Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams."

Transcription

1 Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams. Undamped Eigenvibrations. Orthogonality Property of Eigenmodes. Forced Vibrations of a Bernoulli-Euler Beam Element. 1

2 Continuous Systems Introduction to Continuous Systems : Bending stiffness around -axis. : Mass per unit length. 2

3 Discrete system (SDOF, MDOF) : Discrete distribution of mass or mass moment of inertia. Finite many dofs. Continuous system ( ) : Continuous distribution of mass. Infinite many dofs. Elasticity may be continuously distributed in all cases. The discretization approach illustrated in Figs. 1a and 1b are referred to as the lumped mass method. Mass distributing functions: One-dimensional structures (strings, bars, beams): : Mass per unit length, [kg/m]. Two-dimensional structures (slabs, plates, shells): : Mass per unit area, [kg/m 2 ]. Three-dimensional continua: : Mass per unit volume (mass density), [kg/m 3 ]. 3

4 Continuous Systems. Strings, Torsional Rods and Beams Vibrations of Flexible Strings 4

5 : Constant pre-stressing force of string. : Dynamic load per unit length in the -direction. : Constant mass per unit length. : Displacement in the -direction. : Rotation angle of cross-section in the -direction. : Length of string. 5

6 D Alembert s principle: The inertial load per unit length is added to the external load on a differential string element of the length. Static equilibrium in the -direction of the free string element (mass particle): 6

7 Boundary conditions: Initial conditions: particles). must be known for all differential string elements (mass Eigenvibrations ( ): (5) is known as the wave equation. is the phase velocity. 7

8 General solution to (5) : : Wave propagating in the positive -direction (same displacement at positions and times, where ). : Wave propagating in the negative -direction. (6) is due to d Alembert. The relation follows from the following identities: where denotes the 2 nd derivative of with respect to the argument. 8

9 9

10 The shape of the wave is preserved during the wave propagation. This is referred to as non-dispersive wave propagation. All harmonic components in the Fourier series expansion of and travel with same velocity, i.e. does not depend on the frequency. 10

11 Solution by separation of variables: Product solutions to the homogeneous wave equation are searched on the form: Insertion in Eq. (5): The left-hand side of Eq. (9) is a function of, and the right-hand side is a function of. This can only be true, if the left- and right-hand sides are equal to the same constant, which is chosen as. Hence, product solutions of the type (8) are only solutions to (5), if the following equations are fulfilled by the functions and : 11

12 The solutions to (10) and (11) are given as: Boundary conditions: The displacement vanishes at the end of the string at all times: Insertion of (14) in (12): 12

13 The 2 nd equation of (15) may be fulfilled for. However, with this leads to, and hence to the trivial solution. Non-trivial solutions implies that, leading to the condition: : Angular eigenfrequency of the string. (i.e. the frequency is increased one octave, when the length of the string is halved). 13

14 The modal coordinate differential equations of a MDOF system are given as, cf. Lecture 5, Eq. (70): Then, Eq. (11) may be interpreted as the equation for undamped eigenvibrations of a modal coordinate: This motivates the following designations. Time function in the separation method : Modal coordinate. Spatial function in the separation method : Eigenmode function. Infinite many modal coordinates exist for a continuous system. 14

15 Superposition principle: : Determined from the initial value functions,. 15

16 Example 1 : Eigenvibrations of a flexible string Let the initial conditions be given as: From Eq. (19): 16

17 The 1 st equation in Eq. (21) is multiplied with, followed by an integration over the interval : 17

18 Above, the following identities have been used: The final solution becomes: 18

19 Torsional Vibration of Rods : Torsional moment, [Nm]. : Torsional moment load per unit length, [Nm/m]. : Rotational angle in the -direction of a cross-section, [rad]. : Mass moment of inertia per unit length, [kgm 2 /m]. : Mass density, [kg/m 3 ]. : Torsional constant of a circular cylindrical bar, [m 4 ]. : Shear modulus, [N/m 2 ]. 19

20 D Alembert s principle: Constitutive relation for St. Venant torsion: (27) is a wave equation with the phase velocity. 20

21 Example 2 : Torsional undamped eigenvibrations of a fixed-free circular cylindrical bar 21

22 Determine the undamped eigenfrequencies and eigenmodes of the clamped bar with the length sketched on Fig. 5 are determined. Boundary conditions: The eigenvalue problem for the spatial function becomes, cf. Eq. (10): 22

23 Insertion of into the solution given by Eq. (12) implies that. Hence: eigenfrequencies are given as:. Then, undamped angular 23

24 Bernoulli-Euler Beams 24

25 : Dynamic displacement in the -direction. : Dynamic load per unit length in the -direction. No dynamic load in the -direction. : Mass per unit length. : Static axial force. : Shear force from dynamic loads. : Bending moment from dynamic loads. : Bending stiffness around the -axis. : Length of beam element. Static equilibrium state: Static loads in the - and -directions produce a static equilibrium configuration of the beam (drawn with a dashed signature in Fig. 6). Only the axial force is shown. Since there are no dynamic loads in the - direction, is unchanged during dynamic vibrations. 25

26 Dynamically deformed state: Force equilibrium in the -direction: Moment equilibrium in the -direction around the bending centre at the right-end section: From Eqs. (33) and (34): 26

27 Constitutive equation: D Alembert s principle: : External dynamic load per unit length. : Linear viscous damping coefficient per unit length. From Eqs. (35), (36), (37): 27

28 (38) must be solved with proper initial values at for all particles in the interval, and with boundary conditions at and for all times. 28

29 For the beam in Fig. 7 the following quantities at the end-section are introduced: : Point masses. : Damper constant of linear viscous dampers. : Stiffness of linear elastic springs. : Mass moment of inertia of distributed masses, [ ]. : Damper constants of linear viscous rotational dampers, [ ]. : Stiffness of linear elastic rotational springs, [ ]. For each differential mass particle identified by the abscissa, an initial displacement and an initial velocity must be formulated as a straightforward generalization of the discrete case. 29

30 The boundary conditions are classified as either geometric or mechanical boundary conditions. At each end-section exactly 2 boundary conditions (geometric or mechanical) are specified. Geometric boundary conditions are specified, whenever the end-section displacement or end-sections rotations are prescribed. In what follows only homogeneous geometric boundary conditions are considered. The following boundary and initial value problem may be stated for the beam shown in Fig. 7: 30

31 Differential equation: Initial values: Geometric boundary conditions: Mechanical boundary conditions: 31

32 Derivation of mechanical boundary conditions due to concentrated masses, dampers and springs: 32

33 Mechanical boundary conditions specify that the bending moments, and the shear forces, immediately to the right and the left of the end-sections must balance the inertial forces and the d Alembert moments from the distributed masses, and the forces and moments in the concentrated dampers and springs, resulting in the following equations of equilibrium, see Fig. 8. The mechanical boundary conditions in (39) are obtained by insertion of (34) and (36) in (40). 33

34 Example 3: Boundary conditions for beam elements with constant cross section 34

35 Special case,, and constant: Harmonic wave propagating in the positive -direction: : Amplitude, [ ]. : Angular frequency, [ ]. : Wave number, [ ]. : Phase velocity, [ ]. 35

36 Insertion of (42) into Eq. (41): Bending waves are dispersive. High-frequency components are moving faster than low-frequency components. This means that a displacement disturbancy is distorted during propagation in an infinite long Bernoulli- Euler beam. 36

37 Undamped Eigenvibrations Undamped vibrations: Eigenvibrations: Then, (39) attains the form: 37

38 Differential equation: Geometric boundary conditions: Mechanical boundary conditions: 38

39 Guided by the experience with MDOF systems it can be anticipated that all mass particles are performing harmonic motions in phase during undamped eigenvibrations. Consequently, the solution of (48) is searched on the form, cf. Lecture 4, Eq. (41): is the real amplitude of the mass particle, identified by the abscissa in the statical equilibrium state, and is the angular eigenfrequency. The phase can be selected arbitrarily. and are solutions to the following linear eigenvalue problem, obtained by insertion of (49) into (48): 39

40 Differential equation: Geometric boundary conditions: Mechanical boundary conditions: 40

41 Homogeneous cross-section: Solutions are determined to (50) for the special case of homogeneous cross-sections (constant value of, and ). The differential equation reduces to: The complete solution of (51) can be written as: 41

42 ,,, are integration constants, and and are the positive roots of the quadratic equations: Especially, if, (52) and (53) reduces to: 42

43 (52) or (54) are inserted into the 4 relevant boundary conditions in (50). Then, 4 homogeneous linear equations are obtained for the determination of the coefficients,,,, which can be formulated in the following way: and are functions of the angular frequency. Then, is a known function of. (56) always has the solution, which implies the trivial solution. The necessary condition for non-trivial solutions is: 43

44 Solutions to (57) determines non-trivial solutions to (56), and hence non-trivial solution to the amplitude function as given by (52) or (54). : Undamped angular eigenfrequency. : Eigenmode function. 44

45 Example 4: Boundary conditions of the eigenmode function for beam elements with constant cross-section Fig. 10. is inserted into the boundary conditions for, see 45

46 Example 5 : Eigenfrequencies and eigenmodes of simply supported beam with a compressive axial force 46

47 (52) is inserted into the boundary conditions shown on Fig. 11a: 47

48 (58) has the non-trivial solution: From (52), (53): 48

49 In (62) the compressive axial force has been introduced. given by (63) signifies the angular eigenfrequency for. is the classical Euler buckling load. For (62) provides: (65) provides a method for estimation by so-called non-destructive testing. Values of are measured for known values of (marked by a on Fig. 13. The least-square fit determines as the intersection with the abscissa axis. 49

50 Example 6 : Eigenfrequencies and eigenmode functions of a cantilever beam The special case with no axial force,, is considered. 50

51 (54) is inserted into the boundary conditions at as shown on Fig. 11b: (54) may then be reduced to: (67) is inserted into the mechanical boundary conditions at : 51

52 From (55): 52

53 From the first equation of (68): 53

54 Example 7 : Eigenfrequencies and eigenmode functions of a free-free beam 54

55 The special case with no axial force,, is considered. The eigenvalue problem follows from (51), (54), (55) and Fig. 11c: (72) is fulfilled for the rigid body modes and for. Elastic modes are given by Eq. (54) with. Insertion of (54) in provides: which reduces (54) to: 55

56 Insertion of (74) into the boundary conditions provides: provides Next, follows from Eq. (55). The eigenmode functions become: 56

57 Orthogonal Property of Eigenmodes 57

58 Theorem: The eigenmode functions and to the eigenvalue problem (50) belonging to different circular eigenfrequencies and fulfill the orthogonality conditions: 58

59 where is the modal mass in the th eigenvibration defined by: (78) and (79) are proved in much the same way as for a discrete MDOF system, cf. Lecture 5, Eqs. (55-58). The eigenvalue problem (50) is formulated for and. The differential equations for and are multiplied by and, respectively, followed by integrations over the interval. Next, integration by parts is performed on the stiffness term to obtain integrals symmetric in and, and the mechanical boundary conditions in (50) are applied in the boundary terms. The orthogonally conditions then follows upon withdrawing of the equations. 59

60 Forced Vibrations of a Bernoulli-Euler Beam Element Guided by the superposition of separated solutions (19) the solution of the boundary and initial value problem (39) is searched on the form: As precious the coefficients are referred to as the undamped modal coordinates. These are obtained as solutions to the following uncoupled ordinary differential equations: where: 60

61 : th modal load. : th modal damping ratio. (82) is proved by insertion of (81) into the partial differential equation of (39). Next, the equation is multiplied by followed by an integration over the interval, and integration by part is performed on the stiffness terms. Use of the orthogonality properties as given by (78) and (79) then provides the result, assuming that similar orthogonality properties apply to the damping terms (modal decoupling). 61

62 The modal equations (82) have exactly the same form as the modal equations of motion for a discrete MDOF system, cf. Lecture 5, Eq. (70). The only difference is that (82) refers to a continuous system, and consequently contains infinite many modal coordinates. Although derived for a beam element, modal equations of exactly the same form can be derived for any continuous system of one, two or three dimension. One may say that the modal coordinate differential equations are structure independent. The specific dynamic system is only displayed indirectly via the modal parameters,, and. 62

63 Example 7: Simply supported homogeneous beam with a moving load 63

64 The bending stiffness, the mass per unit length and the distributed damping constant are constant along the beam. At the time a vehicle with the constant velocity and the weight is entering the bridge which is assumed to be at rest. The inertial force from the vertical motion of the vehicle is ignored, so is equal to the constant reaction from the vehicle on the bridge. The eigenmode function and the undamped angular eigenfrequencies are given as, cf. (61), (62): 64

65 The modal masses become, cf. (80): The modal damping ratios become, cf. (84): The dynamic load can formally be written as: 65

66 Upon insertion of (89) into (83) provides the following result for the modal loads: Because the bridge starts at rest the initial values related to (82) becomes: Then, the solution of (82) reads, cf. Lecture 3, Eq. (13): 66

67 The integral in (92) can be evaluated analytically. At least 40 terms need to be retained in the series solutions (81) to give a sufficiently accurate solution for the displacement mode. Even more modes need to be included, if the bending moment or the shear force is to be calculated. 67

68 Summary of Continuous System. This involves a continuous mass distribution. Elastic parameters are also continuously distributed. Vibrating string. Separation method. Non-dispersive wave propagation. Torsional vibration of rods. Same wave equation as for a vibrating string. Bernoulli-Euler beams. Non-dispersive wave propagation: beams and free-free beams.. Eigenfrequencies of simply supported beams, cantilever 68

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Stochastic Dynamics of SDOF Systems (cont.).

Stochastic Dynamics of SDOF Systems (cont.). Outline of Stochastic Dynamics of SDOF Systems (cont.). Weakly Stationary Response Processes. Equivalent White Noise Approximations. Gaussian Response Processes as Conditional Normal Distributions. Stochastic

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index Index A Admissible function, 163 Amplification factor, 36 Amplitude, 1, 22 Amplitude-modulated carrier, 630 Amplitude ratio, 36 Antinodes, 612 Approximate analytical methods, 647 Assumed modes method,

More information

Table of Contents. Preface... 13

Table of Contents. Preface... 13 Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Structural Dynamics Lecture 7. Outline of Lecture 7. Multi-Degree-of-Freedom Systems (cont.) System Reduction. Vibration due to Movable Supports.

Structural Dynamics Lecture 7. Outline of Lecture 7. Multi-Degree-of-Freedom Systems (cont.) System Reduction. Vibration due to Movable Supports. Outline of Multi-Degree-of-Freedom Systems (cont.) System Reduction. Truncated Modal Expansion with Quasi-Static Correction. Guyan Reduction. Vibration due to Movable Supports. Earthquake Excitations.

More information

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

STRUCTURAL DYNAMICS BASICS:

STRUCTURAL DYNAMICS BASICS: BASICS: STRUCTURAL DYNAMICS Real-life structures are subjected to loads which vary with time Except self weight of the structure, all other loads vary with time In many cases, this variation of the load

More information

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.) Outline of Single-Degree-of-Freedom Systems (cont.) Linear Viscous Damped Eigenvibrations. Logarithmic decrement. Response to Harmonic and Periodic Loads. 1 Single-Degreee-of-Freedom Systems (cont.). Linear

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass CIV 8/77 Chapter - /75 Introduction To discuss the dynamics of a single-degree-of freedom springmass system. To derive the finite element equations for the time-dependent stress analysis of the one-dimensional

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Codal Provisions IS 1893 (Part 1) 2002

Codal Provisions IS 1893 (Part 1) 2002 Abstract Codal Provisions IS 1893 (Part 1) 00 Paresh V. Patel Assistant Professor, Civil Engineering Department, Nirma Institute of Technology, Ahmedabad 38481 In this article codal provisions of IS 1893

More information

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load 1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load Nader Mohammadi 1, Mehrdad Nasirshoaibi 2 Department of Mechanical

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 1 FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS : : 0, 0 As demonstrated previously, the above Equation of Motion (free-vibration equation) has a solution

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian Advanced Vibrations Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian ahmadian@iust.ac.ir Distributed-Parameter Systems: Exact Solutions Relation between Discrete and Distributed

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

Introduction to Mechanical Vibration

Introduction to Mechanical Vibration 2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization Single-Degree-of-Freedom

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

VIBRATION PROBLEMS IN ENGINEERING

VIBRATION PROBLEMS IN ENGINEERING VIBRATION PROBLEMS IN ENGINEERING FIFTH EDITION W. WEAVER, JR. Professor Emeritus of Structural Engineering The Late S. P. TIMOSHENKO Professor Emeritus of Engineering Mechanics The Late D. H. YOUNG Professor

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

More information

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012 Lecture Slides Chapter 4 Deflection and Stiffness The McGraw-Hill Companies 2012 Chapter Outline Force vs Deflection Elasticity property of a material that enables it to regain its original configuration

More information

Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. C.1 Transverse Vibrations. Boundary-Value Problem

Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. C.1 Transverse Vibrations. Boundary-Value Problem Appendix C Modal Analysis of a Uniform Cantilever with a Tip Mass C.1 Transverse Vibrations The following analytical modal analysis is given for the linear transverse vibrations of an undamped Euler Bernoulli

More information

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices Outline in MDOF Systems Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano May 8, 014 Additional Today we will study the properties of structural matrices, that is the operators that

More information

Vibrations and Waves in Continuous Mechanical Systems

Vibrations and Waves in Continuous Mechanical Systems Vibrations and Waves in Continuous Mechanical Systems Peter Hagedorn TU Darmstadt, Germany Anirvan DasGupta IIT Kharagpur, India BICENTENNIAL John Wiley & Sons, Ltd Preface xi 1 Vibrations of strings and

More information

Vibration Dynamics and Control

Vibration Dynamics and Control Giancarlo Genta Vibration Dynamics and Control Spri ringer Contents Series Preface Preface Symbols vii ix xxi Introduction 1 I Dynamics of Linear, Time Invariant, Systems 23 1 Conservative Discrete Vibrating

More information

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3 M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We

More information

Chapter 4 Analysis of a cantilever

Chapter 4 Analysis of a cantilever Chapter 4 Analysis of a cantilever Before a complex structure is studied performing a seismic analysis, the behaviour of simpler ones should be fully understood. To achieve this knowledge we will start

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

Structural Matrices in MDOF Systems

Structural Matrices in MDOF Systems in MDOF Systems http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 9, 2016 Outline Additional Static Condensation

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

More information

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction 1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction Lesson Objectives: 1) List examples of MDOF structural systems and state assumptions of the idealizations. 2) Formulate the equation of motion

More information

ME 475 Modal Analysis of a Tapered Beam

ME 475 Modal Analysis of a Tapered Beam ME 475 Modal Analysis of a Tapered Beam Objectives: 1. To find the natural frequencies and mode shapes of a tapered beam using FEA.. To compare the FE solution to analytical solutions of the vibratory

More information

Module 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy

Module 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy The Lecture Contains: Torsion of Rods Torsional Energy This lecture is adopted from the following book 1. Theory of Elasticity, 3 rd edition by Landau and Lifshitz. Course of Theoretical Physics, vol-7

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Presented By: EAS 6939 Aerospace Structural Composites

Presented By: EAS 6939 Aerospace Structural Composites A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have

More information

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016 Prof. Dr. Eleni Chatzi Lecture 4-09. March, 2016 Fundamentals Overview Multiple DOF Systems State-space Formulation Eigenvalue Analysis The Mode Superposition Method The effect of Damping on Structural

More information

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR.

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. IBIKUNLE ROTIMI ADEDAYO SIMPLE HARMONIC MOTION. Introduction Consider

More information

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

This equation of motion may be solved either by differential equation method or by graphical method as discussed below: 2.15. Frequency of Under Damped Forced Vibrations Consider a system consisting of spring, mass and damper as shown in Fig. 22. Let the system is acted upon by an external periodic (i.e. simple harmonic)

More information

The sensitivity analysis of the translation and the rotation angle of the first-order mode shape of the joints in frame structures

The sensitivity analysis of the translation and the rotation angle of the first-order mode shape of the joints in frame structures The sensitivity analysis of the translation and the rotation angle of the first-order mode shape of the joints in frame structures Yi Chen Yuan 1, Lin Li 2, Hongping Zhu 3 School of Civil Engineering and

More information

Due Date 1 (for confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission): Friday May 14 at 5pm

Due Date 1 (for  confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission): Friday May 14 at 5pm ! ME345 Modeling and Simulation, Spring 2010 Case Study 3 Assigned: Friday April 16! Due Date 1 (for email confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission):

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody Lecture 27. THE COMPOUND PENDULUM Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody diagram The term compound is used to distinguish the present

More information

Dynamics of Structures

Dynamics of Structures Dynamics of Structures Elements of structural dynamics Roberto Tomasi 11.05.2017 Roberto Tomasi Dynamics of Structures 11.05.2017 1 / 22 Overview 1 SDOF system SDOF system Equation of motion Response spectrum

More information

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017 Program System for Machine Dynamics Abstract Version 5.0 November 2017 Ingenieur-Büro Klement Lerchenweg 2 D 65428 Rüsselsheim Phone +49/6142/55951 hd.klement@t-online.de What is MADYN? The program system

More information

Cork Institute of Technology. Summer 2007 Mechanics of Machines (Time: 3 Hours)

Cork Institute of Technology. Summer 2007 Mechanics of Machines (Time: 3 Hours) Cork Institute of Technology Bachelor of Engineering (Honours) in Mechanical Engineering- Award Instructions Answer FOUR questions. All questions carry equal marks. (NFQ Level 8) Summer 2007 Mechanics

More information

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

More information

Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF Section Properties and Bending Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

More information

Dynamic Stress Analysis of a Bus Systems

Dynamic Stress Analysis of a Bus Systems Dynamic Stress Analysis of a Bus Systems *H. S. Kim, # Y. S. Hwang, # H. S. Yoon Commercial Vehicle Engineering & Research Center Hyundai Motor Company 772-1, Changduk, Namyang, Whasung, Kyunggi-Do, Korea

More information

Reduction in number of dofs

Reduction in number of dofs Reduction in number of dofs Reduction in the number of dof to represent a structure reduces the size of matrices and, hence, computational cost. Because a subset of the original dof represent the whole

More information

Verification of assumptions in dynamics of lattice structures

Verification of assumptions in dynamics of lattice structures Verification of assumptions in dynamics of lattice structures B.Błachowski and W.Gutkowski Warsaw, Poland 37th SOLD MECHANCS CONFERENCE, Warsaw, Poland September 6 1, 21 Outline of presentation 1. Motivation

More information

Multi Degrees of Freedom Systems

Multi Degrees of Freedom Systems Multi Degrees of Freedom Systems MDOF s http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March 9, 07 Outline, a System

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

Aalto University School of Engineering

Aalto University School of Engineering Aalto University School of Engineering Kul-24.4120 Ship Structural Design (P) Lecture 8 - Local and Global Vibratory Response Kul-24.4120 Ship Structures Response Lecture 5: Tertiary Response: Bending

More information

Study & Analysis of A Cantilever Beam with Non-linear Parameters for Harmonic Response

Study & Analysis of A Cantilever Beam with Non-linear Parameters for Harmonic Response ISSN 2395-1621 Study & Analysis of A Cantilever Beam with Non-linear Parameters for Harmonic Response #1 Supriya D. Sankapal, #2 Arun V. Bhosale 1 sankpal.supriya88@gmail.com 2 arunbhosale@rediffmail.com

More information

JEPPIAAR ENGINEERING COLLEGE

JEPPIAAR ENGINEERING COLLEGE JEPPIAAR ENGINEERING COLLEGE Jeppiaar Nagar, Rajiv Gandhi Salai 600 119 DEPARTMENT OFMECHANICAL ENGINEERING QUESTION BANK VI SEMESTER ME6603 FINITE ELEMENT ANALYSIS Regulation 013 SUBJECT YEAR /SEM: III

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

Laboratory 4 Topic: Buckling

Laboratory 4 Topic: Buckling Laboratory 4 Topic: Buckling Objectives: To record the load-deflection response of a clamped-clamped column. To identify, from the recorded response, the collapse load of the column. Introduction: Buckling

More information

SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES

SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES 2010/2 PAGES 1 8 RECEIVED 21. 9. 2009 ACCEPTED 20. 1. 2010 Y. KOLEKOVÁ, M. PETRONIJEVIĆ, G. SCHMID SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES ABSTRACT

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

EMA 545 Final Exam - Prof. M. S. Allen Spring 2011

EMA 545 Final Exam - Prof. M. S. Allen Spring 2011 EMA 545 Final Exam - Prof. M. S. Allen Spring 2011 Honor Pledge: On my honor, I pledge that this exam represents my own work, and that I have neither given nor received inappropriate aid in the preparation

More information

Part 1: Discrete systems

Part 1: Discrete systems Part 1: Discrete systems Introduction Single degree of freedom oscillator Convolution integral Beat phenomenon Multiple p degree of freedom discrete systems Eigenvalue problem Modal coordinates Damping

More information

GATE SOLUTIONS E N G I N E E R I N G

GATE SOLUTIONS E N G I N E E R I N G GATE SOLUTIONS C I V I L E N G I N E E R I N G From (1987-018) Office : F-16, (Lower Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-65064 Mobile : 81309090, 9711853908 E-mail: info@iesmasterpublications.com,

More information

A BEAM FINITE ELEMENT MODEL INCLUDING WARPING

A BEAM FINITE ELEMENT MODEL INCLUDING WARPING A BEAM FINITE ELEMENT MODEL INCLUDING WARPING Application to the dynamic and static analysis of bridge decks Diego Lisi Department of Civil Engineering of Instituto Superior Técnico, October 2011 ABSTRACT

More information

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

More information

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib Finite Element Analysis Lecture 1 Dr./ Ahmed Nagib April 30, 2016 Research and Development Mathematical Model Mathematical Model Mathematical Model Finite Element Analysis The linear equation of motion

More information

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon. Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

More information

NONLOCAL ANALYSIS OF DYNAMIC INSTABILITY OF MICRO-AND NANO-RODS

NONLOCAL ANALYSIS OF DYNAMIC INSTABILITY OF MICRO-AND NANO-RODS NONLOCAL ANALYSIS OF DYNAMIC INSTABILITY OF MICRO-AND NANO-RODS Andrzej Tylikowski, aty@simr.pw.edu.pl Warsaw University of Technology Narbutta 84-54 Warsaw Poland Abstract. The dynamic stability problem

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering Static & Dynamic Analysis of Structures A Physical Approach With Emphasis on Earthquake Engineering Edward LWilson Professor Emeritus of Civil Engineering University of California, Berkeley Fourth Edition

More information

CHAPTER 5. Beam Theory

CHAPTER 5. Beam Theory CHPTER 5. Beam Theory SangJoon Shin School of Mechanical and erospace Engineering Seoul National University ctive eroelasticity and Rotorcraft Lab. 5. The Euler-Bernoulli assumptions One of its dimensions

More information

D && 9.0 DYNAMIC ANALYSIS

D && 9.0 DYNAMIC ANALYSIS 9.0 DYNAMIC ANALYSIS Introduction When a structure has a loading which varies with time, it is reasonable to assume its response will also vary with time. In such cases, a dynamic analysis may have to

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

Deflection profile analysis of beams on two-parameter elastic subgrade

Deflection profile analysis of beams on two-parameter elastic subgrade 1(213) 263 282 Deflection profile analysis of beams on two-parameter elastic subgrade Abstract A procedure involving spectral Galerkin and integral transformation methods has been developed and applied

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 24 Oscillating Systems Fall 2016 Semester Prof. Matthew Jones 1 2 Oscillating Motion We have studied linear motion objects moving in straight lines at either constant

More information

Multi Linear Elastic and Plastic Link in SAP2000

Multi Linear Elastic and Plastic Link in SAP2000 26/01/2016 Marco Donà Multi Linear Elastic and Plastic Link in SAP2000 1 General principles Link object connects two joints, i and j, separated by length L, such that specialized structural behaviour may

More information

General Physics I. Lecture 12: Applications of Oscillatory Motion

General Physics I. Lecture 12: Applications of Oscillatory Motion General Physics I Lecture 1: Applications of Oscillatory Motion Outline The pendulum Comparing simple harmonic motion and uniform circular motion Damped oscillation and forced oscillation Vibration in

More information

2C9 Design for seismic and climate changes. Jiří Máca

2C9 Design for seismic and climate changes. Jiří Máca 2C9 Design for seismic and climate changes Jiří Máca List of lectures 1. Elements of seismology and seismicity I 2. Elements of seismology and seismicity II 3. Dynamic analysis of single-degree-of-freedom

More information

Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies

Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies F. D. Sorokin 1, Zhou Su 2 Bauman Moscow State Technical University, Moscow,

More information

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2 1) A two-story building frame is shown below. The mass of the frame is assumed to be lumped at the floor levels and the floor slabs are considered rigid. The floor masses and the story stiffnesses are

More information

Vibrations in Mechanical Systems

Vibrations in Mechanical Systems Maurice Roseau Vibrations in Mechanical Systems Analytical Methods and Applications With 112 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Contents Chapter I. Forced Vibrations

More information

9.1 Introduction to bifurcation of equilibrium and structural

9.1 Introduction to bifurcation of equilibrium and structural Module 9 Stability and Buckling Readings: BC Ch 14 earning Objectives Understand the basic concept of structural instability and bifurcation of equilibrium. Derive the basic buckling load of beams subject

More information

Analytical Strip Method for Thin Isotropic Cylindrical Shells

Analytical Strip Method for Thin Isotropic Cylindrical Shells IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 4 Ver. III (Jul. Aug. 2017), PP 24-38 www.iosrjournals.org Analytical Strip Method for

More information

Table of Contents. Preface...xvii. Part 1. Level

Table of Contents. Preface...xvii. Part 1. Level Preface...xvii Part 1. Level 1... 1 Chapter 1. The Basics of Linear Elastic Behavior... 3 1.1. Cohesion forces... 4 1.2. The notion of stress... 6 1.2.1. Definition... 6 1.2.2. Graphical representation...

More information

Effect of Mass Matrix Formulation Schemes on Dynamics of Structures

Effect of Mass Matrix Formulation Schemes on Dynamics of Structures Effect of Mass Matrix Formulation Schemes on Dynamics of Structures Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Sudeep Bosu Tata Consultancy Services GEDC, 185 LR,

More information

Generalized Single Degree of Freedom Systems

Generalized Single Degree of Freedom Systems Single Degree of Freedom http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March, 8 Outline Until now our were described

More information

Name: Fall 2014 CLOSED BOOK

Name: Fall 2014 CLOSED BOOK Name: Fall 2014 1. Rod AB with weight W = 40 lb is pinned at A to a vertical axle which rotates with constant angular velocity ω =15 rad/s. The rod position is maintained by a horizontal wire BC. Determine

More information

7.5 Elastic Buckling Columns and Buckling

7.5 Elastic Buckling Columns and Buckling 7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented

More information