March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE


 Archibald Chase
 1 years ago
 Views:
Transcription
1 Chapter 4 Deflection and Stiffness 1
2 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano s Theorem Deflection of Curved Members Statically Indeterminate Problems Compression Members General Long Columns with Central Loading IntermediateLength Columns with Central Loading Columns with Eccentric Loading Struts or Short Compression Members Suddenly Applied Loading
3 3 Force vs Deflection Elasticity:property of a material that enables it to regain its original configuration after deformation Spring: a mechanical element that exerts a force when deformed
4 4 Force vs Deflection Linear spring Nonlinear stiffening spring Nonlinear softening spring Fig. 4 1
5 5 Spring Rate Spring rate For linear springs, k constant is constant, spring
6 6 AxiallyLoaded Stiffness Total extension or contraction of a uniform bar in tension or compression Spring constant, with k = F/d
7 7 TorsionallyLoaded Stiffness Angular deflection (radians) of a uniform solid or hollow round bar subjected to a twisting moment T Torsional spring constant for round bar
8 8 Deflection Due to Bending Curvature of beam subjected to bending moment M Curvature of plane curve
9 9 Deflection Due to Bending Slope of beam at any point x along the length If slope is very small, denominator of Eq. 4.9 approaches unity:
10 10 Deflection Due to Bending Recall Eqs. 33 & 34
11 Example 41 For the beam in Fig. 4 2, the bending moment equation, for 0 x l, is Using Eq. (4 12), determine the equations for slope & deflection of the beam, slopes at ends, and max deflection. Fig. 4 2
12 12 HW Assignment #41 Problem 41 Due Monday 17/3/2014
13 13 Beam Deflection Methods 1. Superposition 2. Momentarea method 3. Numerical integration 4. Castigliano energy method 5. Finite element software
14 14 Beam Deflection by Superposition Table A9 Roark s Formulas for Stress & Strain
15 Example 42 Consider the uniformly loaded beam with a concentrated force as shown in Fig Using superposition, determine the reactions and deflection as a function of x. Fig. 4 3
16 Example 43 Consider the beam in Fig. 4 4a. Determine the deflection equations using superposition. Fig. 4 4
17 Example 44 Figure 4 5a shows a cantilever beam with an end load. Normally we model this problem by considering the left support as rigid. After testing the rigidity of the wall it was found that the translational stiffness of the wall was k t force per unit vertical deflection, and the rotational stiffness was k r moment per unit angular (radian) deflection (see Fig. 4 5b). Determine the deflection equation for the beam under the load F.
18 Example 44 Fig. 4 5
19 19 HW Assignment #42 Problems: 4.10, 4.14, 4.41 Due Wednesday 19/3/2014
20 20 Strain Energy External work done on elastic member while deforming it is transformed into strain energy, or potential energy. Strain energy = average force deflection
21 21 Some Common Strain Energy Formulas Axial loading, k = AE/l from Eq. (44), Torsional loading, k = GJ/l from Eq. (47)
22 22 Some Common Strain Energy Formulas Direct shear loading, Bending loading,
23 23 Some Common Strain Energy Formulas Transverse shear loading, C = modifier dependent on xsectional shape
24 24 Some Common Strain Energy Formulas Table 4 1: StrainEnergy Correction Factors for Transverse Shear
25 Example 48 A cantilever beam with a round cross section has a concentrated load F at the end, as shown in Fig. 4 9a. Find the strain energy in the beam. Fig. 4 9
26 26 Castigliano s Theorem Forces act on elastic systems subject to small displacements Displacement corresponding to any force along its direction = partial derivative of total strain energy wrt force For rotational displacement, in radians,
27 Example 49 The cantilever of Ex. 4 8 is a carbon steel bar 10 in long with a 1in diameter and is loaded by a force F = 100 lbf. a. Find max deflection using Castigliano s theorem, including that due to shear. b. What error is introduced if shear is neglected? Fig. 4 9
28 28 Utilizing a Fictitious Force Apply a fictitious force Q at the point, and in the direction, of the desired deflection. Set up the equation for total strain energy including energy due to Q. Take derivative of total strain energy wrt Q Set Q to zero
29 29 Finding Deflection Without Finding Energy Partial derivative is moved inside the integral. For example, for bending,
30 Common Deflection Equations
31 Example 410 Using Castigliano s method, determine the deflections of points A and B due to the force F applied at the end of the step shaft shown in Fig The second area moments for sections AB and BC are I 1 and 2I 1, respectively. Fig. 4 10
32 Example 411 For the wire form of diameter d shown in Fig. 4 11a, determine the deflection of point B in the direction of the applied force F (neglect the effect of transverse shear). Fig. 4 11
33 Example 411
34 34 HW Assignment #43 Problems: 4.67, 4.70 Due Saturday 22/3/2014
35 35 Deflection of Curved Members Four strain energy terms due to: 1. Bending moment M 2. Axial force F q 3. Bending moment due to F q 4. Transverse shear F r
36 36 Deflection of Curved Members Strain energy due to bending moment M r n = radius of neutral axis
37 37 Deflection of Curved Members Strain energy due to axial force F q
38 38 Deflection of Curved Members Strain energy due to bending moment from F q
39 39 Deflection of Curved Members Strain energy due to transverse shear F r
40 40 Deflection of Curved Members Combining four energy terms Deflection by Castigliano s method
41 41 Deflection of Curved Members
42 42 Deflection of Curved Members
43 43 Deflection of Thin Curved Members R/h > 10, eccentricity is small Strain energies approximated with regular energy equations: Rdq dx As R increases, bending component dominates all other terms
44 Example 412 The cantilevered hook shown in Fig. 4 13a is formed from a round steel wire with a diameter of 2 mm. The hook dimensions are l = 40 & R = 50 mm. A force P of 1 N is applied at point C. Use Castigliano s theorem to estimate deflection at point D at the tip. Fig. 4 13
45 45 HW Assignment #44 Problems: 4.78 Due Monday 24/3/2014
46 46 Statically Indeterminate Problems Redundant supports: extra constraint supports A deflection equation is required for each redundant support.
47 47 Procedure 1 for Statically Indeterminate Problems 1. Choose redundant reactions 2. Write equations of static equilibrium for remaining reactions in terms of applied loads & redundant reactions. 3. Write deflection equations for points at locations of redundant reactions in terms of applied loads and redundant reactions. 4. Solve equilibrium & deflection equations
48 Example 414 The indeterminate beam 11 of Appendix Table A 9 is reproduced in Fig Determine the reactions using procedure 1. Fig. 4 16
49 49 Procedure 2 for Statically Indeterminate Problems 1. Write equations of static equilibrium in terms of applied loads & unknown restraint reactions. 2. Write deflection equation in terms of applied loads and unknown restraint reactions. 3. Apply boundary conditions to deflection equation consistent with restraints. 4. Solve the set of equations.
50 Example 415 The rods AD & CE shown in Fig. 4 17a each have a diameter of 10 mm. The second area moment of beam ABC is I = 62.5(10 3 ) mm 4. The modulus of elasticity of the material used for the rods and beam is E = 200 GPa. The threads at the ends of the rods are singlethreaded with a pitch of 1.5 mm. The nuts are first snugly fit with bar ABC horizontal. Next the nut at A is tightened one full turn. Determine the resulting tension in each rod and the deflections of points A and C.
51 Example 415 Fig. 4 17
52 52 HW Assignment #45 Problems: 4.95, 4.97 Due Wednesday 26/3/2014
53 53 Compression Members Column: A member loaded in compression either its length or eccentric loading causes it to experience more than pure compression
54 54 Compression Members Four categories of columns 1. Long columns with central loading 2. Intermediatelength columns with central loading 3. Columns with eccentric loading 4. Struts or short columns with eccentric loading
55 55 Long Columns with Central Loading When P reaches critical load, column becomes unstable & bending develops rapidly
56 56 Euler Column Formula Pinended column, Other end conditions: apply a constant C for each end condition
57 57 Recommended Values for End Condition Constant Table 42: EndCondition Constants for Euler Columns [to Be Used with Eq. (4 43)]
58 58 Long Columns with Central Loading I = Ak 2, Euler column formula becomes l/k = slenderness ratio, to classify columns according to length categories. P cr /A = critical unit load necessary to place the column in a condition of unstable equilibrium
59 Euler Curve 59 P cr /A vs l/k, with C = 1 gives curve PQR Fig. 4 19
60 60 Long Columns with Central Loading Vulnerability to failure near point Q Buckling is sudden & catastrophic, a conservative approach near Q is desired T is defined such that P cr /A = S y /2, giving
61 61 Condition for Use of Euler Equation (l/k) > (l/k) 1, use Euler equation (l/k) (l/k) 1, use a parabolic curve between S y & T
62 62 IntermediateLength Columns with Central Loading Intermediatelength columns, (l/k) (l/k) 1, use a parabolic curve between S y and T General form of parabola
63 63 IntermediateLength Columns with Central Loading If parabola starts at S y, then a = S y
64 64 Columns with Eccentric Loading M = P(e+y) d 2 y/dx 2 =M/EI Fig. 4 20
65 65 Columns with Eccentric Loading Boundary conditions: y = 0 at x = 0 and at x = l
66 66 Columns with Eccentric Loading At midspan where x = l/2
67 67 Columns with Eccentric Loading Max compressive stress: Substituting M max from Eq. (448)
68 68 Columns with Eccentric Loading Using S yc as the maximum value of s c, and solving for P/A, we obtain the secant column formula
69 69 Secant Column Formula ec/k 2 = eccentricity ratio Fig. 4 21
70 Example 416 Develop specific Euler equations for the sizes of columns having a. Round cross sections b. Rectangular cross sections
71 Example 417 Specify the diameter of a round column 1.5 m long that is to carry a maximum load estimated to be 22 kn. Use a design factor n d = 4 and consider the ends as pinned (rounded). The column material selected has a minimum yield strength of 500 MPa and a modulus of elasticity of 207 GPa.
72 Example 418 Repeat Ex for J. B. Johnson columns. (a) For round columns, Eq. (4 46) yields (b) For round columns, Eq. (4 46) yields
73 Example 419 Choose a set of dimensions for a rectangular link that is to carry a maximum compressive load of 5000 lbf. The material selected has a minimum yield strength of 75 kpsi and a modulus of elasticity E = 30 Mpsi. Use a design factor of 4 and an end condition constant C = 1 for buckling in the weakest direction, and design for a. a length of 15 in b. a length of 8 in with a minimum thickness of 0.5 in.
74 74 Struts or Short Compression Members Strut: short member loaded in compression If eccentricity exists, max stress is at B with axial compression and bending.
75 75 Struts or Short Compression Members Differs from secant equation in that it assumes small effect of bending deflection If bending deflection is limited to 1% of e, then from Eq. 444, the limiting slenderness ratio for strut is
76 Example 420 Figure 4 23a shows a workpiece clamped to a milling machine table by a bolt tightened to a tension of 2000 lbf. The clamp contact is offset from the centroidal axis of the strut by a distance e = 0.10 in, as shown in part b of the figure. The strut, or block, is steel, 1 in square and 4 in long, as shown. Determine the maximum compressive stress in the block.
77 Example 420 Fig. 4 23
78 78 HW Assignment #46 Problems: 4.107, Due Saturday 29/3/2014
79 79 Suddenly Applied Loading Weight falls from distance h and suddenly applies a load to a cantilever beam Find deflection and force applied to beam due to impact
80 80 Suddenly Applied Loading Abstract model considering beam as simple spring Table A9: beam 1, k= F/y =3EI/l 3 Assume beam to be massless, so no momentum transfer, just energy transfer Loss of potential energy from change of elevation is W(h + d)
81 81 Suddenly Applied Loading Increase in potential energy from compressing spring is kd 2 /2 Conservation of energy W(h + d) = kd 2 /2
82 82 Suddenly Applied Loading Maximum deflection Maximum force
Mechanical Design in Optical Engineering
OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:
More informationChapter 5 Elastic Strain, Deflection, and Stability 1. Elastic StressStrain Relationship
Chapter 5 Elastic Strain, Deflection, and Stability Elastic StressStrain Relationship A stress in the xdirection causes a strain in the xdirection by σ x also causes a strain in the ydirection & zdirection
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More informationModule 4 : Deflection of Structures Lecture 4 : Strain Energy Method
Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More informationReview of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis
uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More information7.5 Elastic Buckling Columns and Buckling
7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad 00 04 CIVIL ENGINEERING QUESTION BANK Course Name : STRENGTH OF MATERIALS II Course Code : A404 Class : II B. Tech II Semester Section
More informationUNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.
UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude
More informationCHAPTER 6 BENDING Part 1
Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER 6 BENDING Part 11 CHAPTER 6 Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and
More informationUNIT IV FLEXIBILTY AND STIFFNESS METHOD
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SAII (13A01505) Year & Sem: IIIB.Tech & ISem Course & Branch: B.Tech
More informationUnit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir
Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationMechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering
Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected
More informationIf the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.
1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a twodimensional structure and statically indeterminate reactions: Statically indeterminate structures
More informationCHAPTER 5 Statically Determinate Plane Trusses
CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse
More informationOnly for Reference Page 1 of 18
Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC  SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26122013 Subject
More informationChapter 2: Deflections of Structures
Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2
More informationCHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS
CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse
More information11 Locate the centroid of the plane area shown. 12 Determine the location of centroid of the composite area shown.
Chapter 1 Review of Mechanics of Materials 11 Locate the centroid of the plane area shown 650 mm 1000 mm 650 x 1 Determine the location of centroid of the composite area shown. 00 150 mm radius 00 mm
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationCHAPTER 6: Shearing Stresses in Beams
(130) CHAPTER 6: Shearing Stresses in Beams When a beam is in pure bending, the only stress resultants are the bending moments and the only stresses are the normal stresses acting on the cross sections.
More informationENCE 455 Design of Steel Structures. III. Compression Members
ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:
More informationBE Semester I ( ) Question Bank (MECHANICS OF SOLIDS)
BE Semester I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)
More informationShafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3
M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We
More information2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?
IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at
More informationTorsion Stresses in Tubes and Rods
Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is
More information14. *14.8 CASTIGLIANO S THEOREM
*14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by
More information6. Bending CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where
More informationMECHANICAL PROPERTIES OF SOLIDS
Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small nonzero constant value. 9. The maximum load a wire
More informationCHAPTER OBJECTIVES CHAPTER OUTLINE. 4. Axial Load
CHAPTER OBJECTIVES Determine deformation of axially loaded members Develop a method to find support reactions when it cannot be determined from euilibrium euations Analyze the effects of thermal stress
More informationMECE 3321: MECHANICS OF SOLIDS CHAPTER 5
MECE 3321: MECHANICS OF SOLIDS CHAPTER 5 SAMANTHA RAMIREZ TORSION Torque A moment that tends to twist a member about its longitudinal axis 1 TORSIONAL DEFORMATION OF A CIRCULAR SHAFT Assumption If the
More information7.4 The Elementary Beam Theory
7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be
More informationFIXED BEAMS IN BENDING
FIXED BEAMS IN BENDING INTRODUCTION Fixed or builtin beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported
More informationMECH 344/X Machine Element Design
1 MECH 344/X Machine Element Design Time: M 14:4517:30 Lecture 2 Contents of today's lecture Introduction to Static Stresses Axial, Shear and Torsional Loading Bending in Straight and Curved Beams Transverse
More informationEquilibrium of a Particle
ME 108  Statics Equilibrium of a Particle Chapter 3 Applications For a spool of given weight, what are the forces in cables AB and AC? Applications For a given weight of the lights, what are the forces
More informationMECE 3321 MECHANICS OF SOLIDS CHAPTER 3
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.
More informationComparison of Euler Theory with Experiment results
Comparison of Euler Theory with Experiment results Limitations of Euler's Theory : In practice the ideal conditions are never [ i.e. the strut is initially straight and the end load being applied axially
More informationExperiment Two (2) Torsional testing of Circular Shafts
Experiment Two (2) Torsional testing of Circular Shafts Introduction: Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines,
More information7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses
7 TRANSVERSE SHEAR Before we develop a relationship that describes the shearstress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within
More informationInitial Stress Calculations
Initial Stress Calculations The following are the initial hand stress calculations conducted during the early stages of the design process. Therefore, some of the material properties as well as dimensions
More informationChapter 5 Compression Member
Chapter 5 Compression Member This chapter starts with the behaviour of columns, general discussion of buckling, and determination of the axial load needed to buckle. Followed b the assumption of Euler
More informationCHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS
CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a crosssectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress
More informationIntroduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.
Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. BernoulliEuler Beams.
More informationChapter 7: Bending and Shear in Simple Beams
Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.
More informationMARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment.
Introduction Fundamentals of statics Applications of fundamentals of statics Friction Centroid & Moment of inertia Simple Stresses & Strain Stresses in Beam Torsion Principle Stresses DEPARTMENT OF CIVIL
More informationModule 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method
Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 8 The Force Method of Analysis: Beams Instructional Objectives After reading this chapter the student will be
More informationMechanics of Materials
Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics
More informationMECHANICS OF MATERIALS
CHTER MECHNICS OF MTERILS 10 Ferdinand. Beer E. Russell Johnston, Jr. Columns John T. DeWolf cture Notes: J. Walt Oler Texas Tech University 006 The McGrawHill Companies, Inc. ll rights reserved. Columns
More informationMECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola
MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the
More informationSTATICALLY INDETERMINATE STRUCTURES
STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal
More informationSECOND ENGINEER REG. III/2 APPLIED MECHANICS
SECOND ENGINEER REG. III/2 APPLIED MECHANICS LIST OF TOPICS Static s Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics A STATICS 1 Solves problems involving forces
More informationFlexure: Behavior and Nominal Strength of Beam Sections
4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kipin.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015
More informationInfluence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes
October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:
More informationMECE 3321 MECHANICS OF SOLIDS CHAPTER 1
MECE 3321 MECHANICS O SOLIDS CHAPTER 1 Samantha Ramirez, MSE WHAT IS MECHANICS O MATERIALS? Rigid Bodies Statics Dynamics Mechanics Deformable Bodies Solids/Mech. Of Materials luids 1 WHAT IS MECHANICS
More informationLecture 8: Flexibility Method. Example
ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and
More informationPLAT DAN CANGKANG (TKS 4219)
PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, twodimensional structural components of which
More informationBeam Bending Stresses and Shear Stress
Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance
More informationUNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SAII (13A01505) Year & Sem: IIIB.Tech & ISem Course & Branch: B.Tech
More informationFlexuralTorsional Buckling of General ColdFormed Steel Columns with Unequal Unbraced Lengths
Proceedings of the Annual Stability Conference Structural Stability Research Council San Antonio, Texas, March 2124, 2017 FlexuralTorsional Buckling of General ColdFormed Steel Columns with Unequal
More informationSeismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design
Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department
More informationBeams. Beams are structural members that offer resistance to bending due to applied load
Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Nonprismatic sections also possible Each crosssection dimension Length of member
More informationA concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0.
2011 earson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copyright laws as they currently 8 1. 3 1. concrete cylinder having a a diameter of of 6.00
More informationMaterials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.
Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie
More informationtwo structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS
APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture two structural analysis (statics & mechanics) Analysis 1 Structural Requirements strength serviceability
More informationStrength Of Materials/Mechanics of Solids
Table of Contents Stress, Strain, and Energy 1. Stress and Strain 2. Change in length 3. Determinate Structure  Both ends free 4. Indeterminate Structure  Both ends fixed 5. Composite Material of equal
More informationSERVICEABILITY OF BEAMS AND ONEWAY SLABS
CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach  Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONEWAY SLABS A. J. Clark School of Engineering Department of Civil
More informationChapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
More informationCHIEF ENGINEER REG III/2 APPLIED MECHANICS
CHIEF ENGINEER REG III/2 APPLIED MECHANICS LIST OF TOPICS A B C D E F G H I J Vector Representation Statics Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics Control
More informationAPPENDIX 1 MODEL CALCULATION OF VARIOUS CODES
163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n
More informationThe bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.
From inspection, it is assumed that the support moments at is zero and support moment at, 15 kn.m (negative because it causes compression at bottom at ) needs to be evaluated. pplying three Hence, only
More informationEE C245 ME C218 Introduction to MEMS Design
EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 16: Energy
More informationREVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002
REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental
More informationDES140: Designing for LateralTorsional Stability in Wood Members
DES140: Designing for LateralTorsional Stability in Wood embers Welcome to the Lateral Torsional Stability ecourse. 1 Outline LateralTorsional Buckling Basic Concept Design ethod Examples In this ecourse,
More informationSIMPLE STRESSES AND STRAINS
SIMPLE STRESSES ND STRINS Mechanics of Materials Mechanics of materials deals with the elastic behavior of materials and the stability of members. Mechanics of materials concepts are used to determine
More informationBasic Energy Principles in Stiffness Analysis
Basic Energy Principles in Stiffness Analysis StressStrain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting
More informationStrength of Material. Shear Strain. Dr. Attaullah Shah
Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume
More informationPresented By: EAS 6939 Aerospace Structural Composites
A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have
More informationTHE INFLUENCE OF THERMAL ACTIONS AND COMPLEX SUPPORT CONDITIONS ON THE MECHANICAL STATE OF SANDWICH STRUCTURE
Journal of Applied Mathematics and Computational Mechanics 013, 1(4), 131 THE INFLUENCE OF THERMAL ACTIONS AND COMPLEX SUPPORT CONDITIONS ON THE MECHANICAL STATE OF SANDWICH STRUCTURE Jolanta Błaszczuk
More informationTheory and Analysis of Structures
7 Theory and nalysis of Structures J.Y. Richard iew National University of Singapore N.E. Shanmugam National University of Singapore 7. Fundamental Principles oundary Conditions oads and Reactions Principle
More informationDetermine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.
E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct
More informationFailure interaction curves for combined loading involving torsion, bending, and axial loading
Failure interaction curves for combined loading involving torsion, bending, and axial loading W M Onsongo Many modern concrete structures such as elevated guideways are subjected to combined bending, torsion,
More informationEngineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati
Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Module 3 Lecture 6 Internal Forces Today, we will see analysis of structures part
More informationStructures. Shainal Sutaria
Structures ST Shainal Sutaria Student Number: 1059965 Wednesday, 14 th Jan, 011 Abstract An experiment to find the characteristics of flow under a sluice gate with a hydraulic jump, also known as a standing
More informationFinite Element Modelling with Plastic Hinges
01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated postyield behaviour in one or more degrees of freedom. Hinges only
More information4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support
4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between
More informationBOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG
BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana LilkovaMarkova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL
More information= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200
Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength
More informationLECTURE 14 Strength of a Bar in Transverse Bending. 1 Introduction. As we have seen, only normal stresses occur at cross sections of a rod in pure
V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 14 Strength of a Bar in Transverse Bending 1 ntroduction s we have seen, onl normal stresses occur at cross sections of a rod in pure bending. The corresponding
More informationNow we are going to use our free body analysis to look at Beam Bending (W3L1) Problems 17, F2002Q1, F2003Q1c
Now we are going to use our free body analysis to look at Beam Bending (WL1) Problems 17, F00Q1, F00Q1c One of the most useful applications of the free body analysis method is to be able to derive equations
More informationStructural Steelwork Eurocodes Development of A Transnational Approach
Structural Steelwork Eurocodes Development of A Transnational Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads
More informationRigid and Braced Frames
RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram
More informationCivil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7
Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...
More information4.MECHANICAL PROPERTIES OF MATERIALS
4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stressstrain diagram
More informationENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those studying
More informationDue Monday, September 14 th, 12:00 midnight
Due Monday, September 14 th, 1: midnight This homework is considering the analysis of plane and space (3D) trusses as discussed in class. A list of MatLab programs that were discussed in class is provided
More informationQuestion 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H
Question 1 (Problem 2.3 of rora s Introduction to Optimum Design): Design a beer mug, shown in fig, to hold as much beer as possible. The height and radius of the mug should be not more than 20 cm. The
More informationIndeterminate Analysis Force Method 1
Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to
More informationStatic Equilibrium; Elasticity & Fracture
Static Equilibrium; Elasticity & Fracture The Conditions for Equilibrium Statics is concerned with the calculation of the forces acting on and within structures that are in equilibrium. An object with
More information