Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic StressStrain Relationship


 Nora Bradley
 1 years ago
 Views:
Transcription
1 Chapter 5 Elastic Strain, Deflection, and Stability Elastic StressStrain Relationship A stress in the xdirection causes a strain in the xdirection by σ x also causes a strain in the ydirection & zdirection by Chapter 5 Elastic Strain, Deflection, and Stability 1
2 E Resulting Strain Each Direction Stress x y z σ x σ y σ z Chapter 5 Elastic Strain, Deflection, and Stability 2
3 Adding the columns to obtain the total strain in each direction ε x ε y ε z Shear strain γ xy, γ yz, γ zx Note: shear strain on a given plane is by the shear stresses on other planes. Generalized Hooke s Law Only elastic constants are needed for an material. G Chapter 5 Elastic Strain, Deflection, and Stability 3
4 Only two are independent elastic constant Pure shear stress Mohr s circle σ ε τ γ/2 ε 1 ε 2 from G τ/γ ε 3 γ Chapter 5 Elastic Strain, Deflection, and Stability 4
5 Example: 1. The stress that develops in the ydirection. 2. The strain in the zdirection. 3. The strain in the xdirection. 4. The stiffness E σ z / ε z in the zdireciton. Is this equal to E? ε y & σ x Chapter 5 Elastic Strain, Deflection, and Stability 5
6 1. ε y 0 σ y 2. ε z 3. ε x 4. E σ z / ε z Chapter 5 Elastic Strain, Deflection, and Stability 6
7 Volumetric Strain & Hydrostatic Stress Volume changes associated with. Shear strains cause only dv Since VLWH dv V ε v V dv ν 0. 5 ε ν > 0. 5 tensile stress decrease volume V Chapter 5 Elastic Strain, Deflection, and Stability 7
8 Hydrostatic stresses Invariant σ h σ v Volumetric strain hydrostatic stress Constant modulus B Chapter 5 Elastic Strain, Deflection, and Stability 8
9 Castigliano s Method Useful in computing elastic deflection and redundant reactions Deflection Figure 5.15 General load deflection curve for elastic range U U stored elastic energy is equal to times. du du Deflection, In general case, Chapter 5 Elastic Strain, Deflection, and Stability 9
10 Axial Loading Case U U δ U Sample problem 5.4 Chapter 5 Elastic Strain, Deflection, and Stability 10
11 Sample problem 5.4 con t. 1. M V Q M Px 2 valid only x 0 x L 2 2. U 3. U δ P Chapter 5 Elastic Strain, Deflection, and Stability 11
12 Problem 5.15 (page233) What are the angular and linear displacements of point A of Figure 5.15? Known: Figure P.15 is given. Find: Calculate the angular and linear displacements of point A. Chapter 5 Elastic Strain, Deflection, and Stability 12
13 Problem 5.19 (page 234) Figure 5.19 shows a steel shaft supported by selfaligning bearings and subjected to a uniformly distributed load. Using Castigliano s method, determine the required diameter d to limit the deflection to 0.2mm. Known: A steel shaft supported by selfaligning bearings is subjected to a uniformly distributed load. Find: Using Castigliano s Method, determine the required diameter, d, to limit the deflection to 0.2mm. Assumption: 1. The steel shaft remains in the elastic region. 2. The transverse shear deflection is negligible. Analysis: Chapter 5 Elastic Strain, Deflection, and Stability 13
14 Problem 5.23(page 235) In order to reduce the deflection of the Ibeam cantilever shown, a support is to be added at S. (a). What vertical force at S is needed to reduce the deflection at this point to zero? (b). What force is needed to cause an upward deflection at S of 5mm? (c). What can you say about the effect of these forces at S on the bending stresses at the point of beam attachment? Assumptions: 1. The beam remains elastic. 2. Transverse shear deflection is negligible. Analysis: Chapter 5 Elastic Strain, Deflection, and Stability 14
15 Redundant Reactions by Castigliano s Method Reduntant reaction: force or moment that is for equilibrium. As magnitude of a redundant reaction is varied, changes, But remains. Castigliano s theorem states that the associated with any reaction that can be varied without upsetting equilibrium. The deflection. Chapter 5 Elastic Strain, Deflection, and Stability 15
16 Sample Problem 5.9 Figure 5.22 Find: Determine the tension in the guy wire Assumption: Analysis: At point a Chapter 5 Elastic Strain, Deflection, and Stability 16
17 M Bending energy below point a 2 3 M u dy 0 2EI The horizontal deflection at point a δ 0 u F F Chapter 5 Elastic Strain, Deflection, and Stability 17
18 Euler Column Buckling Figure 5.24 B0 Q ρ cr xl, y0 Asin ρl 0 2 d y 2 dx M EI ρ 2 I Aρ S cr or S E cr Chapter 5 Elastic Strain, Deflection, and Stability 18
19 Le / p 10 S cr 0. 1 E Fig5.25 Loglog plot of Euler Eq (dimensionless, hence applies to all materials within their elastic range). Fig5.26 Euler column buckling curves illustrated for two values of E and S y. Chapter 5 Elastic Strain, Deflection, and Stability 19
20 Figure 5.27 Equivalent column lengths for various end conditions Figure 5.28 Euler and Johnson column curves illustrated for two valuses of E and S y Chapter 5 Elastic Strain, Deflection, and Stability 20
21 Secant formula for the loading, taking the into account. S cr Pcr A S y L 1+ ( ec )sec ( e 2 ) ρ ρ 4AE Where c denotes the distance from the neutral bending plane to the extreme fiber. P cr Chapter 5 Elastic Strain, Deflection, and Stability 21
22 Draft paper 1/2 Chapter 5 Elastic Strain, Deflection, and Stability 22
23 Draft paper 2/2 Chapter 5 Elastic Strain, Deflection, and Stability 23
Chapter 2: Deflections of Structures
Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2
More informationModule 4 : Deflection of Structures Lecture 4 : Strain Energy Method
Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationReview of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis
uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods
More information14. *14.8 CASTIGLIANO S THEOREM
*14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by
More informationExternal Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is
Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationEE C245 ME C218 Introduction to MEMS Design
EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 16: Energy
More informationJeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS
MECHANICS OF MATERIALS Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA Keywords: Solid mechanics, stress, strain, yield strength Contents 1. Introduction 2. Stress
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More informationSTATICALLY INDETERMINATE STRUCTURES
STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal
More informationCombined Stresses and Mohr s Circle. General Case of Combined Stresses. General Case of Combined Stresses con t. Twodimensional stress condition
Combined Stresses and Mohr s Circle Material in this lecture was taken from chapter 4 of General Case of Combined Stresses Twodimensional stress condition General Case of Combined Stresses con t The normal
More information2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?
IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at
More information7.4 The Elementary Beam Theory
7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be
More informationSeismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design
Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department
More information7.5 Elastic Buckling Columns and Buckling
7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented
More informationMaterials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.
Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie
More informationQuestion 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H
Question 1 (Problem 2.3 of rora s Introduction to Optimum Design): Design a beer mug, shown in fig, to hold as much beer as possible. The height and radius of the mug should be not more than 20 cm. The
More informationUNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.
UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude
More informationUnit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir
Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata
More informationstructural analysis Excessive beam deflection can be seen as a mode of failure.
Structure Analysis I Chapter 8 Deflections Introduction Calculation of deflections is an important part of structural analysis Excessive beam deflection can be seen as a mode of failure. Extensive glass
More informationIndeterminate Analysis Force Method 1
Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to
More informationMechanical Design in Optical Engineering
OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:
More informationBE Semester I ( ) Question Bank (MECHANICS OF SOLIDS)
BE Semester I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)
More informationStrain Transformation equations
Strain Transformation equations R. Chandramouli Associate DeanResearch SASTRA University, Thanjavur613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation
More informationChapter 7 FORCES IN BEAMS AND CABLES
hapter 7 FORES IN BEAMS AN ABLES onsider a straight twoforce member AB subjected at A and B to equal and opposite forces F and F directed along AB. utting the member AB at and drawing the freebody B
More informationREVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002
REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental
More informationDue Monday, September 14 th, 12:00 midnight
Due Monday, September 14 th, 1: midnight This homework is considering the analysis of plane and space (3D) trusses as discussed in class. A list of MatLab programs that were discussed in class is provided
More informationPresented By: EAS 6939 Aerospace Structural Composites
A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have
More informationMEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys
MEMS 029 Project 2 Assignment Design of a Shaft to Transmit Torque Between Two Pulleys Date: February 5, 206 Instructor: Dr. Stephen Ludwick Product Definition Shafts are incredibly important in order
More informationLecture 8: Flexibility Method. Example
ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationBeams. Beams are structural members that offer resistance to bending due to applied load
Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Nonprismatic sections also possible Each crosssection dimension Length of member
More informationENCE 455 Design of Steel Structures. III. Compression Members
ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:
More informationMechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total
Mechanics of Materials MENG 70 Fall 00 Eam Time allowed: 90min Name. Computer No. Q.(a) Q. (b) Q. Q. Q.4 Total Problem No. (a) [5Points] An air vessel is 500 mm average diameter and 0 mm thickness, the
More information7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses
7 TRANSVERSE SHEAR Before we develop a relationship that describes the shearstress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within
More informationStress analysis of a stepped bar
Stress analysis of a stepped bar Problem Find the stresses induced in the axially loaded stepped bar shown in Figure. The bar has crosssectional areas of A ) and A ) over the lengths l ) and l ), respectively.
More informationσ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit)
PROBLEM #1.1 (4 + 4 points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length
More informationML (B) The homogeneous state of stress for a metal part undergoing plastic deformation is K
CHAPTER STRENGTH OF MATERIALS YEAR 0 ONE MARK MCQ. MCQ. MCQ. A thin walled spherical shell is subjected to an internal pressure. If the radius of the shell is increased by % and the thickness is reduced
More informationChapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
More informationBOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG
BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana LilkovaMarkova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL
More informationMECE 3321 MECHANICS OF SOLIDS CHAPTER 3
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.
More informationCOURSE STE6289 Modern Materials and Computations (Moderne materialer og beregninger 7.5 stp.)
Narvik University College (Høgskolen i Narvik) EXAMINATION TASK COURSE STE6289 Modern Materials and Computations (Moderne materialer og beregninger 7.5 stp.) CLASS: Master students in Engineering Design
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad 00 04 CIVIL ENGINEERING QUESTION BANK Course Name : STRENGTH OF MATERIALS II Course Code : A404 Class : II B. Tech II Semester Section
More informationMECH 401 Mechanical Design Applications
MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (11708) Last time Introduction Units Reliability engineering
More informationStructures. Shainal Sutaria
Structures ST Shainal Sutaria Student Number: 1059965 Wednesday, 14 th Jan, 011 Abstract An experiment to find the characteristics of flow under a sluice gate with a hydraulic jump, also known as a standing
More informationEE C245 ME C218 Introduction to MEMS Design Fall 2010
EE C245 ME C218 Introduction to MEMS Design Fall 2010 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:
More informationStep 1: Mathematical Modeling
083 Mechanical Vibrations Lesson Vibration Analysis Procedure The analysis of a vibrating system usually involves four steps: mathematical modeling derivation of the governing uations solution of the uations
More informationMETHOD OF LEAST WORK
METHOD OF EAST WORK 91 METHOD OF EAST WORK CHAPTER TWO The method of least work is used for the analysis of statically indeterminate beams, frames and trusses. Indirect use of the Castigliano s nd theorem
More information6. Bending CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where
More informationStrength of Material. Shear Strain. Dr. Attaullah Shah
Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume
More informationShafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3
M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We
More informationBasic Energy Principles in Stiffness Analysis
Basic Energy Principles in Stiffness Analysis StressStrain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting
More information4.MECHANICAL PROPERTIES OF MATERIALS
4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stressstrain diagram
More informationFinite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module  01 Lecture  11
Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module  01 Lecture  11 Last class, what we did is, we looked at a method called superposition
More informationMATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?
MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition
More informationMECHANICS OF MATERIALS
CHTER MECHNICS OF MTERILS 10 Ferdinand. Beer E. Russell Johnston, Jr. Columns John T. DeWolf cture Notes: J. Walt Oler Texas Tech University 006 The McGrawHill Companies, Inc. ll rights reserved. Columns
More informationCIV E 205 Mechanics of Solids II. Course Notes
University of Waterloo Department of Civil Engineering CIV E 205 Mechanics of Solids II Instructor: Tarek Hegazi Room: CPH 2373 G, Ext. 2174 Email: tarek@uwaterloo.ca Course Web: www.civil.uwaterloo.ca/tarek/hegazy205.html
More informationDETAILED SYLLABUS FOR DISTANCE EDUCATION. Diploma. (Three Years Semester Scheme) Diploma in Architecture (DARC)
DETAILED SYLLABUS FOR DISTANCE EDUCATION Diploma (Three Years Semester Scheme) Diploma in Architecture (DARC) COURSE TITLE DURATION : Diploma in ARCHITECTURE (DARC) : 03 Years (Semester System) FOURTH
More informationChapter 5 Compression Member
Chapter 5 Compression Member This chapter starts with the behaviour of columns, general discussion of buckling, and determination of the axial load needed to buckle. Followed b the assumption of Euler
More informationDiscontinuous Distributions in Mechanics of Materials
Discontinuous Distributions in Mechanics of Materials J.E. Akin, Rice University 1. Introduction The study of the mechanics of materials continues to change slowly. The student needs to learn about software
More informationModule 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method
Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 8 The Force Method of Analysis: Beams Instructional Objectives After reading this chapter the student will be
More informationMechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering
Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected
More information2 Introduction to mechanics
21 Motivation Thermodynamic bodies are being characterized by two competing opposite phenomena, energy and entropy which some researchers in thermodynamics would classify as cause and chance or determinancy
More informationStrength Of Materials/Mechanics of Solids
Table of Contents Stress, Strain, and Energy 1. Stress and Strain 2. Change in length 3. Determinate Structure  Both ends free 4. Indeterminate Structure  Both ends fixed 5. Composite Material of equal
More information6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and
6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile
More informationME 323 Examination #2
ME 33 Eamination # SOUTION Novemer 14, 17 ROEM NO. 1 3 points ma. The cantilever eam D of the ending stiffness is sujected to a concentrated moment M at C. The eam is also supported y a roller at. Using
More informationFIXED BEAMS IN BENDING
FIXED BEAMS IN BENDING INTRODUCTION Fixed or builtin beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported
More informationMECHANICS OF MATERIALS. Analysis of Beams for Bending
MECHANICS OF MATERIALS Analysis of Beams for Bending By NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources Chapter Description Expected Outcomes Define the elastic deformation of an axially
More informationJob No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet
E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 35 N/mm 2 OK Yield strength of longitudinal steel, f y 460 N/mm 2 Yield
More informationContinuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms
Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive
More informationSERVICEABILITY OF BEAMS AND ONEWAY SLABS
CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach  Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONEWAY SLABS A. J. Clark School of Engineering Department of Civil
More informationANALYSIS OF STRAINS CONCEPT OF STRAIN
ANALYSIS OF STRAINS CONCEPT OF STRAIN Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will change in length. If the bar has an original length L and changes by an
More information4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support
4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between
More informationPLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder
16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders
More informationBone Tissue Mechanics
Bone Tissue Mechanics João Folgado Paulo R. Fernandes Instituto Superior Técnico, 2016 PART 1 and 2 Introduction The objective of this course is to study basic concepts on hard tissue mechanics. Hard tissue
More information2. Mechanics of Materials: Strain. 3. Hookes's Law
Mechanics of Materials Course: WB3413, Dredging Processes 1 Fundamental Theory Required for Sand, Clay and Rock Cutting 1. Mechanics of Materials: Stress 1. Introduction 2. Plane Stress and Coordinate
More informationChapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements
CIVL 7/8117 Chapter 12  Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness
More informationVerification Examples. FEMDesign. version
FEMDesign 6.0 FEMDesign version. 06 FEMDesign 6.0 StruSoft AB Visit the StruSoft website for company and FEMDesign information at www.strusoft.com Copyright 06 by StruSoft, all rights reserved. Trademarks
More informationAnalysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method
Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method V.M.F. Nascimento Departameto de ngenharia Mecânica TM, UFF, Rio de Janeiro
More informationStatic Equilibrium; Elasticity & Fracture
Static Equilibrium; Elasticity & Fracture The Conditions for Equilibrium Statics is concerned with the calculation of the forces acting on and within structures that are in equilibrium. An object with
More informationLecture 8 Viscoelasticity and Deformation
HW#5 Due 2/13 (Friday) Lab #1 Due 2/18 (Next Wednesday) For Friday Read: pg 130 168 (rest of Chpt. 4) 1 Poisson s Ratio, μ (pg. 115) Ratio of the strain in the direction perpendicular to the applied force
More informationThe CR Formulation: BE Plane Beam
6 The CR Formulation: BE Plane Beam 6 Chapter 6: THE CR FORMUATION: BE PANE BEAM TABE OF CONTENTS Page 6. Introduction..................... 6 4 6.2 CR Beam Kinematics................. 6 4 6.2. Coordinate
More informationME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS
ÇANKAYA UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT ME 202 STRENGTH OF MATERIALS SPRING 2014 Due Date: 1 ST Lecture Hour of Week 12 (02 May 2014) Quiz Date: 3 rd Lecture Hour of Week 12 (08 May 2014)
More informationSECOND ENGINEER REG. III/2 APPLIED MECHANICS
SECOND ENGINEER REG. III/2 APPLIED MECHANICS LIST OF TOPICS Static s Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics A STATICS 1 Solves problems involving forces
More informationChapter 7: Bending and Shear in Simple Beams
Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.
More informationChapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson
STRUCTURAL MECHANICS: CE203 Chapter 5 Torsion Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson Dr B. Achour & Dr Eng. K. Elkashif Civil Engineering Department, University
More informationStiffness Matrices, Spring and Bar Elements
CHAPTER Stiffness Matrices, Spring and Bar Elements. INTRODUCTION The primary characteristics of a finite element are embodied in the element stiffness matrix. For a structural finite element, the stiffness
More informationLab Exercise #3: Torsion
Lab Exercise #3: Prelab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round
More informationContinuum Mechanics. Continuum Mechanics and Constitutive Equations
Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform
More informationLecture 3 The Concept of Stress, Generalized Stresses and Equilibrium
Lecture 3 The Concept of Stress, Generalized Stresses and Equilibrium Problem 31: Cauchy s Stress Theorem Cauchy s stress theorem states that in a stress tensor field there is a traction vector t that
More informationFailure from static loading
Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable
More informationCHAPTER OBJECTIVES CHAPTER OUTLINE. 4. Axial Load
CHAPTER OBJECTIVES Determine deformation of axially loaded members Develop a method to find support reactions when it cannot be determined from euilibrium euations Analyze the effects of thermal stress
More informationTorsion Stresses in Tubes and Rods
Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is
More informationName (Print) ME Mechanics of Materials Exam # 3 Date: December 9, 2013 Time: 7:00 9:00 PM Location: EE 129 & EE170
Name (Print) (Last) (First) Instructions: ME 323  Mechanics of Materials Exam # 3 Date: December 9, 2013 Time: 7:00 9:00 PM Location: EE 129 & EE170 Circle your lecturer s name and your class meeting
More informationStress, Strain, Mohr s Circle
Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected
More informationHow materials work. Compression Tension Bending Torsion
Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons () B. Neutral charge, i.e., # electrons = #
More informationVirtual Work and Variational Principles
Virtual Work and Principles Mathematically, the structural analysis problem is a boundary value problem (BVP). Forces, displacements, stresses, and strains are connected and computed within the framework
More informationSOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.
SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. Find: Determine the value of the critical speed of rotation for the shaft. Schematic and
More information