# Laboratory 4 Bending Test of Materials

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective Bend or flexure testing is common in springs and brittle materials whose failure behaviours are linear such as concretes, stones, woods, plastics, glasses and ceramics. Other types of brittle materials such as powder metallurgy processed metals and materials are normally tested under a transverse flexure. Bend test is therefore suitable for evaluating strength of brittle materials where conduction of tensile test and interpretation of test result of material is difficult and sometimes impossible. After completion of this experiment, students should be able to. conduct 3-point bend test and investigate responses of materials when subjected to bending.2 determine flexural bend strength and elastic modulus of brittle material, and.3 analyse statistical nature of the test data and determine the Weibull modulus of the brittle materials 2. Materials and Equipment 2. Bend samples 2.2 Universal testing machine 2.3 Vernia calliper 3. Experimental Procedure 3. Bend test of materials 3.. Measure the width and thickness of the specimen. Mark on the locations where the load will be applied under three-point bending Place the sample carefully on to the stage of 3-point bending fixture of a universal testing machine. Make sure that the loading point is placed on to the marked location Carry out the bend test until failure takes place Construct the load-extension or load-deflection curve to calculate the flexural bend strength and elastic modulus of the specimen Repeat steps 3.. to 3..4 to conduct bend tests of other specimens. 3.7 Complete the Data Sheet, Table Statistical analysis of data 3.2. Conduct 3-point bend test of at least 5 glass specimens following steps 3.. to Note the breaking loads and then determine flexural bend strength (MOR) of these specimens.

2 3.2.3 Arrange them in descending order, rank them and determine their failure probability, P f Construct ln ( ln ( P f )) vs. ln (MOR) curve and determine Weibull constants m and Results 4. Display the test data in the Table. 4.2 Determine bend strength, elastic modulus and flexural strength (MOR) of the material. 4.3 Determine Weibul modulus of the material and comment on the degree of homogeneity of the material. 5. Discussion 5. Answer the following questions: (a) Give three examples of engineering applications that involve bending properties of materials. (b) What would you expect if the bending experiment has been carried out at elevated temperature? (c) Why does the presence of cracks in ductile materials present not much problem when compare with brittle material? (d) Explain why flexural strength of brittle material is always higher than tensile strength of the respective material. (e) (f) Determine the flexural strength of material testing using 4-point bend test. What conclusion can you draw from the Weibull modulus value of a test sample? (g) Compare and explain the Weibull modulus of cast and wrought aluminium alloys. 2

3 Table 3.: Data Sheet for Bend Test Sample identification Symbol Unit Value 2 3 Average Material Width of sample w mm Thickness of sample t mm Span length of sample L mm Fracture load P f kn Flexural Bend Strength (MOR) fb MPa Elastic Modulus E b GPa **Provide all calculations in separate pages. Signature with Date of the Instructor/Course Tutor 3

4 6.0 Theoretical Background 6. Introduction Preparing specimens from brittle materials, such as ceramics and glasses, for direct tension tests is difficult because of the problems involved in shaping and machining them to proper dimensions. Furthermore, such specimens are sensitive to surface defects and notches, and clamping brittle test specimens for testing is difficult. Also, improper alignment of the test specimen may result in a non-uniform stress distribution along the cross section and ultimate premature failure. A commonly used test method for measuring strength of brittle materials such as ceramics and glasses is the bend or flexure test. The test specimen can have a circular, square, or rectangular cross section and is uniform along the complete length. Such a specimen is much less expensive to fabricate than a tensile specimen. The test is conducted with the same kind of universal testing machine used for tensile and compressive strength measurements. The test specimen is supported at the ends and the load is applied either at the centre (threepoint loading) or at two positions (four-point loading), Fig. 6.. The longitudinal stresses in the specimens are tensile at their lower surfaces and compressive at their upper surfaces. The bend or flexural strength is defined as the maximum uniaxial tensile strength at failure and it is often referred to as the flexural strength or modulus of rupture (MOR). P P/2 P/2 L/2 P/2 L P/2 c = t/2 a P/2 L P/2 c = t/2 (a) Figure 6.: Two bend-test methods for brittle materials: (a) three-point bending; (b) four-point bending. The areas on the beams represent the bending moment diagrams. Note the region of constant maximum bending moment in (b); by contrast, the maximum bending moment occurs only at the centre of the specimen in (a). (b) Three-point testing is still an option, but four-point is preferred since more material is exposed to high stress. Also, because of the larger volume of material subjected to the same bending moment in Fig. 6.b, there is a higher probability that defects exist in this volume than in that in Fig. 6.a. Consequently, the four-point test gives a lower modulus of rupture than the three-point test. Figure 6.2 illustrates three-point bending arrangement which is capable of 80 bend angle for welded materials. 6.2 Three-Point Bend Test of Brittle Materials Considering a three point bend test of an elastic material, when the load P is applied at the mid-span of specimen in an x-y plane, stress distribution across the specimen thickness (t) is demonstrated in Fig The stress is essentially zero at the neutral axis N-N. Stresses in the y axis in the positive direction represent tensile stresses whereas stresses in the negative direction represent compressive stresses. Within the elastic range, brittle materials show a linear relationship of load and deflection where yielding occurs on a thin layer of the 4

5 Figure 6.2: Example of a weld plate bend tested under a three-point bend arrangement. specimen surface at the mid-span, Fig. 6.3a. This in turn leads to crack initiation which finally proceeds to specimen failure. Ductile materials however provide load-deflection curves which deviate from a linear relationship before failure takes place as opposed to those of brittle materials previously mentioned. Furthermore, it is also difficult to determine the beginning of yielding in this case. The stress distribution of a ductile material after yielding is given in Fig. 6.3b. Therefore, it can be seen that bend testing is not suitable for ductile materials due to difficulties in determining the yield point of the materials under bending and the obtained stress-strain curve in the elastic region may not be linear. The results obtained might not be validated. As a result, the bend test is therefore more appropriate for testing brittle materials whose stress-strain curves (Fig. 6.4) show its linear elastic behaviour just before the materials fail. P w x P/2 z y P/2 c c t/2 t/2 t/2 t/2 c c (a) Figure 6.3: Stress distributions in a rectangular bar when (a) elastically bended and (b) after yielding (b) 5

6 Figure 6.4: Flexural stress and flexural strain relationship Determination of flexural strength and elastic modulus For a beam in flexure, the maximum outer fibre stress from simple beam theory is: σ fb = M c I where M is the applied moment, c is the distance of the outer fibres (where the tensile force is acting) from the neutral axis, and I is the moment of inertia of the cross section about the neutral axis. It is assumed that the material behaviour is consistent with Hooke s law. For a rectangular test specimen I = bt 3 /2 and c = t/2, where b and t are the width and thickness of the specimen, respectively. With reference to 3-point a configurations, Fig. 6.4, the bending moment can be calculated as M = Replacing the values of M, c and I in eq.(6.) to obtain the flexural bending strength σ fb = P L 4 (6.) (6.2) 3PL 2bt 2 (6.3) From the experimental result, we can also obtain the elastic modulus of the material according to the linearelastic analysis. The deflection of the beam () from the centre as illustrated in Fig. 6.3 can be expressed as δ = PL 3 48 E I where I = wt 3 2. The elastic modulus (E B ) in the above equation can be calculated from the slope of the load-deflection curve (dp/d) in the linear region as follows (6.4) E B = L 3 48 I (dp dδ ) (6.5) E B = m L 3 (6.6) 4 w t 3 where m = (dp/d) is the slope of the tangent to the straight-line portion of the load-deflection beam. 6

7 6.3 The Weibull modulus The strength characterisation data of ceramics reported in terms of flexural bend strength or MOR is relatively inexpensive, straightforward and quick process. But it has severe limitation on the usability of MOR data: the measured strength varies significantly depending on the size of the specimen tested and whether it is loaded in three-point or four-point. Ceramics do not have uniquely defined failure strength. A given batch of ceramic specimens usually does not show a constant measured strength instead they show a range of strengths. The strength of ceramic is determined by a combination of two material parameters the toughness and the crack size. Since fracture toughness is not a variable, the variation in strength comes from a variation in the size of the largest defect (crack), Fig. 6.5, and the microstructure. There are lots of small defects, besides the largest ones, present in the material which are stressed but they do not reach their critical stress for propagation. Hence, it is necessary to use sample sets of ten or more specimens for even the simplest of goals such as determining an average strength for material ranking, material development, or materials specification purposes and a probabilistic approach is needed to interpret test data. Thus, it is also widely recognized that brittle material strengths are statistical in nature. Largest defect Figure 6.4: Flaw distribution in ceramic materials. When analysing the variation in the strength of ceramics, a particular function, due to the Swedish engineer Weibull, has been found to be useful. The simplest form of Weibull approach of characterising the flaw distribution is based on a weakest link model and it is analogous to the breaking of a length of chain. Failure occurs when the weakest link breaks. In a series of chains of a particular length, the weakest link in each length is of different strength and this controls the variation in strength. In ceramics, the links could represent small volumes of material containing a flaw and the weakest link is equivalent to the region with the largest flaw. Considering the two-parameter model, the probability of some length L of a link failing at a stress is P f = P s = exp { ( σ m ) } (6.7) σ 0 Where P f and P s are, respectively, the probability of failure and survival, 0 is a constant called the normalising stress, and m is a number, usually referred to as the Weibull modulus, which reflects the degree of variability in strength the higher the m is, the less variable is the strength. In this Weibull function, the Weibull modulus, m, defines the shape of the failure distribution curve. If m tends to be zero, the failure probability tends to become independent of the applied stress. If m =, the failure probability becomes a simple asymptotic exponential distribution. If m =, the distribution is a step function with P f = 0 when < 0, and P f = when > 0. P f P f m = m = 0 0 7

8 The Weibull modulus, m, also defines the width of the probability distribution, Fig If m is large, the distribution is narrow showing a small spread of failure strength, indicating high reliability of the material. If, on the other hand, m is small, the distribution is wide showing a large variation in the failure strength, indicating unreliability of the material. Poor ceramics have m in the range of 3 0, while good engineering ceramics have m in the range 0 40, and homogeneous metals and alloys have m well above 00. P f P f large m small m 0 0 A substantial number of test samples are required to determine accurate value for the Weibull slope m. Testing of only 0 samples can result in an error as high as ±40% in the m value. Over 80 samples are required to obtain 90% confidence in the m value Determining Weibull parameters from experimental data Taking natural logarithms in both sides of eq.(3.7), we get ln P s = ( σ m ) σ 0 (6.8) Taking natural logarithms again ln ( ln P s ) = m ln σ m ln σ 0 (6.9) ln { ln( P f )} = m ln σ m ln σ 0 (6.0) Thus plotting ln ( ln P s ) or ln ( ln ( P f ) as ordinate against ln as abscissa should give a straight line of the form y = mc + c. Here the gradient of the equation is the Weibull modulus m and the intercept to y-axis is the normalising stress 0 in the form of m ln 0. In the analysis of a number of strength data of a typical material through Weibull statistics, the plotting positions for abscissa are obvious but not the ordinate. The failure probability at a given stress is found by first ranking the failure stresses in order of strength. The failure probability of nth ranked sample from a total of N would be P f =( P s ) =n/(n+). The figure shown below is a Weibull plot of nine fracture strength data of abraded glass rods. The Weibull modulus of the sample is 4.76, indicating very poor reliability of the data. 8

### Chapter 7. Highlights:

Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

### UNIT I SIMPLE STRESSES AND STRAINS

Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

### Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

### Measurement of Bone Strength and Stiffness using 3-Point Bending

BME 315 Biomechanics, U. Wisconsin Adapted by R. Lakes from D. Thelen and C. Decker, 09, adapted from Lakes 06 Experimental Details I. Laboratory equipment The load frame that we will use to perform our

### Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

### Physical Properties Testing Technical Bulletin

Technical Bulletin MANUFACTURER Raven Lining Systems 13105 E. 61 st Street, Suite A Broken Arrow, OK 74012 (918) 615-0020 TENSILE TESTING OF PLASTICS ASTM D638, ISO 527 Tensile tests measure the force

### Flexure: Behavior and Nominal Strength of Beam Sections

4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

### TINIUS OLSEN Testing Machine Co., Inc.

Interpretation of Stress-Strain Curves and Mechanical Properties of Materials Tinius Olsen has prepared this general introduction to the interpretation of stress-strain curves for the benefit of those

### MECHANICAL PROPERTIES OF SOLIDS

Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small non-zero constant value. 9. The maximum load a wire

### Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

### 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

### Lab Exercise #3: Torsion

Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round

### CHAPTER -6- BENDING Part -1-

Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

### = 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200

Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength

### Fracture Behavior. Section

Section 6 Fracture Behavior In January 1943 the one-day old Liberty Ship, SS Schenectady, had just completed successful sea trials and returned to harbor in calm cool weather when... "Without warning and

### PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

### Journal of Composite Materials. Behaviour of hollow pultruded GFRP square beams with different shear span-to-depth ratios

Behaviour of hollow pultruded GFRP square beams with different shear span-to-depth ratios Journal: Manuscript ID: Draft Manuscript Type: Original Manuscript Date Submitted by the Author: n/a Complete List

### ASSESSMENT OF DYNAMICALLY LOADED CRACKS IN FILLETS

ASSESSMENT OF DNAMICALL LOADED CRACKS IN FILLETS Uwe Zencker, Linan Qiao, Bernhard Droste Federal Institute for Materials Research and Testing (BAM) 12200 Berlin, Germany e-mail: zencker@web.de Abstract

### structural analysis Excessive beam deflection can be seen as a mode of failure.

Structure Analysis I Chapter 8 Deflections Introduction Calculation of deflections is an important part of structural analysis Excessive beam deflection can be seen as a mode of failure. Extensive glass

### Unified Quiz M4 May 7, 2008 M - PORTION

9:00-10: 00 (last four digits) 32-141 Unified Quiz M4 May 7, 2008 M - PORTION Put the last four digits of your MIT ID # on each page of the exam. Read all questions carefully. Do all work on that question

### A PROTOCOL FOR DETERMINATION OF THE ADHESIVE FRACTURE TOUGHNESS OF FLEXIBLE LAMINATES BY PEEL TESTING: FIXED ARM AND T-PEEL METHODS

1 A PROTOCOL FOR DETERMINATION OF THE ADHESIVE FRACTURE TOUGHNESS OF FLEXIBLE LAMINATES BY PEEL TESTING: FIXED ARM AND T-PEEL METHODS An ESIS Protocol Revised June 2007, Nov 2010 D R Moore, J G Williams

### ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE MATERIAL

5 th International Conference Advanced Composite Materials Engineering COMAT 2014 16-17 October 2014, Braşov, Romania ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE

### Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

### MECH 344/X Machine Element Design

1 MECH 344/X Machine Element Design Time: M 14:45-17:30 Lecture 2 Contents of today's lecture Introduction to Static Stresses Axial, Shear and Torsional Loading Bending in Straight and Curved Beams Transverse

### D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s

D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s 1. Design of various types of riveted joints under different static loading conditions, eccentrically loaded riveted joints.

### Bridge deck modelling and design process for bridges

EU-Russia Regulatory Dialogue Construction Sector Subgroup 1 Bridge deck modelling and design process for bridges Application to a composite twin-girder bridge according to Eurocode 4 Laurence Davaine

### Basis of Structural Design

Basis of Structural Design Course 2 Structural action: cables and arches Course notes are available for download at http://www.ct.upt.ro/users/aurelstratan/ Structural action Structural action: the way

### Chapter kn m/kg Ans kn m/kg Ans. 187 kn m/kg Ans.

Chapter -1 From Tables A-0, A-1, A-, and A-4c, (a) UNS G1000 HR: S ut = 80 (55) MPa (kpsi), S yt = 10 (0) MPa (kpsi) Ans. (b) SAE 1050 CD: S ut = 690 (100) MPa (kpsi), S yt = 580 (84) MPa (kpsi) Ans. (c)

### A STUDY ON FATIGUE CRACK GROWTH IN CONCRETE IN THE PRE-PARIS REGION

VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8 J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds) A STUDY ON FATIGUE CRACK GROWTH IN CONCRETE

### TMHL TMHL (Del I, teori; 1 p.) SOLUTION I. II.. III. Fig. 1.1

TMHL6 204-08-30 (Del I, teori; p.). Fig.. shows three cases of sharp cracks in a sheet of metal. In all three cases, the sheet is assumed to be very large in comparison with the crack. Note the different

### Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total

Mechanics of Materials MENG 70 Fall 00 Eam Time allowed: 90min Name. Computer No. Q.(a) Q. (b) Q. Q. Q.4 Total Problem No. (a) [5Points] An air vessel is 500 mm average diameter and 0 mm thickness, the

### CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical

### Design of Glass Panes for Uniformly Distributed Loads

Design of Glass Panes for Uniformly Distributed Loads Miguel Rui Sousa de Almeida Mechanical Engineering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail : miguelrui412@gmail.com

### Fatigue Resistance of Angle Shape Shear Connector used in Steel-Concrete Composite Slab

Fatigue Resistance of Angle Shape Shear Connector used in Steel-Concrete Composite Slab A dissertation submitted to the Graduate School of Engineering of Nagoya University in partial fulfillment of the

### Autodesk Robot Structural Analysis Professional 2014 Design of fixed beam-to-column connection EN :2005/AC:2009

Autodesk Robot Structural Analysis Professional 2014 Design of fixed beam-to-column connection EN 1993-1-8:2005/AC:2009 Ratio 0,44 GENERAL Connection no.: 24 Connection name: Ligação 2 Structure node:

### SERVICEABILITY LIMIT STATE DESIGN

CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise

### 4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

### S HEAR S TRENGTH IN P RINCIPAL P LANE OF W OOD

S HEAR S TRENGTH IN P RINCIPAL P LANE OF W OOD By Jen Y. Liu 1 and Lester H. Floeter 2 ABSTRACT: In this study, the writers used Tsai and Wu s tensor polynomial theory to rederive a formula originally

### Pullout Tests of Geogrids Embedded in Non-cohesive Soil

Archives of Hydro-Engineering and Environmental Mechanics Vol. 51 (2004), No. 2, pp. 135 147 Pullout Tests of Geogrids Embedded in Non-cohesive Soil Angelika Duszyńska, Adam F. Bolt Gdansk University of

### 6.37 Determine the modulus of resilience for each of the following alloys:

6.37 Determine the modulus of resilience for each of the following alloys: Yield Strength Material MPa psi Steel alloy 550 80,000 Brass alloy 350 50,750 Aluminum alloy 50 36,50 Titanium alloy 800 116,000

### Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA

Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA Alexandre Hatt 1 1 Faurecia Automotive Seating, Simplified Limited Liability Company 1 Abstract / Summary Polymer thermoplastics

### DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1

PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 46, NO. 1, PP. 125 148 (2002) DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1 Nándor LIEGNER Department of Highway and Railway Engineering

### 1.050 Content overview Engineering Mechanics I Content overview. Selection of boundary conditions: Euler buckling.

.050 Content overview.050 Engineering Mechanics I Lecture 34 How things fail and how to avoid it Additional notes energy approach I. Dimensional analysis. On monsters, mice and mushrooms Lectures -3. Similarity

### UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE ED AMBIENTALE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA CIVILE

UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE ED AMBIENTALE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA CIVILE Tesi di laurea Magistrale in Ingegneria Civile Curriculum Strutture

FRACTURE TOUGHNESS OF ADHESIVE BONDED COMPOSITE JOINTS UNDER MIXED MODE LOADING. X. J. Gong, F. Hernandez, G. Verchery. ISAT - Institut Supérieur de l Automobile et des Transports, LRMA - Laboratoire de

### DETERMINATION OF EI FOR PULTRUDED GFRP SHEET PILE PANELS. Abstract

DETERMINATION OF EI FOR PULTRUDED GFRP SHEET PILE PANELS Yixin Shao, Cynthia Giroux and Zeid Bdeir McGill University Montreal, Quebec, Canada Abstract The flexural rigidity, EI, plays an especially important

### SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATEC-SP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS

### Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

### VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED - PART 2 )

VALIDATION of CoDA SOFTWARE for COMPOSITES SYNTHESIS AND PRELIMINARY DESIGN (or GETTING COMPOSITES USED - PART 2 ) Graham D Sims and William R Broughton Composites Design Data and Methods, Centre for Materials

### STRUCTURAL ANALYSIS CHAPTER 2. Introduction

CHAPTER 2 STRUCTURAL ANALYSIS Introduction The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify

### American Earthquake Joint System for Resistance to Earthquake-Induced Ground Deformation

American Earthquake Joint System for Resistance to Earthquake-Induced Ground Deformation Final Report Submitted to: Mr. David Drake American Cast Iron Pipe Company P.O. Box 2727 Birmingham, AL 35202 USA

### Elastic and Elastic-Plastic Behaviour of a Crack in a Residual Stress Field

Residual Stresses 2016: IC-10 Elastic and Elastic-Plastic Behaviour of a Crack in a Residual Stress Field Guiyi Wu a, Chris Aird b, David Smith and Martyn Pavier c* Department of Mechanical Engineering,

### Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected

### Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

### Parametric analysis and torsion design charts for axially restrained RC beams

Structural Engineering and Mechanics, Vol. 55, No. 1 (2015) 1-27 DOI: http://dx.doi.org/10.12989/sem.2015.55.1.001 1 Parametric analysis and torsion design charts for axially restrained RC beams Luís F.A.

### Reliable Test Results

Intelligent testing Johannes J.Bührle - Agenda Reliable test results are a fundamental and highly topical aspect of materials testing. Using suitable examples we would like to show you how we view this

### 999 TOWN & COUNTRY ROAD ORANGE, CALIFORNIA TITLE PUSHOVER ANALYSIS EXAMPLE BY R. MATTHEWS DATE 5/21/01

DESCRIPTION Nonlinear static (pushover) analysis will be performed on a railroad bridge bent using several methods to determine its ultimate lateral deflection capability. 1. SAP2000 Nonlinear with axial-moment

### Spherical Pressure Vessels

Spherical Pressure Vessels Pressure vessels are closed structures containing liquids or gases under essure. Examples include tanks, pipes, essurized cabins, etc. Shell structures : When essure vessels

### Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

### Chapter 8 BIAXIAL BENDING

Chapter 8 BAXAL BENDN 8.1 DEFNTON A cross section is subjected to biaial (oblique) bending if the normal (direct) stresses from section are reduced to two bending moments and. enerall oblique bending is

### The Effects of Hole-size and Environment on the Mechanical Behaviour of a Quasi-isotropic AS4/ Laminate in Tension, Compression and Bending

The Effects of Hole-size and Environment on the Mechanical Behaviour of a Quasi-isotropic AS4/350-6 Laminate in Tension, Compression and Bending Paul J. Callus Air Vehicles Division Defence Science and

### Elastic-Plastic Fracture Mechanics. Professor S. Suresh

Elastic-Plastic Fracture Mechanics Professor S. Suresh Elastic Plastic Fracture Previously, we have analyzed problems in which the plastic zone was small compared to the specimen dimensions (small scale

### Behavior and Modeling of Existing Reinforced Concrete Columns

Behavior and Modeling of Existing Reinforced Concrete Columns Kenneth J. Elwood University of British Columbia with contributions from Jose Pincheira, Univ of Wisconsin John Wallace, UCLA Questions? What

### BME 207 Introduction to Biomechanics Spring 2017

April 7, 2017 UNIVERSITY OF RHODE ISAND Department of Electrical, Computer and Biomedical Engineering BE 207 Introduction to Biomechanics Spring 2017 Homework 7 Problem 14.3 in the textbook. In addition

### MECHANICS OF SOLIDS Credit Hours: 6

MECHANICS OF SOLIDS Credit Hours: 6 Teaching Scheme Theory Tutorials Practical Total Credit Hours/week 4 0 6 6 Marks 00 0 50 50 6 A. Objective of the Course: Objectives of introducing this subject at second

### Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H

Question 1 (Problem 2.3 of rora s Introduction to Optimum Design): Design a beer mug, shown in fig, to hold as much beer as possible. The height and radius of the mug should be not more than 20 cm. The

6 th International Conference Computational Mechanics and Virtual Engineering COMEC 15 15-16 October 15, Braşov, Romania COMPUER AIDED DESIGN IN CASE OF HE LAMINAED COMPOSIE MAERIALS Camelia Cerbu ransilvania

### Application of a non-local failure criterion to a crack in heterogeneous media S. Bavaglia*, S.E. Mikhailov*

Application of a non-local failure criterion to a crack in heterogeneous media S. Bavaglia*, S.E. Mikhailov* University of Perugia, Italy Email: mic@unipg.it ^Wessex Institute of Technology, Ashurst Lodge,

### EFFECT OF CONCRETE CRUSHING ON FLEXURAL STRENGTH OF STEEL-CONCRETE COMPOSITE GIRDERS

EFFECT OF CONCRETE CRUSHING ON FLEXURAL STRENGTH OF STEEL-CONCRETE COMPOSITE GIRDERS Vivek Kumar GUPTA 1, Yoshiaki OKUI 2, Naofumi INABA 3 and Masatsugu NAGAI 4 1 Member of JSCE, Lead Structural Engineer,

### Enhancing Prediction Accuracy In Sift Theory

18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department

### Charpy V-Notch Impact Testing

Charpy V-Notch Impact Testing ENGR45 Materials Science Laboratory Chad Philip Johnson Submitted: May 15 th 2013 Abstract The Charpy V-notch test is an engineering method that is frequently used to measure

### Modulus Of Elasticity And Poissons Ratio

And Poissons Ratio Free PDF ebook Download: And Poissons Ratio Download or Read Online ebook modulus of elasticity and poissons ratio in PDF Format From The Best User Guide Database ASTM C 469, the Standard

### The Influence of Discontinuities on Elastic and Mechanical Properties of Composite Materials Reinforced with Woven Carbon, Carbon-kevlar and Kevlar

The Influence of Discontinuities on Elastic and Mechanical Properties of Composite Materials Reinforced with Woven Carbon, Carbon-kevlar and Kevlar DUMITRU BOLCU 1 *, MIHAELA SAVA 2, ALIN DINITA 3, COSMIN

### OPTIMISING THE MECHANICAL CHARACTERISATION OF A RESILIENT INTERLAYER FOR THE USE IN TIMBER CON- STRUCTION

OPTIMISING THE MECHANICAL CHARACTERISATION OF A RESILIENT INTERLAYER FOR THE USE IN TIMBER CON- STRUCTION Luca Barbaresi, Federica Morandi, Juri Belcari, Andrea Zucchelli and Alice Speranza University

### Giorgio Mattei. 31 March 2016

Giorgio Mattei giorgio.mattei@centropiaggio.unipi.it 31 March 2016 Stress-Strain curve is the relationship between the stress and the strain exhibited by a given material. It is unique for each material

### Module 5. Flanged Beams Theory and Numerical Problems. Version 2 CE IIT, Kharagpur

Module 5 Flanged Beams Theory and Numerical Problems Lesson 10 Flanged Beams Theory Instructional Objectives: At the end of this lesson, the student should be able to: identify the regions where the beam

### Bending of Simply Supported Isotropic and Composite Laminate Plates

Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,

### Available online at ScienceDirect. Procedia Engineering 172 (2017 )

Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 172 (2017 ) 1093 1101 Modern Building Materials, Structures and Techniques, MBMST 2016 Iterative Methods of Beam-Structure Analysis

### Study of the Evolution of Elastoplastic Zone by Volumetric Method

International Journal of Mechanics and Applications 2015, 5(1): 1-9 DOI: 10.5923/j.mechanics.20150501.01 Study of the Evolution of Elastoplastic Zone by Volumetric Method M. Moussaoui 1,*, S. Meziani 2

### Elastic moduli: Overview and characterization methods

Technical Review ITC-ME/ATCP Elastic moduli: Overview and characterization methods ATCP Physical Engineering www.atcp-ndt.com Authors: Leiliane Cristina Cossolino (Cossolino LC) and Antônio Henrique Alves

### Effects of geometric and material parameters on failure modes of SC elements

Aalto University School of Engineering Department of Mechanical Engineering Vishesh Lohani Effects of geometric and material parameters on failure modes of SC elements Thesis submitted in partial fulfilment

### Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm

Intensity (a.u.) Intensity (a.u.) a Oxygen plasma b 6 cm 1mm 10mm Single-layer graphene sheet 14 cm 9 cm Flipped Si/SiO 2 Patterned chip Plasma-cleaned glass slides c d After 1 sec normal Oxygen plasma

### Theory and Analysis of Structures

7 Theory and nalysis of Structures J.Y. Richard iew National University of Singapore N.E. Shanmugam National University of Singapore 7. Fundamental Principles oundary Conditions oads and Reactions Principle

### Modeling of the Bending Stiffness of a Bimaterial Beam by the Approximation of One-Dimensional of Laminated Theory

. Flores-Domínguez Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS odeling of the Bending Stiffness of a Bimaterial Beam by the Approimation of One-Dimensional of Laminated

### ADVANCED DESIGN OF GLASS STRUCTURES

ADVANCED DESIGN OF GLASS STRUCTURES Lecture L13 Design of compressed members Viorel Ungureanu / Martina Eliášová European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and

### Chapter 1 Introduction- Concept of Stress

hapter 1 Introduction- oncept of Stress INTRODUTION Review of Statics xial Stress earing Stress Torsional Stress 14 6 ending Stress W W L Introduction 1-1 Shear Stress W W Stress and Strain L y y τ xy

### Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

### 6. NON-LINEAR PSEUDO-STATIC ANALYSIS OF ADOBE WALLS

6. NON-LINEAR PSEUDO-STATIC ANALYSIS OF ADOBE WALLS Blondet et al. [25] carried out a cyclic test on an adobe wall to reproduce its seismic response and damage pattern under in-plane loads. The displacement

### Residual Stresses in Multilayer Ceramic Capacitors: Measurement and Computation

Jaap M. J. den Toonder Mem. ASME e-mail: jaap.den.toonder@philips.com Philips Research Laboratories, Eindhoven, The Netherlands Christian W. Rademaker Philips Center for Industrial Technology, Eindhoven,

### System Capacity of Vintage Reinforced Concrete Moment Frame Culverts with No Overlay

DCT 252 System Capacity of Vintage Reinforced Concrete Moment Frame Culverts with No Overlay By Timothy Porter Thomas Schumacher August, 2015 Delaware Center for Transportation University of Delaware 355

### Strain sensors based on bragg gratings

IMEKO 20 th TC3, 3 rd TC16 and 1 st TC22 International Conference Cultivating metrological knowledge 27 th to 30 th November, 2007. Merida, Mexico. Strain sensors based on bragg gratings K. Haase Hottinger

### DELAMINATION CONTROL IN COMPOSITE BEAMS USING PIEZOELECTRIC ACTUATORS

DELAMINATION CONTROL IN COMPOSITE BEAMS USING PIEZOELECTRIC ACTUATORS L Iannucci 1, M S I Shaik Dawood 1,2,3, E Greenhalgh 1 and A K Ariffin 3 1 Aeronautics Department, Imperial College London, South Kensington

### ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

### 8.3 Design of Base Plate for Thickness

8.3 Design o Base Plate or Thickness 8.3.1 Design o base plate or thickness (Elastic Design) Upto this point, the chie concern has been about the concrete oundation, and methods o design have been proposed

### THE BENDING STIFFNESSES OF CORRUGATED BOARD

AMD-Vol. 145/MD-Vol. 36, Mechanics of Cellulosic Materials ASME 1992 THE BENDING STIFFNESSES OF CORRUGATED BOARD S. Luo and J. C. Suhling Department of Mechanical Engineering Auburn University Auburn,

### Finite Element Analysis of Composite Laminate By Using ABDH Matrix(Stiffness Matrix)

Finite Element Analysis of Composite Laminate By Using ABDH Matrix(Stiffness Matrix) Nikhil J. Chaudhari 1 Post Graduate Student Department of Mechanical Engineering Veermata Jijabai Technological Institute

### Design and Analysis of Progressive Tool

Design and Analysis of Progressive Tool Ch.Mastanamma 1, K.Prasada Rao 2,Dr. M.Venkateswara Rao 3 1. PG Student, Department of Mechanical Engineering, Bapatla Engineering College, Bapatla, Guntur, India