Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson


 Bernadette Ray
 1 years ago
 Views:
Transcription
1 STRUCTURAL MECHANICS: CE203 Chapter 5 Torsion Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson Dr B. Achour & Dr Eng. K. Elkashif Civil Engineering Department, University of Hail, KSA (Spring 2011)
2 Torsional Deformation of a Circular Shaft Torque is a moment that twists a member about its longitudinal axis. If the angle of rotation is small, the length of the shaft and its radius will remain unchanged.
3 The Torsion Formula When material is linearelastic, Hooke s law applies. A linear variation in shear strain leads to a corresponding linear variation in shear stress along any radial line on the cross section.
4 The Torsion Formula If the shaft has a solid circular cross section, If a shaft has a tubular cross section,
5 Example 5.2 The solid shaft of radius c is subjected to a torque T. Find the fraction of T that is resisted by the material contained within the outer region of the shaft, which has an inner radius of c/2 and outer radius c. Solution: Stress in the shaft varies linearly, thus The torque on the ring (area) located within the lightershaded region is For the entire lightershaded area the torque is
6 Solution: Using the torsion formula to determine the maximum stress in the shaft, we have Substituting this into Eq. 1 yields
7 Example 5.3 The shaft is supported by two bearings and is subjected to three torques. Determine the shear stress developed at points A and B, located at section a a of the shaft. Solution: From the freebody diagram of the left segment, The polar moment of inertia for the shaft is Since point A is at ρ = c = 75 mm, Likewise for point B, at ρ =15 mm, we have
8 Power Transmission Power is defined as the work performed per unit of time. For a rotating shaft with a torque, the power is Since, the power equation is For shaft design, the design or geometric parameter is
9 Example 5.5 A solid steel shaft AB is to be used to transmit 3750 W from the motor M to which it is attached. If the shaft rotates at w =175 rpm and the steel has an allowable shear stress of allow τ allow =100 MPa, determine the required diameter of the shaft to the nearest mm. Solution: The torque on the shaft is Since As 2c = mm, select a shaft having a diameter of 22 mm.
10 Angle of Twist Integrating over the entire length L of the shaft, we have Φ = angle of twist T(x) = internal torque J(x) = shaft s polar moment of inertia G = shear modulus of elasticity for the material Assume material is homogeneous, G is constant, thus Sign convention is determined by right hand rule,
11 Example 5.8 The two solid steel shafts are coupled together using the meshed gears. Determine the angle of twist of end A of shaft AB when the torque 45 Nm is applied. Take G to be 80 GPa. Shaft AB is free to rotate within bearings E and F, whereas shaft DC is fixed at D. Each shaft has a diameter of 20 mm. Solution: From free body diagram, Angle of twist at C is Since the gears at the end of the shaft are in mesh,
12 Solution: Since the angle of twist of end A with respect to end B of shaft AB caused by the torque 45 Nm, The rotation of end A is therefore
13 Example 5.10 The tapered shaft is made of a material having a shear modulus G. Determine the angle of twist of its end B when subjected to the torque. Solution: From free body diagram, the internal torque is T. Thus, at x, For angle of twist,
14 Example 5.11 The solid steel shaft has a diameter of 20 mm. If it is subjected to the two torques, determine the reactions at the fixed supports A and B. Solution: By inspection of the freebody diagram, Since the ends of the shaft are fixed, Using the sign convention, Solving Eqs. 1 and 2 yields T A = 345 Nm and T B = 645 Nm.
15 Solid Noncircular Shafts The maximum shear stress and the angle of twist for solid noncircular shafts are tabulated as below:
16 Example 5.13 The 6061T6 aluminum shaft has a crosssectional area in the shape of an equilateral triangle. Determine the largest torque T that can be applied to the end of the shaft if the allowable shear stress is τ allow = 56 MPa and the angle of twist at its end is restricted to Φ allow = 0.02 rad. How much torque can be applied to a shaft of circular cross section made from the same amount of material? G al = 26 GPa. Solution: By inspection, the resultant internal torque at any cross section along the shaft s axis is also T. By comparison, the torque is limited due to the angle of twist.
17 Solution: For circular cross section, we have The limitations of stress and angle of twist then require Again, the angle of twist limits the applied torque.
18 ThinWalled Tubes Having Closed Cross Sections Shear flow q is the product of the tube s thickness and the average shear stress. Average shear stress for thinwalled tubes is For angle of twist, = average shear stress T = resultant internal torque at the cross section t = thickness of the tube A m = mean area enclosed boundary
19 Example 5.14 Calculate the average shear stress in a thinwalled tube having a circular cross section of mean radius r m and thickness t, which is subjected to a torque T. Also, what is the relative angle of twist if the tube has a length L? Solution: The mean area for the tube is For angle of twist,
20 Example 5.16 A square aluminum tube has the dimensions. Determine the average shear stress in the tube at point A if it is subjected to a torque of 85 Nm. Also compute the angle of twist due to this loading. Take G al = 26 GPa. Solution: By inspection, the internal resultant torque is T = 85 Nm. The shaded area is For average shear stress,
21 Solution: For angle of twist, Integral represents the length around the centreline boundary of the tube, thus
22 Stress Concentration Torsional stress concentration factor, K, is used to simplify complex stress analysis. The maximum shear stress is then determined from the equation
23 Example 5.18 The stepped shaft is supported by bearings at A and B. Determine the maximum stress in the shaft due to the applied torques. The fillet at the junction of each shaft has a radius of r = 6 mm. Solution: By inspection, moment equilibrium about the axis of the shaft is satisfied The stressconcentration factor can be determined by the graph using the geometry, Thus, K = 1.3 and maximum shear stress is
24 Inelastic Torsion Considering the shear stress acting on an element of area da located a distance p from the center of the shaft, Shear strain distribution over a radial line on a shaft is always linear. Perfectly plastic assumes the shaft will continue to twist with no increase in torque. It is called plastic torque.
25 Example 5.20 A solid circular shaft has a radius of 20 mm and length of 1.5 m. The material has an elastic plastic diagram as shown. Determine the torque needed to twist the shaft Φ = 0.6 rad. Solution: The maximum shear strain occurs at the surface of the shaft, The radius of the elastic core can be obtained by Based on the shear strain distribution, we have
[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21
[7] Torsion Page 1 of 21 [7] Torsion [7.1] Torsion [7.2] Statically Indeterminate Torsion [7] Torsion Page 2 of 21 [7.1] Torsion SHEAR STRAIN DUE TO TORSION 1) A shaft with a circular cross section is
More informationChapter 5: Torsion. 1. Torsional Deformation of a Circular Shaft 2. The Torsion Formula 3. Power Transmission 4. Angle of Twist CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Chapter 5: Torsion Discuss effects of applying torsional loading to a long straight member (shaft or tube) Determine stress distribution within the member under torsional load Determine
More informationStress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy
Stress Analysis Lecture 3 ME 276 Spring 20172018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress
More informationChapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd
Chapter Objectives To determine the torsional deformation of a perfectly elastic circular shaft. To determine the support reactions when these reactions cannot be determined solely from the moment equilibrium
More informationMECE 3321: MECHANICS OF SOLIDS CHAPTER 5
MECE 3321: MECHANICS OF SOLIDS CHAPTER 5 SAMANTHA RAMIREZ TORSION Torque A moment that tends to twist a member about its longitudinal axis 1 TORSIONAL DEFORMATION OF A CIRCULAR SHAFT Assumption If the
More informationMechanical Design in Optical Engineering
Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded
More informationCIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion
CIVL222 STRENGTH OF MATERIALS Chapter 6 Torsion Definition Torque is a moment that tends to twist a member about its longitudinal axis. Slender members subjected to a twisting load are said to be in torsion.
More informationMECHANICS OF MATERIALS
2009 The McGrawHill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes:
More informationTorsion of Shafts Learning objectives
Torsion of Shafts Shafts are structural members with length significantly greater than the largest crosssectional dimension used in transmitting torque from one plane to another. Learning objectives Understand
More information(48) CHAPTER 3: TORSION
(48) CHAPTER 3: TORSION Introduction: In this chapter structural members and machine parts that are in torsion will be considered. More specifically, you will analyze the stresses and strains in members
More informationThe example of shafts; a) Rotating Machinery; Propeller shaft, Drive shaft b) Structural Systems; Landing gear strut, Flap drive mechanism
TORSION OBJECTIVES: This chapter starts with torsion theory in the circular cross section followed by the behaviour of torsion member. The calculation of the stress stress and the angle of twist will be
More informationThe problem of transmitting a torque or rotary motion from one plane to another is frequently encountered in machine design.
CHAPER ORSION ORSION orsion refers to the twisting of a structural member when it is loaded by moments/torques that produce rotation about the longitudinal axis of the member he problem of transmitting
More informationTorsion Stresses in Tubes and Rods
Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is
More informationM. Vable Mechanics of Materials: Chapter 5. Torsion of Shafts
Torsion of Shafts Shafts are structural members with length significantly greater than the largest crosssectional dimension used in transmitting torque from one plane to another. Learning objectives Understand
More informationStructural Analysis I Chapter 4  Torsion TORSION
ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate
More information3.5 STRESS AND STRAIN IN PURE SHEAR. The next element is in a state of pure shear.
3.5 STRESS AND STRAIN IN PURE SHEAR The next element is in a state of pure shear. Fig. 320 Stresses acting on a stress element cut from a bar in torsion (pure shear) Stresses on inclined planes Fig. 321
More informationWORCESTER POLYTECHNIC INSTITUTE
WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT STRESS ANALYSIS ES2502, C 2012 Lecture 17: 10 February 2012 General information Instructor: Cosme Furlong HL151 (508) 8315126 cfurlong@wpi.edu
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion
EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion Introduction Stress and strain in components subjected to torque T Circular Crosssection shape Material Shaft design Noncircular
More informationMECHANICS OF MATERIALS
GE SI CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes: J. Walt Oler Texas Tech University Torsional Loads on Circular Shafts
More informationtwenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete
More informationMechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002
student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More informationStrength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture  18 Torsion  I
Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture  18 Torsion  I Welcome to the first lesson of Module 4 which is on Torsion
More informationSolution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is:
Problem 10.4 A prismatic bar with length L 6m and a circular cross section with diameter D 0.0 m is subjected to 0kN compressive forces at its ends. The length and diameter of the deformed bar are measured
More information4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support
4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between
More informationChapter 3. Load and Stress Analysis. Lecture Slides
Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.
More information7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment
7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment à It is more difficult to obtain an exact solution to this problem since the presence of the shear force means that
More informationMechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection
Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts
More informationTorsion. Click here to check the Animation. Introduction. Basic Assumptions. Assumptions. Torsion Formula. Stress Formula. Stresses on Inclined Planes
Torsion ntroduction Basic Assumtions Torsion Formula Stresses on nclined Planes Angle of Twist in Torsion Torsion of Circular Elastic Bars: Formulae Click here to check the Animation Assumtions Stress
More informationPDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics
Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.
More informationCHAPTER 6 BENDING Part 1
Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER 6 BENDING Part 11 CHAPTER 6 Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationTorsion of shafts with circular symmetry
orsion of shafts with circular symmetry Introduction Consider a uniform bar which is subject to a torque, eg through the action of two forces F separated by distance d, hence Fd orsion is the resultant
More informationMECHANICS LAB AM 317 EXP 4 TORSION OF CIRCULAR RODS
MECHANICS LAB AM 317 EXP 4 TORSION OF CIRCULAR RODS I. OBJECTIVES I.1 To become familiar with torsion tests of rods with solid circular cross sections. I.2 To observe the relation between shear stress
More informationAdvanced Structural Analysis EGF Section Properties and Bending
Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear
More informationExperiment Two (2) Torsional testing of Circular Shafts
Experiment Two (2) Torsional testing of Circular Shafts Introduction: Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines,
More informationHigh Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?
High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the
More informationFrequently Asked Questions
Frequently Asked Questions Why do we have to make the assumption that plane sections plane? How about bars with nonaxis symmetric cross section? The formulae derived look very similar to beam and axial
More informationSymmetric Bending of Beams
Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications
More informationRussell C. Hibbeler. Chapter 1: Stress
Russell C. Hibbeler Chapter 1: Stress Introduction Mechanics of materials is a study of the relationship between the external loads on a body and the intensity of the internal loads within the body. This
More informationAluminum shell. Brass core. 40 in
PROBLEM #1 (22 points) A solid brass core is connected to a hollow rod made of aluminum. Both are attached at each end to a rigid plate as shown in Fig. 1. The moduli of aluminum and brass are EA=11,000
More informationPES Institute of Technology
PES Institute of Technology Bangalore south campus, Bangalore5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject
More informationMECHANICS OF MATERIALS
STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental
More informationDownloaded from Downloaded from / 1
PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their
More informationSOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.
SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. Find: Determine the value of the critical speed of rotation for the shaft. Schematic and
More informationEngineering Science OUTCOME 1  TUTORIAL 4 COLUMNS
Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1  TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems
More informationThe Torsion Pendulum (One or two weights)
The Torsion Pendulum (One or two weights) Exercises I through V form the oneweight experiment. Exercises VI and VII, completed after Exercises I V, add one weight more. Preparatory Questions: 1. The
More informationTorsion. Torsion is a moment that twists/deforms a member about its longitudinal axis
Mehanis of Solids I Torsion Torsional loads on Cirular Shafts Torsion is a moment that twists/deforms a member about its longitudinal axis 1 Shearing Stresses due to Torque o Net of the internal shearing
More informationR13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PARTA
SET  1 II B. Tech I Semester Regular Examinations, Jan  2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (PartA and PartB)
More informationMAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.
It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the
More informationThis chapter is devoted to the study of torsion and of the stresses and deformations it causes. In the jet engine shown here, the central shaft links
his chapter is devoted to the study of torsion and of the stresses and deformations it causes. In the jet engine shown here, the central shaft links the components of the engine to develop the thrust that
More information2. Polar moment of inertia As stated above, the polar second moment of area, J is defined as. Sample copy
GATE PATHSHALA  91. Polar moment of inertia As stated above, the polar second moment of area, is defined as z π r dr 0 R r π R π D For a solid shaft π (6) QP 0 π d Solid shaft π d Hollow shaft, " ( do
More informationTorsion Part 1 J TL GJ. Machines that rely on torsion to function. Wind Power. Shear Stress, Angle of Twist,
Machines that rely on torsion to function Torque Wrench Motor Smart Car Maserati MC12 http://videos.howstuffworks.com/auto/carpartsvideosplaylist.htm#video30400 Steam Turbine Wind Power Gearbox Courtesy
More informationConsider an elastic spring as shown in the Fig.2.4. When the spring is slowly
.3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.
GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 Ns/m. To make the system
More informationSRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA
SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemedtobe University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92U3 dated 26 th May 1993 of the Govt. of
More informationROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring
ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force
More informationEnergy Considerations
Physics 42200 Waves & Oscillations Lecture 4 French, Chapter 3 Spring 2016 Semester Matthew Jones Energy Considerations The force in Hooke s law is = Potential energy can be used to describe conservative
More informationMembers Subjected to Torsional Loads
Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular
More informationQUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A
DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State
More information[5] Stress and Strain
[5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law
More informationME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam crosssec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.
ME 323  Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM12:20PM Ghosh 2:303:20PM Gonzalez 12:301:20PM Zhao 4:305:20PM M (x) y 20 kip ft 0.2
More informationTORSION TEST. Figure 1 Schematic view of torsion test
TORSION TEST 1. THE PURPOSE OF THE TEST The torsion test is performed for determining the properties of materials like shear modulus (G) and shear yield stress ( A ). 2. IDENTIFICATIONS: Shear modulus:
More informationStructural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature
Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment TiniusOlsen LoTorq Torsion Machine (figure
More informationBME 207 Introduction to Biomechanics Spring 2017
April 7, 2017 UNIVERSITY OF RHODE ISAND Department of Electrical, Computer and Biomedical Engineering BE 207 Introduction to Biomechanics Spring 2017 Homework 7 Problem 14.3 in the textbook. In addition
More informationNAME: Given Formulae: Law of Cosines: Law of Sines:
NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)
More informationSamantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2
Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force
More informationQUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS
QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,
More informationUNITI Introduction & Plane Stress and Plane Strain Analysis
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Advanced Solid Mechanics (18CE1002) Year
More informationPURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.
BENDING STRESS The effect of a bending moment applied to a crosssection of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally
More informationCritical Load columns buckling critical load
Buckling of Columns Buckling of Columns Critical Load Some member may be subjected to compressive loadings, and if these members are long enough to cause the member to deflect laterally or sideway. To
More informationThe University of Melbourne Engineering Mechanics
The University of Melbourne 436291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 922 from Hibbeler  Statics and Mechanics of Materials) A short
More information2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?
IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at
More informationENT345 Mechanical Components Design
1) LOAD AND STRESS ANALYSIS i. Principle stress ii. The maximum shear stress iii. The endurance strength of shaft. 1) Problem 371 A countershaft carrying twov belt pulleys is shown in the figure. Pulley
More informationSample Question Paper
Scheme I Sample Question Paper Program Name : Mechanical Engineering Program Group Program Code : AE/ME/PG/PT/FG Semester : Third Course Title : Strength of Materials Marks : 70 Time: 3 Hrs. Instructions:
More information3 Hours/100 Marks Seat No.
*17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full
More information2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft
Code No: 07A62102 R07 Set No. 2 III B.Tech II Semester Regular/Supplementary Examinations,May 2010 Aerospace Vehicle Structures II Aeronautical Engineering Time: 3 hours Max Marks: 80 Answer any FIVE
More informationUNITI STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2
UNITI STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm
More information6. Bending CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where
More informationExperiment: Torsion Test Expected Duration: 1.25 Hours
Course: Higher Diploma in Civil Engineering Unit: Structural Analysis I Experiment: Expected Duration: 1.25 Hours Objective: 1. To determine the shear modulus of the metal specimens. 2. To determine the
More information3D Stress Tensors. 3D Stress Tensors, Eigenvalues and Rotations
3D Stress Tensors 3D Stress Tensors, Eigenvalues and Rotations Recall that we can think of an n x n matrix Mij as a transformation matrix that transforms a vector xi to give a new vector yj (first index
More informationSub. Code:
Important Instructions to examiners: ) The answers should be examined by key words and not as wordtoword as given in the model answer scheme. ) The model answer and the answer written by candidate may
More information1. What would be the value of F1 to balance the system if F2=20N? 20cm T =? 20kg
1. What would be the value of F1 to balance the system if F2=20N? F2 5cm 20cm F1 (a) 3 N (b) 5 N (c) 4N (d) None of the above 2. The stress in a wire of diameter 2 mm, if a load of 100 gram is applied
More informationTORSION By Prof. Ahmed Amer
ORSION By Prof. Ahmed Amer orque wisting moments or torques are fores ating through distane so as to promote rotation. Example Using a wrenh to tighten a nut in a bolt. If the bolt, wrenh and fore are
More informationSSCJE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS
SSCJE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS Time Allowed:2 Hours Maximum Marks: 300 Attention: 1. Paper consists of Part A (Civil & Structural) Part B (Electrical) and Part C (Mechanical)
More informationSTANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius
MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen
More informationCOURSE TITLE : THEORY OF STRUCTURES I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6
COURSE TITLE : THEORY OF STRUCTURES I COURSE CODE : 0 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 TIME SCHEDULE Module Topics Period Moment of forces Support reactions Centre
More information,. 'UTIS. . i. Univcnity of Technology, Sydney TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE.
,. 'UTIS. i,i I Univcnity of Technology, Sydney TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER: COURSE: Tutor's name:
More informationMECHANICS OF MATERIALS Design of a Transmission Shaft
Design of a Transmission Shaft If power is transferred to and from the shaft by gears or sprocket wheels, the shaft is subjected to transverse loading as well as shear loading. Normal stresses due to transverse
More informationComb resonator design (2)
Lecture 6: Comb resonator design () Intro Intro. to Mechanics of Materials School of Electrical l Engineering i and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory
More informationStress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy
Stress Analysis Lecture 4 ME 76 Spring 017018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1  STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1  STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN 1 Static and dynamic forces Forces: definitions of: matter, mass, weight,
More informationMECHANICS OF SOLIDS TORSION  TUTORIAL 1. You should judge your progress by completing the self assessment exercises.
MECHANICS OF SOIS TORSION  TUTORIA 1 You should judge your progress by completing the self assessment exercises. On completion of this tutorial you should be able to do the following. erive the torsion
More informationUNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.
UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude
More informationLab Exercise #3: Torsion
Lab Exercise #3: Prelab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round
More information