d) Calculation of the moment of inertia I cr in this region: The moment of inertia I cr for a rectangular section can be computed as 3 bc I ( ) cr = + nas d c 3 (7) Where the value of the neutral ais c can be computed from the following quadratic equation: 1 bc + nas c nas d = 0 (8)
25 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 48 Postcracking Stage: Region II (cont d) Calculation of the moment of inertia I cr in this region: The neutral ais for a concrete beam is found by solving the quadratic equation: b 1 bc + na c na d b = 0 s s (8) d d  c c C 1 n = E E s c n A s CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 49 Postserviceability Cracking Stage and Limit State of Deflection Behavior at Failure: Region III The loaddeflection diagram is considerably flatter in this region due to substantial loss in stiffness of the section. Etensive cracking takes place. The beam is considered at this stage to have structurally failed by yielding of the tension steel, and continues to deflect without additional loading.
26 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 50 Postserviceability Cracking Stage and Limit State of Deflection Behavior at Failure: Region III The cracks continue to open, and the neutral ais continues to rise upward until total crushing of the concrete when rupture occurs. Postyield deflection and limit deflection at failure are not of major significant in design and hence are not being discussed in any detail, however, it is important to recognize the reserve deflection capacity as a measure of ductility in structures. CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 51 Concept of Effective Moment of Inertia I e In the case of Region II, in reality only of the beam crosssection is cracked. As seen from Figure 9, the uncracked segments below the neutral ais along the beam span possess some degree of stiffness, which contributes to overall beam rigidity. The actual stiffness lies between: or E c I g and E I g and I cr c I cr
27 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 5 Concept of Effective Moment of Inertia I e Generally, as the load approaches the steel yield load level, the stiffness value approaches E c I cr. The ACI Code recommends that deflection be calculated using an effective moment of inertia, I e, where I > I > I g e Once the effective moment of inertia is determined, the member deflection may be calculated by using standard deflection formulas. cr CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 53 Immediate Deflection Immediate deflection is the deflection that occurs as soon as load is applied on the member. The ACI Code, Section , states that this deflection may be calculated using a concrete modulus of elasticity E c as given by Eq. 3, and an effective moment on inertia I e as given by the following equations (Eqs. 9 and 10):
28 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 54 Immediate Deflection Effective Moment of Inertia I e M = M cr a 3 I g M + 1 M cr a 3 I cr I g (9) ACI (98) or I e = I cr M + M cr a 3 ( I g Icr ) I g (10) CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 55 Immediate Deflection Effective Moment of Inertia I e = effective moment of inertia I cr = moment of inertia of the cracked section transformed to concrete I g = moment of inertia of the gross (uncracked) concrete cross section about the centroidal ais, either neglecting or not neglecting steel M a = maimum moment in the member at the stage for which the deflection is being computed M cr = moment that would initially crack the cross section computed from fri g M cr = ACI (99) Where yt f r = modulus of rupture for concrete as given by Eq. 3c y t = distance from the neutral ais of the uncracked cross section (neglecting steel) to the etreme tension fiber
29 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 56 LongTerm Deflection In addition to deflections that occur immediately, reinforced concrete members are subject to added deflections that occur gradually over long periods. These additional deflections are due mainly to creep and shrinkage and may eventually become ecessive. The longterm deflections are computed based on: CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 57 LongTerm Deflection 1. the amount of sustained dead and live load, and,. The amount of compression reinforcement in the beam. The additional longterm deflections may be estimated as follows: LT = λ i T = 1+ 50ρ i (11)
30 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 58 LongTerm Deflection Where LT = additional longterm deflection i = immediate deflection due to sustained loads λ = a multiplier for additional longterm deflection [ACI Eq. (911)] ρ = nonprestressed compression reinforcement ratio ( A s / bd ) T = timedependent factor for sustained loads: 5 years or more.0 1 months months 1. 3 months 1.0 CHAPTER 8a. SERVICEABILITY OF BEAMS AND ONEWAY SLABS Slide No. 59 LongTerm Deflection Some judgment will be required in determining just what portion of the live loads should be considered sustained. In a residential applications, 0% sustained live load might be a logical estimate, whereas in storage facilities, 100% sustained load would be reasonable.
REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002
REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental
More informationServiceability Deflection calculation
Chp6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safetyfracture, fatigue, overturning
More informationDr. Hazim Dwairi. Example: Continuous beam deflection
Example: Continuous beam deflection Analyze the shortterm and ultimate longterm deflections of endspan of multispan beam shown below. Ignore comp steel Beam spacing = 3000 mm b eff = 9000/4 = 2250
More informationMECHANICS OF MATERIALS Sample Problem 4.2
Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A castiron machine part is acted upon by a knm couple.
More information3.5 Reinforced Concrete Section Properties
CHAPER 3: Reinforced Concrete Slabs and Beams 3.5 Reinforced Concrete Section Properties Description his application calculates gross section moment of inertia neglecting reinforcement, moment of inertia
More informationε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram
CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case
More informationBEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA)
LETURE Third Edition BEMS: SHER ND MOMENT DGRMS (FORMUL). J. lark School of Engineering Department of ivil and Environmental Engineering 1 hapter 5.1 5. b Dr. brahim. ssakkaf SPRNG 00 ENES 0 Mechanics
More informationFlexure: Behavior and Nominal Strength of Beam Sections
4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kipin.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015
More information7.4 The Elementary Beam Theory
7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be
More informationLecture05 Serviceability Requirements & Development of Reinforcement
Lecture05 Serviceability Requirements & Development of Reinforcement By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Section 1: Deflections
More informationSERVICEABILITY LIMIT STATE DESIGN
CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise
More informationProblem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323
Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine
More informationDesign of Reinforced Concrete Structures (II)
Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of oneway ribbed slabs After finding the value of total load (Dead and live loads), the elements are
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More informationAdvanced Structural Analysis EGF Section Properties and Bending
Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear
More informationLecture04 Design of RC Members for Shear and Torsion
Lecture04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of
More informationtwenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete
More informationLecture03 Design of Reinforced Concrete Members for Flexure and Axial Loads
Lecture03 Design of Reinforced Concrete Members for Flexure and Axial Loads By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com Prof.
More informationChapter. Materials. 1.1 Notations Used in This Chapter
Chapter 1 Materials 1.1 Notations Used in This Chapter A Area of concrete crosssection C s Constant depending on the type of curing C t Creep coefficient (C t = ε sp /ε i ) C u Ultimate creep coefficient
More informationDesign of AAC wall panel according to EN 12602
Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded
More informationMechanics of Materials Primer
Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus
More informationMaterials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.
Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie
More informationPURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.
BENDING STRESS The effect of a bending moment applied to a crosssection of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally
More informationSeismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design
Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department
More informationCHAPTER 4: BENDING OF BEAMS
(74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are
More informationChapter 8: Bending and Shear Stresses in Beams
Chapter 8: Bending and Shear Stresses in Beams Introduction One of the earliest studies concerned with the strength and deflection of beams was conducted by Galileo Galilei. Galileo was the first to discuss
More informationCHAPTER 6: ULTIMATE LIMIT STATE
CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.
More informationME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam crosssec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.
ME 323  Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM12:20PM Ghosh 2:303:20PM Gonzalez 12:301:20PM Zhao 4:305:20PM M (x) y 20 kip ft 0.2
More informationSoftware Verification
PROGRAM NAME: SAFE 014 EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 161 depicts a plot of the uncracked and cracked conditions, 1 State 1, and, State,
More information9.5 Compression Members
9.5 Compression Members This section covers the following topics. Introduction Analysis Development of Interaction Diagram Effect of Prestressing Force 9.5.1 Introduction Prestressing is meaningful when
More informationLecture 15 Strain and stress in beams
Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME
More informationComb Resonator Design (2)
Lecture 6: Comb Resonator Design () Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory
More informationMTE 119 STATICS LECTURE MATERIALS FINAL REVIEW PAGE NAME & ID DATE. Example Problem F.1: (Beer & Johnston Example 911)
Eample Problem F.: (Beer & Johnston Eample 9) Determine the mass moment of inertia with respect to: (a) its longitudinal ais (ais) (b) the yais SOLUTION: a) Mass moment of inertia about the ais: Step
More informationCivil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7
Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...
More informationSoftware Verification
EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 161 depicts a plot of the uncracked and cracked conditions, Ψ 1 State 1, and, Ψ State, for a reinforced
More informationServiceability Limit States
Serviceability Limit States www.eurocode2.info 1 Outline Crack control and limitations Crack width calculations Crack width calculation example Crack width calculation problem Restraint cracking Deflection
More informationSimplified procedures for calculation of instantaneous and longterm deflections of reinforced concrete beams
Simplified procedures for calculation of instantaneous and longterm deflections of reinforced concrete beams José Milton de Araújo 1 Department of Materials and Construction, University of Rio Grande
More informationChapter 12. Static Equilibrium and Elasticity
Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial
More informationFLEXURAL MODELLING OF STRAIN SOFTENING AND STRAIN HARDENING FIBER REINFORCED CONCRETE
Proceedings, Pro. 53, S.A.R.L., Cachan, France, pp.556, 7. FLEXURAL MODELLING OF STRAIN SOFTENING AND STRAIN HARDENING FIBER REINFORCED CONCRETE Chote Soranakom and Barzin Mobasher Department of Civil
More informationDES140: Designing for LateralTorsional Stability in Wood Members
DES140: Designing for LateralTorsional Stability in Wood embers Welcome to the Lateral Torsional Stability ecourse. 1 Outline LateralTorsional Buckling Basic Concept Design ethod Examples In this ecourse,
More informationCHAPTER 7 DEFLECTIONS OF BEAMS
CHPTER 7 DEFLECTIONS OF EMS OJECTIVES Determine the deflection and slope at specific points on beams and shafts, using various analytical methods including: o o o The integration method The use of discontinuity
More informationSabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in
Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are
More informationDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Email: info@madeeasy.in Ph: 011451461 CLASS TEST 01819 CIVIL ENGINEERING
More information[8] Bending and Shear Loading of Beams
[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight
More informationHomework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004
Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. 1. A beam is loaded as shown. The dimensions of the cross section appear in the insert. the figure. Draw a complete free body diagram showing an equivalent
More informationThis Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.
COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 CONCRETE FRAME DESIGN ACI31899 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced
More informationChapter 8. Shear and Diagonal Tension
Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.14.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR
More information1 Static Plastic Behaviour of Beams
1 Static Plastic Behaviour of Beams 1.1 Introduction Many ductile materials which are used in engineering practice have a considerable reserve capacity beyond the initial yield condition. The uniaxial
More informationChapter 4 Deflection and Stiffness
Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 41 Spring Rates 42 Tension, Compression, and Torsion 43 Deflection Due to Bending 44 Beam
More informationCE5510 Advanced Structural Concrete Design  Design & Detailing of Openings in RC Flexural Members
CE5510 Advanced Structural Concrete Design  Design & Detailing Openings in RC Flexural Members Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING
More informationPrestressed concrete = Precompression concrete Precompression stresses is applied at the place when tensile stress occur Concrete weak in tension
Prestressed concrete = Precompression concrete Precompression stresses is applied at the place when tensile stress occur Concrete weak in tension but strong in compression Steel tendon is first stressed
More informationSlenderness Effects for Concrete Columns in Sway Frame  Moment Magnification Method (CSA A )
Slenderness Effects for Concrete Columns in Sway Frame  Moment Magnification Method (CSA A23.394) Slender Concrete Column Design in Sway Frame Buildings Evaluate slenderness effect for columns in a
More informationBeam Design and Deflections
Beam Design and Deflections tation: a = name for width dimension A = name for area Areq dadj = area required at allowable stress when shear is adjusted to include self weight Aweb = area of the web of
More informationSIMPLY SUPPORTED STRUCTURAL BEAM STRESS AND DEFLECTION ANAL
1 of 6 22/03/2016 09:17 HOMEPAGE CALCULATORS EXAMPLES GUIDELINES SIMPLY SUPPORTED STRUCTURAL BEAM STRESS AND DEFLECTION ANAL Following calculator has been developed to find forces, moments, stresses, deflections
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending
EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:
More informationMECHANICS LAB AM 317 EXP 1 BEAM DEFLECTIONS
MECHANICS AB AM 317 EX 1 BEAM DEFECTIONS I. OBJECTIVES I.1 To observe, evaluate and report on the loaddeflection relationship of a simply supported beam and a cantilever beam. I.2 To determine the modulus
More informationDerivation of minimum steel ratio: based on service applied stresses
MATEC Web of Conferences, () DOI:./ matecconf/ Derivation of minimum steel ratio: based on service applied stresses Humam AL Sebai,*, Salah Al Toubat University of Sharjah, Sharjah city, UAE Abstract.
More information3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture,
3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture, 09.21.07 1. In the beam considered in PS1, steel beams carried the distributed weight of the rooms above. To reduce stress on the beam, it
More informationFIXED BEAMS IN BENDING
FIXED BEAMS IN BENDING INTRODUCTION Fixed or builtin beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported
More informationCase Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.
ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a threestory office building
More informationKarbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi
Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib AlNasrawi University of Karbala Department of Civil Engineering 71 Introduction
More informationCHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS
4.1. INTRODUCTION CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS A column is a vertical structural member transmitting axial compression loads with or without moments. The cross sectional dimensions of a column
More informationUNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded
More informationMechanics of Structure
S.Y. Diploma : Sem. III [CE/CS/CR/CV] Mechanics of Structure Time: Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1(a) Attempt any SIX of the following. [1] Q.1(a) Define moment of Inertia. State MI
More informationUNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich
UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST
More informationSPECIFIC VERIFICATION Chapter 5
As = 736624/(0.5*413.69) = 3562 mm 2 (ADAPT 3569 mm 2, B29, C6) Data Block 27  Compressive Stresses The initial compressive strength, f ci, is the strength entered in the Material/Concrete input screen.
More informationAnalytical Model for Estimating LongTerm Deflections of TwoWay Reinforced Concrete Slabs *
Analytical Model for Estimating LongTerm Deflections of TwoWay Reinforced Concrete Slabs * Dr. Bayan Salim AlNu'man Civil Engineering Department, College of Engineering AlMustansiriya University, Baghdad,
More informationStrength of Materials Prof. S.K.Bhattacharya Dept. of Civil Engineering, I.I.T., Kharagpur Lecture No.26 Stresses in BeamsI
Strength of Materials Prof. S.K.Bhattacharya Dept. of Civil Engineering, I.I.T., Kharagpur Lecture No.26 Stresses in BeamsI Welcome to the first lesson of the 6th module which is on Stresses in Beams
More informationMAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.
It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the
More informationDesign of Beams (Unit  8)
Design of Beams (Unit  8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built  up beams in bending (Without vertical stiffeners)
More informationMarch 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE
Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano
More informationLecture08 Gravity Load Analysis of RC Structures
Lecture08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent
More informationPart 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.
NAME CM 3505 Fall 06 Test 2 Part 1 is to be completed without notes, beam tables or a calculator. Part 2 is to be completed after turning in Part 1. DO NOT turn Part 2 over until you have completed and
More informationPERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR  VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK
PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR  VALLAM  613 403  THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310
More informationMODELLING NONLINEAR BEHAVIOUR OF STEEL FIBRE REINFORCED CONCRETE
6th RILEM Symposium on FibreReinforced Concretes (FRC)  BEFIB  September, Varenna, Italy MODELLING NONLINEAR BEHAVIOUR OF STEEL FIBRE REINFORCED CONCRETE W. A. Elsaigh, J. M. Robberts and E.P. Kearsley
More informationLaboratory 4 Bending Test of Materials
Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective
More informationDeflection of Beams. Equation of the Elastic Curve. Boundary Conditions
Deflection of Beams Equation of the Elastic Curve The governing second order differential equation for the elastic curve of a beam deflection is EI d d = where EI is the fleural rigidit, is the bending
More informationChapter 6: CrossSectional Properties of Structural Members
Chapter 6: CrossSectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross
More informationSTRENGTH OF MATERIALSI. Unit1. Simple stresses and strains
STRENGTH OF MATERIALSI Unit1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between
More informationUnit 18 Other Issues In Buckling/Structural Instability
Unit 18 Other Issues In Buckling/Structural Instability Readings: Rivello Timoshenko Jones 14.3, 14.5, 14.6, 14.7 (read these at least, others at your leisure ) Ch. 15, Ch. 16 Theory of Elastic Stability
More informationInteraction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements
Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Interaction Diagram  Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Investigate the capacity for the irregular
More informationFigure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0.
Example (8.1): Using the ACI Code approximate structural analysis, design for a warehouse, a continuous oneway solid slab supported on beams 4.0 m apart as shown in Figure 1. Assume that the beam webs
More informationCHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 2. Discontinuity functions
1. Deflections of Beams and Shafts CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 1. Integration method. Discontinuity functions 3. Method
More informationEstimation of the Residual Stiffness of FireDamaged Concrete Members
Copyright 2011 Tech Science Press CMC, vol.22, no.3, pp.261273, 2011 Estimation of the Residual Stiffness of FireDamaged Concrete Members J.M. Zhu 1, X.C. Wang 1, D. Wei 2, Y.H. Liu 2 and B.Y. Xu 2 Abstract:
More informationRigid and Braced Frames
RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram
More informationAccordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation CC3.1.
C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateraltorsional buckling and distortional
More informationDesign of reinforced concrete sections according to EN and EN
Design of reinforced concrete sections according to EN 199211 and EN 19922 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420511
More informationConceptual question Conceptual question 12.2
Conceptual question 12.1 rigid cap of weight W t g r A thinwalled tank (having an inner radius of r and wall thickness t) constructed of a ductile material contains a gas with a pressure of p. A rigid
More informationDesign of Reinforced Concrete Beam for Shear
Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular
More informationEvaluation of Flexural Stiffness for RC Beams During Fire Events
3 rd International Structural Specialty Conference 3 ième conférence internationale spécialisée sur le génie des structures Edmonton, Alberta June 69, 202 / 6 au 9 juin 202 Evaluation of Flexural Stiffness
More information4.3 Moment Magnification
CHAPTER 4: Reinforced Concrete Columns 4.3 Moment Magnification Description An ordinary or first order frame analysis does not include either the effects of the lateral sidesway deflections of the column
More informationRoadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement.
Example on Design of Slab Bridge Design Data and Specifications Chapter 5 SUPERSTRUCTURES Superstructure consists of 10m slab, 36m box girder and 10m Tgirder all simply supported. Only the design of Slab
More informationPhysics 8 Monday, November 20, 2017
Physics 8 Monday, November 20, 2017 Pick up HW11 handout, due Dec 1 (Friday next week). This week, you re skimming/reading O/K ch8, which goes into more detail on beams. Since many people will be traveling
More information7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment
7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment à It is more difficult to obtain an exact solution to this problem since the presence of the shear force means that
More informationREINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING (ACE009)
LECTURE NOTES ON REINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING (ACE009) III B. Tech I semester (Regulation R16) Mr. Gude Ramakrishna Associate Professor DEPARTMENT OF CIVIL ENGINEERING INSTITUTE OF
More informationEarthquake Loads According to IBC IBC Safety Concept
Earthquake Loads According to IBC 2003 The process of determining earthquake loads according to IBC 2003 Spectral Design Method can be broken down into the following basic steps: Determination of the maimum
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More information