# Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Save this PDF as:

Size: px
Start display at page:

Download "Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon."

## Transcription

1 Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1

2 Standard Solution to Elastic Problems Three common modes of loading: (a) tie with a circular cross-section loaded in tension (b) beam with rectangular crosssection loaded in bending (c) shaft of circular cross-section loaded in torsion Figure 5.1 Elastic Extension or Compression Relation between load, deflection and stiffness Stiffness of material (a free variable choice of material: a Stiffness of structure (a parameter that we functional requirement) need to find out) Shape of cross-section does not matter because the stress is uniform across the section 2

3 Elastic Bending of Beams Curvature of initial straight axis Stress cause by bending moment in a beam with a given Young s modulus Second moment of inertia. u: displacement parallel to y-axis M: bending moment y: distance from neutral axis Cross-sectional Area and Second Moments for Four Shapes Figure 5.2 3

4 Stiffness of a beam under transverse loading = FL 3 /C 1 EI Figure 5.3 C 1 is the only value that depends on the distribution of the load Buckling of Columns and Plates If sufficiently slender, an elastic column or plate, loaded in compression, fails by elastic buckling at a critical load Value of n depends on the end constraints of the beam Figure 5.5 4

5 Torsion of Shafts τ: shear stress r: radial distance from axis of symmetry K: resistance to twisting (torsional equivalent of I) G: shear modulus = (3/8)E when = 1/3 Shear stress T/θ: torsional rigity = TL/GK S T T GK L Figure 5.4 Vibrating of Beams and Plates An undamped system vibrating at its natural frequency can be expressed as the simple problem of a mass, m, attached to a spring of stiffness, k Lowest natural frequency of system Natural frequency based on spring stiffness, k, of a beam in bending Figure 5.6 m o is the mass per unit length or (area x density); therefore, frequencies scale with (E/ρ) 1/2 5

6 Material Indices for Elastic Design Figure 3.6 Minimizing Weight A light, stiff tie-rod: Constraints Objective Free Variable: Figure 5.7a Design Requirements Length, L o, is specified Cross-sectional area must be A 0 Must carry a tensile force F 0 without extending elastically by more than δ 0 Stiffness of the structure must be at least S* = F 0 /δ 0 Must have some toughness Should be as lightweight as possible Choice of Materials In this course, choice of material (, E, y ) is always a free variable Uncoupled: Can be used to screen out irrelevant choices, later on 6

7 Compare to: No free variable might not have any solution! Constraints: S*, L 0, A, must be 6061 Al alloy Objective: Mass (m) Free variables: N/A Or: Only one free variable group all the materials parameters in a single item, based on which materials candidates can be ranked Constraints: S*, L 0, A Eliminate irrelevant choices Objective: Mass (m) Rank relevant candidates Free variables: Choice of material (toughness, mass density ) Complicated case: There are 2 or more free variables affecting both constraints, and objective Must derive the performance index (discussed later) Objective function: equation that describes the quantity to be maximized or minimized The goal is to minimize the value of the objective function within the given constraints Constraint: Section area A must be sufficient to provide a stiffness of S* 7

8 One Free Variable If there were only one free variables (an easy problem): Constraints: S* (stiffness of rod), L 0, A 0 Eliminate irrelevant choices Objective: Mass (m) Rank relevant candidates Free variables: Choice of material 2) Use objective to rank 1) Use constraints to screen: E * = S * L 0 /A 0 (e.g. 10 GPa) Optimum choice: natural material (wood) Figure 5.10 Minimizing Weight A light, stiff tie-rod: Constraints Objective Free Variable: Design Requirements Figure 5.7a Length, L o, is specified Cross-sectional area must be A 0 Must carry a tensile force F 0 without extending elastically by more than δ 0 Stiffness must be at least S* = F 0 /δ 0 Must have some toughness Should be as lightweight as possible Choice of Materials Cross-sectional area, A Free variables affecting constraints or objective are listed here 8

9 Two free variables; one of them should be eliminated Objective function Two Free Variables Constraint With unknown A, constraint on E cannot be derived from S * There must be at least one free variable (degree of freedom); otherwise the design is impossible. Eliminate the free variable A to obtain: Only one free variable (choice of material) left, grouped in a single term (performance index) Performance Index for material selection S* and L o are both specified; the lightest tie that will provide a stiffness S* is that made of the material with the smallest value of ρ/e High values of M t are the best choice; the function E/ρ is Materials: engineering, science, called processing and the design, 2nd specific edition Copyright (c)2010 stiffness Michael Ashby, Hugh Shercliff, David Cebon Two free variables; one of them should be eliminated Objective function Two Free Variables Constraint With unknown A, constraint on E cannot be derived from S * There must be at least one free variable (degree of freedom); otherwise the design is impossible. Eliminate the free variable A to obtain: Only one free variable (choice of material) left, grouped in a single term (performance index) The larger the Young s modulus (E), the smaller the crosssectional area (A) needs to be to reach the required S*, resulting in a smaller total mass, m The smaller the mass density ( ), the larger the performance index, M t (the smaller the total mass, m) Performance Index for material selection 9

10 Two Free Variables Optimum choice: Ceramics (e.g. alumina) Figure 5.10 Lowest Highest Higher Lower M t = E/ Constant line for M t or log(m t ) is: log(e) log( ) = log(m t0 ) or log(e) = log( ) + log(m t0 ) or y = x + c in the left figure In the family of parallel lines of y = x+c, the higher the line, the larger the value of M t0. But it cannot exceed the area of bubbles. Two Free Variables If: When the force is F max, the elongation must be close to L 0 ; A must be in the range of A 0 A; L is a free variable Objective function Constraint = m = A 2 (E )/S * The material performance index becomes M t = (E ) M t collectively sets the criterion of material selection A smaller E leads to a shorter rod (and thus, a lower mass), to achieve S* A smaller leads to a lower mass, m 10

11 Two Free Variables Highest Figure 5.10 Optimum choice: foams (e.g. PU foam) Lowest M t = E Constant line for M t or log(m t ) is: log(e) + log( ) = log(m t0 ) or log(e) = -log( ) + log(m t0 ) or y = -x + c in the left figure In the family of parallel lines of y = -x+c, the higher the line, the larger the value of M t0. But it cannot exceed the area of bubbles. Minimizing Weight: A light, stiff panel Figure 5.7b Design Requirements Length L and width b are specified Thickness h is free Loaded by bending by a central load F Stiffness constraint requires it must not deflect more than δ under the load Objective it to make the panel as light as possible 11

12 Table 5.2 Objective function: Stiffness Constraint: Second moment of inertia for rectangular section: Material Index: Light, Stiff Panel Stiffness S*, length L, and width b are specified; thickness h is free Eliminating h from the objective function gives: Unspecified variables leaves ρ/e 1/3 which would be minimized to minimize mass; as before the function will be inverted so a maximum value will be sought 12

13 Ranking: indices on charts Selection lines are used based on the material indices All materials that lie on the selection line perform equally well; those that lie above the line perform better Figure 5.10 For the selection of a light, stiff panel, the material index is E 1/3 /ρ A material with M = 3 gives a panel that has one-tenth the weight of one with M = 0.3 Figure

14 Minimizing Weight A light, stiff beam Figure 5.7c Table 5.3 Objective function: Stiffness constraint and second moment of inertia: Eliminating the free variable A from the objective function and identifying the unspecified variables 14

15 Ranking: indices on charts Selection lines are used based on the material indices All materials that lie on the selection line perform equally well; those that lie above the line perform better Figure 5.10 Shape Factor By reshaping the cross-section of a beam, it is possible to increase I thus increasing stiffness without increasing the total area Figure 5.8 The ratio of I for the shaped section to that for a solid square section with the same area is defined as the shape factor Φ 15

16 Shaping is also used to make structures lighter; it is a way to achieve the same stiffness with less material Table 5.4 Shaping could increase the value of I by 64X if steel was used in the construction of a beam with a square cross-section; if wood was used, the maximum increase would be 9X Case Studies: Lever for corkscrew Lever is loaded in bending and acts as a light, stiff beam Figure 5.12 Table

17 Selection of corkscrew lever by plotting material index Based on Figure 5.14, the materials most suited for a stiff, light corkscrew lever are ceramics, composites, and woods Other considerations such as cost will help narrow the selection further E 1/2 = const log(e Figure 1/2 ) 5.14 = const loge = -2 log + const E 1/2 / = const log(e 1/2 / ) = const loge = 2 log + const Materials cost Minimizing Materials Cost Material indices change as the objective changes; the objective function for minimizing cost of the tie rod, panel, or beam would be: Mass Materials cost per unit mass C V, materials cost per unit volume With A (cross-sectional area) and L (length) being specified, the goal of a material selection would be to minimize C m ρor maximize 1/ C m ρ It is equivalent to using a weight factor of C m for the volume density ( ) in the analysis of light, stiff beam. 17

18 Plotting Limits and Indices on Charts Screening: attribute limits on charts Constraints can be plotted as horizontal or vertical lines on material property charts Constraints in Figure 5.9: E > 10 GPa Relative Cost < 3 All materials in the search region meet both constraints Figure 5.9 Case Studies: Structural materials A stiff beam with minimum cost is required The analysis process is similar with that of a lightweight, stiff beam, except that the density Figure 5.15 is weighted by the materials cost per mass Table (C 5.6 m ) ~ Cost per unit volume, C V 18

19 Selection of stiff floor beam Concrete, stone, and brick have poor tensile strength Wood, steel, and reinforced concrete have strength in tension and compression Steel is also has a higher shape factor allowing for greater freedom of the form of the building Figure 5.16 Selection of stiff bar stool shaft What is the best material for the shaft in a bar stool? Constraint: Cannot deform too much under external loading: A. Tension? B. Compression? C. Bending? D. Torsion? Objective: minimize or maximize cost? 19

20 Bendy Design: Part stiff, Part-Flexible Structures Components can be designed to be strong but not stiff Elastic bending locates and guides the plunger as well as provides the restoring forced provided by the spring Figure 5.17 Rotational hinges is replaced by elastic connecting strip Figure 5.18 Various section shapes, each allowing one or more degrees of freedom, while retaining stiffness and strength in the other directions Figure

### Materials Selection and Design Materials Selection - Practice

Materials Selection and Design Materials Selection - Practice Each material is characterized by a set of attributes that include its mechanical, thermal, electrical, optical, and chemical properties; its

### Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

### 2.2 - Screening and ranking for optimal selection. Outline

2 - Ashby Method 2.2 - Screening and ranking for optimal selection Outline Basic steps of selection 1. Translation of design requirements into a material specification 2. Screening out of materials that

### Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech321 lecture 20/2. A = x-area

Materials Selection and Design: Introduction Outline Introduction Design Requirements Exampls: - Example 1: Strong and light Tie-Rod - Example 2: Stiff & ight Tension Members - - Example 4: ight and Strong

### Lecture 15 Strain and stress in beams

Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

### D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

### Mechanics of Materials Primer

Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

### AML 883 Properties and selection of engineering materials

AML 883 Properties and selection of engineering materials LECTURE 2. Materials choices for stiffnesslimited design Density and Modulus M P Gururajan Email: guru.courses@gmail.com Room No. MS 207/A 3 Phone:

### How materials work. Compression Tension Bending Torsion

Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons (-) B. Neutral charge, i.e., # electrons = #

### D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

### ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

### ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

### Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly

.3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original

### MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?

MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition

### SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

### Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

### Johns Hopkins University What is Engineering? M. Karweit MATERIALS

Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: MATERIALS A. Composition

### QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

### CHAPTER 4: BENDING OF BEAMS

(74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

### twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

### Materials and Shape. Part 1: Materials for efficient structure. A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka. Learning Objectives

MME445: Lecture 27 Materials and Shape Part 1: Materials for efficient structure A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Learning Objectives Knowledge & Understanding Understand the

### 5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

### Samantha Ramirez, MSE

Samantha Ramirez, MSE Centroids The centroid of an area refers to the point that defines the geometric center for the area. In cases where the area has an axis of symmetry, the centroid will lie along

### PES Institute of Technology

PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

### [5] Stress and Strain

[5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

### AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars

AERO 214 Lab II. Measurement of elastic moduli using bending of beams and torsion of bars BENDING EXPERIMENT Introduction Flexural properties of materials are of interest to engineers in many different

### Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.

NAME CM 3505 Fall 06 Test 2 Part 1 is to be completed without notes, beam tables or a calculator. Part 2 is to be completed after turning in Part 1. DO NOT turn Part 2 over until you have completed and

### BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

### UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

### 7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment à It is more difficult to obtain an exact solution to this problem since the presence of the shear force means that

### PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

### QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

### Laboratory 4 Bending Test of Materials

Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

### Simulation of Geometrical Cross-Section for Practical Purposes

Simulation of Geometrical Cross-Section for Practical Purposes Bhasker R.S. 1, Prasad R. K. 2, Kumar V. 3, Prasad P. 4 123 Department of Mechanical Engineering, R.D. Engineering College, Ghaziabad, UP,

### Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H

Question 1 (Problem 2.3 of rora s Introduction to Optimum Design): Design a beer mug, shown in fig, to hold as much beer as possible. The height and radius of the mug should be not more than 20 cm. The

### Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

### PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

### Chapter 6: Cross-Sectional Properties of Structural Members

Chapter 6: Cross-Sectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross

### FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

### ME 243. Mechanics of Solids

ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

### Module 2 Selection of Materials and Shapes. IIT, Bombay

Module Selection of Materials and Shapes Lecture 3 Selection of Materials - II Instructional objectives This is a continuation of the previous lecture. By the end of this lecture, the student will further

### Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

### Comb resonator design (2)

Lecture 6: Comb resonator design () -Intro Intro. to Mechanics of Materials School of Electrical l Engineering i and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

### This procedure covers the determination of the moment of inertia about the neutral axis.

327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

### MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

### UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

### Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

### INTRODUCTION TO STRAIN

SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

### Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

### Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

### EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns

EMA 370 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns Columns Introduction Columns are vertical prismatic members subjected to compressive forces Goals: 1. Study the stability

### Chapter 4 Deflection and Stiffness

Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 4-1 Spring Rates 4-2 Tension, Compression, and Torsion 4-3 Deflection Due to Bending 4-4 Beam

### Lecture 16-17, Sandwich Panel Notes, 3.054

Sandwich Panels Two stiff strong skins separated by a lightweight core Separation of skins by core increases moment of inertia, with little increase in weight Efficient for resisting bending and buckling

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN 1 Static and dynamic forces Forces: definitions of: matter, mass, weight,

### Structural Analysis I Chapter 4 - Torsion TORSION

ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

### JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER:

JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER: COURSE: Tutor's name: Tutorial class day & time: SPRING

### Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

### 7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

7 TRANSVERSE SHEAR Before we develop a relationship that describes the shear-stress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within

### Comb Resonator Design (2)

Lecture 6: Comb Resonator Design () -Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory

### MECHANICS OF MATERIALS

2009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes:

### CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

### NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

### R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

### Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

### Solution: The moment of inertia for the cross-section is: ANS: ANS: Problem 15.6 The material of the beam in Problem

Problem 15.4 The beam consists of material with modulus of elasticity E 14x10 6 psi and is subjected to couples M 150, 000 in lb at its ends. (a) What is the resulting radius of curvature of the neutral

### MATERIALES INDUSTRIALES II ( ) EJERCICIOS APLICACION CES EDUPACK SEGUNDA PARTE-2DO CUAT. 2012

MATERIALES INDUSTRIALES II ( 72.13 ) EJERCICIOS APLICACION CES EDUPACK SEGUNDA PARTE-2DO CUAT. 2012 GRUPO N 1 Case Study on a Light, Stiff, Strong Tie (Multiple constraints) 1. A tie, of length L loaded

### SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS Time Allowed:2 Hours Maximum Marks: 300 Attention: 1. Paper consists of Part A (Civil & Structural) Part B (Electrical) and Part C (Mechanical)

### Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

### March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

### Flexure: Behavior and Nominal Strength of Beam Sections

4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

### Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

### General elastic beam with an elastic foundation

General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

### CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 2014-2015 UNIT - 1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART- A 1. Define tensile stress and tensile strain. The stress induced

### Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3

M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We

### 3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

### COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

### 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

### Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson

STRUCTURAL MECHANICS: CE203 Chapter 5 Torsion Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson Dr B. Achour & Dr Eng. K. El-kashif Civil Engineering Department, University

### Laboratory 4 Topic: Buckling

Laboratory 4 Topic: Buckling Objectives: To record the load-deflection response of a clamped-clamped column. To identify, from the recorded response, the collapse load of the column. Introduction: Buckling

### STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

### Physics 8 Monday, November 20, 2017

Physics 8 Monday, November 20, 2017 Pick up HW11 handout, due Dec 1 (Friday next week). This week, you re skimming/reading O/K ch8, which goes into more detail on beams. Since many people will be traveling

### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 04 CIVIL ENGINEERING QUESTION BANK Course Name : STRENGTH OF MATERIALS II Course Code : A404 Class : II B. Tech II Semester Section

### MECHANICS OF MATERIALS Sample Problem 4.2

Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A cast-iron machine part is acted upon by a kn-m couple.

### Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

### Module 2 Selection of Materials and Shapes. IIT, Bombay

Module Selection o Materials and Shapes Lecture Selection o Materials - I Instructional objectives By the end o this lecture, the student will learn (a) what is a material index and how does it help in

### Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

### SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

### Only for Reference Page 1 of 18

Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

### Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

### High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the