UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich


 Anthony Nash
 11 months ago
 Views:
Transcription
1 UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST NAME (printed): STUDENT NUMBER: EXAMINATION ROOM: SIGNATURE: Total: INSTRUCTIONS 1. The examination consists of 7 questions. Answer all seven questions. The exam is out of a total of 100 marks. The number of marks for each question is given in brackets. PRINT YOUR NAME AT THE TOP OF EACH PAGE. 2. This is a closed book exam. Calculators are permitted. A list of formulas will be provided separately. 3. SHOW YOUR WORK CLEARLY. Give final answers to 3 significant figures. 4. Your answers are to be given in the space below the question. Continuation sheets have been provided within the exam paper. In addition, the back of each page may be used as a continuation sheet if required.
2 ME 313 Final 2008 Name: Page 2 of 15 (15) 1. A block is initially stress free and then simultaneously subjected to a temperature increase of 50 C and a pressure of 50 MPa, as shown. The block has dimensions 0.24.m m m and is constrained from expanding in the y direction by two smooth rigid walls. The block is free to expand in the zdirection. Both the stress and strain fields are uniform and the block is made of a linear elastic, homogenous, isotropic material with Young s modulus E = 70 GPa, Poisson s ratio ν = 0.25, and thermal coefficient of expansion α.= / C. (a) Determine stresses σ x, σ y, and σ z and strains ε x, ε y, and ε z in the block. (b) Obtain expressions for displacements u and v in terms of x, y, and z. (The positive z axis comes out of the page.)
3 ME 313 Final 2008 Name: Page 3 of 15 Continuation Sheet  Problem 1
4 ME 313 Final 2008 Name: Page 4 of 15 (15) 2. Normal stresses distributed on the boundary of a 3 m by 3 m plate are shown in the figure. (The shearing stresses on the boundary are not shown.) Also, the shearing stress at every point in the plate is τ xy = 3x 2 + 7y 2 + 2x (where the numerical factors are assumed to have units such that τ xy is in megapascals). The plate is in a state of plane stress in the xy plane and all body forces are zero; i.e., B x = 0, B y = 0, and B z = 0. (a) Determine expressions for σ x and σ y within the plate. (b) Determine the principal stresses σ 1, σ 2, and σ 3 at the origin, O. (You are not required to find the principal directions.)
5 ME 313 Final 2008 Name: Page 5 of 15 Continuation Sheet Problem 2
6 ME 313 Final 2008 Name: Page 6 of 15 (15) 3. Triangle ABC is scribed on the surface of a member prior to loading. The interior angle at A is originally 90. Following application of the load, the displacement field is given by u = c xy + c 1 2 x x + c y c v = c + c y 3 with w = 0, and where c 1 = m 1, c 2 = m 1, c 3 = , c 4.= , c 5.= m 1, and c 6 = m, and x, y, u, and v are in meters. Assuming the field to be geometrically linear, determine the following changes due to the loading: (a) the percent change in the length of a line element along the ydirection at C; (b) the change in interior angle at corner A in degrees (clearly stating whether it is an increase or decrease in angle); and (c) the total change in angle (in degrees) of a line element at B which is oriented along line BC (clearly stating whether the change in angle is clockwise or counterclockwise).
7 ME 313 Final 2008 Name: Page 7 of 15 Continuation Sheet for Problem 3
8 ME 313 Final 2008 Name: Page 8 of 15 (15) 4. The cross section of a beam carries a bending moment M z = 1200 N m. The moments of inertia I y and I z have already been calculated, and are I y *=* mm 4 I z.= mm 4 where the origin of the yz coordinate system is at the centroid of the crosssection. Determine the bending stress σ x at the point B which has coordinates y = 45 mm, z = 45 mm.
9 ME 313 Final 2008 Name: Page 9 of 15. Continuation Sheet for Problem 4
10 ME 313 Final 2008 Name: Page 10 of 15 (15) 5. Using the cosine transformation law for stress (together with any appropriate sketches), derive the 2D eigenvalue equation (σ xx λ) n x + τ xy n y = 0. Also, give a physical explanation (in terms of stress) as to why, for each eigenvalue λ, the system of equations (σ xx λ) n x + τ xy n y = 0 has an infinity of solutions (n x, n y ). τ yx n x + (σ yy λ) n y = 0
11 ME 313 Final 2008 Name: Page 11 of 15 Continuation Sheet for Problem 5
12 ME 313 Final 2008 Name: Page 12 of 15 (10) 6. A beam has the cross section shown and is subjected to pure bending with a bending moment M z.= in lb. The y and z axes shown in the sketch have their origin at point C, the centroid of the cross section. (The xaxis is coming out of the page.) I yy, I zz, and I yz have been calculated to be I yy.= in 4, I zz = in 4, and I yz = 10.0 in 4. The beam is made of a material for which E.= psi and ν.= Determine the magnitude of the compensating moment, M y, that would be needed to constrain the beam so that point C deflects only in the y direction and not in the z direction.
13 ME 313 Final 2008 Name: Page 13 of 15 Continuation Sheet for Problem 6
14 ME 313 Final 2008 Name: Page 14 of 15 (15) 7. A concrete beam is reinforced by three steel rods as shown. The beam is placed in pure bending with a moment M = in lb. The concrete is very weak in tension and therefore it is assumed that the steel rods carry the entire tensile force below the neutral axis. (In this case, the neutral axis is defined as the set of points for which the bending strain is zero.) It is also assumed that the beam takes the usual shape in pure bending, where lines along the length of the beam (including the steel rods) become concentric arcs due to the bending moment. The concrete has a Young s modulus E c.= psi (in compression) and the steel has a Young s modulus E s.= psi. Each steel rod has a diameter d = in. Using fundamental equations and concepts from The Chart, determine the location of the neutral axis of the beam and calculate the compressive stress at the top of the beam (i.e., where the magnitude of the compressive stress is largest). Assume that each steel rod has a uniform axial stress field.
15 ME 313 Final 2008 Name: Page 15 of 15 Continuation Sheet for Problem 7 End of Exam
UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich
UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS LAST NAME (printed): FIRST NAME (printed): STUDENT
More informationIDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY
Spring 2006 Final Examination STUDENT S NAME (please print) STUDENT S SIGNATURE STUDENT NUMBER IDE 110 CLASS SECTION INSTRUCTOR S NAME Do not turn this page until instructed to start. Write your name on
More informationHomework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004
Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. 1. A beam is loaded as shown. The dimensions of the cross section appear in the insert. the figure. Draw a complete free body diagram showing an equivalent
More informationMechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002
student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.
D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having
More informationMAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.
It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the
More informationMechanical Properties of Materials
Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of
More informationStrength of Material. Shear Strain. Dr. Attaullah Shah
Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationBOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG
BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana LilkovaMarkova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL
More informationName (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM  Location: WTHR 200
Name (Print) (Last) (First) Instructions: ME 323  Mechanics of Materials Exam # 2 Date: Time: 8:00 10:00 PM  Location: WTHR 200 Circle your lecturer s name and your class meeting time. Koslowski Zhao
More informationI certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
NAME: ME 270 Fall 2012 Examination No. 3  Makeup Please review the following statement: Group No.: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
More informationLecture 8. Stress Strain in Multidimension
Lecture 8. Stress Strain in Multidimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]
More informationName :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CENEW)/SEM3/CE301/ SOLID MECHANICS
Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers
More informationPURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.
BENDING STRESS The effect of a bending moment applied to a crosssection of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally
More information[5] Stress and Strain
[5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law
More informationUsing the finite element method of structural analysis, determine displacements at nodes 1 and 2.
Question 1 A pinjointed plane frame, shown in Figure Q1, is fixed to rigid supports at nodes and 4 to prevent their nodal displacements. The frame is loaded at nodes 1 and by a horizontal and a vertical
More informationINTRODUCTION TO STRAIN
SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,
More informationCHAPTER 4: BENDING OF BEAMS
(74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are
More informationPart 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.
NAME CM 3505 Fall 06 Test 2 Part 1 is to be completed without notes, beam tables or a calculator. Part 2 is to be completed after turning in Part 1. DO NOT turn Part 2 over until you have completed and
More informationand F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points)
ME 270 3 rd Sample inal Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) IND: In your own words, please state Newton s Laws: 1 st Law = 2 nd Law = 3 rd Law = PROBLEM
More informationName (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM
Name (Print) (Last) (First) Instructions: ME 323  Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM Circle your lecturer s name and your class meeting time. Gonzalez Krousgrill
More informationME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam crosssec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.
ME 323  Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM12:20PM Ghosh 2:303:20PM Gonzalez 12:301:20PM Zhao 4:305:20PM M (x) y 20 kip ft 0.2
More informationSymmetric Bending of Beams
Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications
More informationME325 EXAM I (Sample)
ME35 EXAM I (Sample) NAME: NOTE: COSED BOOK, COSED NOTES. ONY A SINGE 8.5x" ORMUA SHEET IS AOWED. ADDITIONA INORMATION IS AVAIABE ON THE AST PAGE O THIS EXAM. DO YOUR WORK ON THE EXAM ONY (NO SCRATCH PAPER
More informationCIVIL DEPARTMENT MECHANICS OF STRUCTURES ASSIGNMENT NO 1. Brach: CE YEAR:
MECHANICS OF STRUCTURES ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes XX and YY of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine
More informationSN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam.
ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICS OF SOLIDS (21000) ASSIGNMENT 1 SIMPLE STRESSES AND STRAINS SN QUESTION YEAR MARK 1 State and prove the relationship
More informationSample Question Paper
Scheme I Sample Question Paper Program Name : Mechanical Engineering Program Group Program Code : AE/ME/PG/PT/FG Semester : Third Course Title : Strength of Materials Marks : 70 Time: 3 Hrs. Instructions:
More informationJUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER:
JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER: COURSE: Tutor's name: Tutorial class day & time: SPRING
More informationSamantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2
Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force
More informationThe University of Melbourne Engineering Mechanics
The University of Melbourne 436291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 922 from Hibbeler  Statics and Mechanics of Materials) A short
More informationAdvanced Structural Analysis EGF Section Properties and Bending
Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear
More informationFinite Element Method in Geotechnical Engineering
Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 58, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps
More informationPDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics
Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.
More informationSub. Code:
Important Instructions to examiners: ) The answers should be examined by key words and not as wordtoword as given in the model answer scheme. ) The model answer and the answer written by candidate may
More informationIf you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6.
Delft University of Technology Faculty of Civil Engineering and Geosciences Structural Mechanics Section Write your name and study number at the top righthand of your work. Exam CT4143 Shell Analysis
More informationIf the solution does not follow a logical thought process, it will be assumed in error.
Please indicate your group number (If applicable) Circle Your Instructor s Name and Section: MWF 8:309:20 AM Prof. Kai Ming Li MWF 2:303:20 PM Prof. Fabio Semperlotti MWF 9:3010:20 AM Prof. Jim Jones
More informationSEMM Mechanics PhD Preliminary Exam Spring Consider a twodimensional rigid motion, whose displacement field is given by
SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a twodimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e
More informationLevel 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method
9210203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached
More informationCONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS
Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical
More informationLab Exercise #5: Tension and Bending with Strain Gages
Lab Exercise #5: Tension and Bending with Strain Gages Prelab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material
More informationComposites Design and Analysis. Stress Strain Relationship
Composites Design and Analysis Stress Strain Relationship Composite design and analysis Laminate Theory Manufacturing Methods Materials Composite Materials Design / Analysis Engineer Design Guidelines
More information6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and
6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile
More information20. Rheology & Linear Elasticity
I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slidelava
More informationUNITI STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2
UNITI STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm
More informationME C85/CE C30 Fall, Introduction to Solid Mechanics ME C85/CE C30. Final Exam. Fall, 2013
Introduction to Solid Mechanics ME C85/CE C30 Fall, 2013 1. Leave an empty seat between you and the person (people) next to you. Unfortunately, there have been reports of cheating on the midterms, so we
More informationMECH 401 Mechanical Design Applications
MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (11708) Last time Introduction Units Reliability engineering
More informationVYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ APPLIED MECHANICS Study Support Leo Václavek Ostrava 2015 Title:Applied Mechanics Code: Author: doc. Ing.
More information2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?
IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at
More informationNomenclature. Length of the panel between the supports. Width of the panel between the supports/ width of the beam
omenclature a b c f h Length of the panel between the supports Width of the panel between the supports/ width of the beam Sandwich beam/ panel core thickness Thickness of the panel face sheet Sandwich
More informationNational Exams May 2015
National Exams May 2015 04BS6: Mechanics of Materials 3 hours duration Notes: If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear
More informationR13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PARTA
SET  1 II B. Tech I Semester Regular Examinations, Jan  2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (PartA and PartB)
More informationBE Semester I ( ) Question Bank (MECHANICS OF SOLIDS)
BE Semester I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)
More informationExample 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.
162 3. The linear 3D elasticity mathematical model The 3D elasticity model is of great importance, since it is our highest order hierarchical model assuming linear elastic behavior. Therefore, it provides
More information3D Elasticity Theory
3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.
More informationPlease review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
Group Number: Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Signature: INSTRUCTIONS Begin each problem
More informationGATE SOLUTIONS E N G I N E E R I N G
GATE SOLUTIONS C I V I L E N G I N E E R I N G From (1987018) Office : F16, (Lower Basement), Katwaria Sarai, New Delhi110016 Phone : 01165064 Mobile : 81309090, 9711853908 Email: info@iesmasterpublications.com,
More informationPurpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.
ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th inclass Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More informationMECHANICS OF MATERIALS
CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced
More informationNAME: Given Formulae: Law of Cosines: Law of Sines:
NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.
More information**********************************************************************
Department of Civil and Environmental Engineering School of Mining and Petroleum Engineering 333 Markin/CNRL Natural Resources Engineering Facility www.engineering.ualberta.ca/civil Tel: 780.492.4235
More informationOutline. Organization. Stresses in Beams
Stresses in Beams B the end of this lesson, ou should be able to: Calculate the maimum stress in a beam undergoing a bending moment 1 Outline Curvature Normal Strain Normal Stress Neutral is Moment of
More informationAluminum shell. Brass core. 40 in
PROBLEM #1 (22 points) A solid brass core is connected to a hollow rod made of aluminum. Both are attached at each end to a rigid plate as shown in Fig. 1. The moduli of aluminum and brass are EA=11,000
More informationModule 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur
Module Stresses in machine elements Lesson Compound stresses in machine parts Instructional Objectives t the end of this lesson, the student should be able to understand Elements of force system at a beam
More informationMechanics of Materials CIVL 3322 / MECH 3322
Mechanics of Materials CIVL 3322 / MECH 3322 2 3 4 5 6 7 8 9 10 A Quiz 11 A Quiz 12 A Quiz 13 A Quiz 14 A Quiz 15 A Quiz 16 In Statics, we spent most of our time looking at reactions at supports Two variations
More informationJeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS
MECHANICS OF MATERIALS Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA Keywords: Solid mechanics, stress, strain, yield strength Contents 1. Introduction 2. Stress
More informationEntrance exam Master Course
 1  Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points
More informationMechanics of Structure
S.Y. Diploma : Sem. III [CE/CS/CR/CV] Mechanics of Structure Time: Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1(a) Attempt any SIX of the following. [1] Q.1(a) Define moment of Inertia. State MI
More informationSamantha Ramirez, MSE
Samantha Ramirez, MSE Centroids The centroid of an area refers to the point that defines the geometric center for the area. In cases where the area has an axis of symmetry, the centroid will lie along
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationLecture 15 Strain and stress in beams
Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationPost Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method
9210220 Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method You should have the following for this examination one answer book scientific calculator No
More informationThis procedure covers the determination of the moment of inertia about the neutral axis.
327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the Tbeam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination
More informationCHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES
CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric
More informationA short review of continuum mechanics
A short review of continuum mechanics Professor Anette M. Karlsson, Department of Mechanical ngineering, UD September, 006 This is a short and arbitrary review of continuum mechanics. Most of this material
More informationEFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE OF A RECTANGULAR ELASTIC BODY MADE OF FGM
Proceedings of the International Conference on Mechanical Engineering 2007 (ICME2007) 2931 December 2007, Dhaka, Bangladesh ICME2007AM76 EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE
More informationMECHANICS OF MATERIALS Sample Problem 4.2
Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A castiron machine part is acted upon by a knm couple.
More information[8] Bending and Shear Loading of Beams
[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight
More informationStressStrain Behavior
StressStrain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.
More informationChapter 5 Elastic Strain, Deflection, and Stability 1. Elastic StressStrain Relationship
Chapter 5 Elastic Strain, Deflection, and Stability Elastic StressStrain Relationship A stress in the xdirection causes a strain in the xdirection by σ x also causes a strain in the ydirection & zdirection
More informationMechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection
Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts
More informationStress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy
Stress Analysis Lecture 4 ME 76 Spring 017018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a
More informationBending Load & Calibration Module
Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of
More informationDownloaded from Downloaded from / 1
PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their
More informationPractice Final Examination. Please initial the statement below to show that you have read it
EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use
More informationTwo Tier projects for students in ME 160 class
ME 160 Introduction to Finite Element Method Spring 2016 Topics for Term Projects by Teams of 2 Students Instructor: Tai Ran Hsu, Professor, Dept. of Mechanical engineering, San Jose State University,
More informationCIV 207 Winter For practice
CIV 07 Winter 009 Assignment #10 Friday, March 0 th Complete the first three questions. Submit your work to Box #5 on the th floor of the MacDonald building by 1 noon on Tuesday March 31 st. No late submissions
More information3 2 6 Solve the initial value problem u ( t) 3. a If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1
Math Problem a If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b True or false and why 1. if A is
More informationISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING
ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING QUESTION BANK FOR THE MECHANICS OF MATERIALSI 1. A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kn. If the modulus
More informationName (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2016 Time: 8:00 10:00 PM  Location: PHYS 114
Name (Print) (Last) (First) Instructions: ME 323  Mechanics of Materials Exam # 2 Date: March 29, 2016 Time: 8:00 10:00 PM  Location: PHYS 114 Circle your lecturer s name and your class meeting time.
More information1.050: Beam Elasticity (HW#9)
1050: Beam Elasticity (HW#9) MIT 1050 (Engineering Mechanics I) Fall 2007 Instructor: Markus J BUEHER Due: November 14, 2007 Team Building and Team Work: We strongly encourage you to form Homework teams
More informationProperties of Sections
ARCH 314 Structures I Test Primer Questions Dr.Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body
More informationProblem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323
Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine
More informationCOMPRESSION AND BENDING STIFFNESS OF FIBERREINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction
COMPRESSION AND BENDING STIFFNESS OF FIBERREINFORCED ELASTOMERIC BEARINGS HsiangChuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,
More informationMECE 3321 MECHANICS OF SOLIDS CHAPTER 3
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.
More informationChapter Two: Mechanical Properties of materials
Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material
More informationmportant nstructions to examiners: ) The answers should be examined by key words and not as wordtoword as given in the model answer scheme. ) The model answer and the answer written by candidate may
More informationSTRENGTH OF MATERIALSI. Unit1. Simple stresses and strains
STRENGTH OF MATERIALSI Unit1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between
More information