# SERVICEABILITY LIMIT STATE DESIGN

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise the tensions in the sections (σ) and the crack openings (w) that they cause, as applicable. Generally, both σ and w are calculated from the design actions and the combinations indicated in Chapter 3 for Limit Serviceability States. The stresses shall be obtained from the actions, as indicated in Chapter 5. The tensions, crack openings and other verifying criteria, shall be calculated in accordance with the requirements indicated in the following paragraphs Cracking due to perpendicular stresses Appearance of compression cracks In all persistent situations and in temporary situations with the least favourable combination of actions corresponding to the phase considered, the compressive stresses in the concrete shall satisfy the following: σ c 0.60 f ck, j σ c Compressive stress of the concrete in the verifying situation. f ck,j Assumed value in the design for characteristic strength at j days (age of the concrete and the phase considered) Decompression Limit State The calculations for the Decompression Limit State comprise verifying that under the combination of actions corresponding to the phase being studied, decompression does not occur in the concrete in any fibre in the section Cracking due to tension. Verifying criteria The general verifying of the Cracking Limit State due to tension comprises satisfying the following inequality: w k w max w k Characteristic crack opening. wmax Maximum crack opening defined in table This verification only needs to be undertaken if the stress in the most tensioned fibre exceeds the mean bending tensile strength, f ctm, fl in accordance with CHAPTER 11-1

2 Assessment of crack width The characteristic crack opening shall be calculated using the following expression: w k = β sm ε sm β Coefficient which relates the mean crack opening to the characteristic value and is equal to1.3 in the case of cracking caused by indirect actions only, and 1.7 in other cases. s m Median crack spacing expressed in mm. φ Ac,eficaz sm= 2 c +0,2 s +0,4 k1 As ε sm Mean elongation of reinforcements taking account of the collaboration of the concrete between cracks. 2 = σ s s 1- σ sr sm k 2 0,4 σ ε E s σ s E s c Cover of tensioned reinforcements. s Distance between longitudinal bars. If s > 15 Ø, s shall be taken to equal 15 Ø. In the case of beams reinforced with end bars, s shall be taken to = b/n, with b being the width of the beam. Coefficient representing the effect of the tension diagram in the section, with a value of: k 1 in which ε 1 and ε 2 are the maximum and minimum deformations calculated in the cracked section at the limits of the tensioned zone (figure a). PURE BENDING COMBINED TENSION PURE TENSION Figure a Ø A c,eficaz As σs Es K σ 2 sr Diameter of the thickest tensioned bar or equivalent diameter in the case of bundled bars. Area of concrete of the cover zone, defined in figure b, in which the tension bars effectively influence the crack opening. Total section of the reinforcements located in the area A c,eficaz. Service stress of the passive reinforcement in the cracked section hypothesis. Modulus of longitudinal deformation of the steel. Coefficient of value 1.0 in the case of non-repeating temporary load and 0.5 in other cases. Stress in the reinforcement in the cracked section at the moment when the concrete cracks, which is assumed to happen when the tensile stress in the most tensioned fibre in the concrete reaches a value of f ctm, fl (paragraph 39.1). CHAPTER 11-2

3 CASE 1 BEAMS WITH S 15 Φ CASE 2 BEAMS WITH S 15 Φ CASE 3 PLANE BEAMS, WALLS, SLABS WITH S>15 Φ Figure b In the case of members concreted against the ground, the normal cover corresponding to the exposure class, in accordance with table a, b, and c, may be adopted when calculating the crack width Limitation of cracking due to shear stress Generally, if the criteria in Article 44, Ultimate Limit State in Shear are satisfied, cracking will be controlled in service without the need for any additional verifications Limitation of cracking due to torsion Generally, if the criteria in Article 45, Ultimate Limit State in Torsion in linear elements are satisfied, cracking will be controlled in service without the need for any additional verifications. Article 50. Deformation Limit State 50.1 General considerations The Deformation Limit State shall be satisfied if the movements (deflections or rotations) in the structure or structural element are less than specific maximum limit values. The Deformation Limit State shall be verified in cases where deformation can cause the structure or structural element to be taken out of service for functional, aesthetic or other reasons. CHAPTER 11-3

4 Deformations shall be studied for service conditions which correspond, depending on the problem to be examined, in accordance with the combination criteria, set out in The total deformation produced in a concrete element is a sum of the various partial deformations that occur over time due to the loads that are applied, the creep and shrinkage of the concrete and the relaxation of the active reinforcements. Deflections shall be maintained within the limits set out by the specific regulations in force, or failing this, by the limits indicated in this Code. The designer shall therefore design the structure with sufficient rigidity, and in extreme cases, shall require that a building procedure is used that minimises the part of total deflection that could damage non-structural elements Elements subjected to pure or combined bending stress General method The most common calculation method for deflection comprises a step by step structural analysis over time, in accordance with the criteria in Article 25, in which for each instant, the deformations are calculated by double integration of the curves along the length of the member Simplified method This method applies to beams, reinforced concrete slabs and one-way slabs. The deflection shall be considered to comprise the sum of a temporary deflection and a time-dependent deflection, due to permanent loads Minimum depths Deflections will not need to be verified in beams and slabs in which the span/effective depth ratio of the element under study does not exceed the value indicated in table a. The slenderness ratios L/d shall be multiplied by 0.8 in beams or hollow core slabs comprising T-beams in which the ratio between the width of their flanges and webs exceeds 3. Table a L/d ratios in reinforced concrete beams and slabs subjected to simple bending STRUCTURAL SYSTEM L/d Simply supported beam Simply supported one or two way slab Beam 1 continuous at one end. One way slab 1,2 continuous on one side only. K Highly reinforced elements: p= 1.5% Slightly reinforced elements p=0.5% Beam 1 continuous at both ends. Continuous one way or two way 1,2 slab Edge and corner panels in flat slab on point supports Inner panels in flat slab on point supports Cantilever An end shall be considered continuous if the corresponding moment is 85% or m ore of the perfect embedding moment. 2 In one way slabs, the given slenderness values refer to the smaller span. 3 In slabs on point supports (columns), the slenderness values relate to the larger spans. CHAPTER 11-4

5 In the particular case of slabs comprising joists with spans of less than 7 m, and hollow core pre-stressed slabs with spans less than 12 m, where the imposed loads do not exceed 4 kn/m 2, no verification needs to be made as to whether the deflection satisfies the restriction of 50.1, if the total depth h is more than the minimum h mín given by: h mín = δ 1 δ 2 L / C δ 1 Factor which depends on the total load and which has the value of q / 7, with q being the total load in kn/m 2 ; δ2 ¼; Factor which has a value of (L/6) L The design span of the slab in m; C Coefficient whose value is taken from Table b: Table b C Coefficients Type of slab Type of load Type of span Isolated End Internal Reinforced beams With partitions or walls Roofs Pre-stressed breams With partitions or walls Roofs Pre-stressed hollow core slabs (*) With partitions or walls Roofs (*) Pre-stressed members designed so that the moment of cracking is not exceeded with the rare combination, Calculation of instantaneous deflection When calculating instantaneous deflections in cracked members of constant cross-section, in the absence of more rigorous methods, the following simplified method may be used at any construction stage: 1. The equivalent moment of inertia of a section is defined as the value I e obtained from: 3 3 M f M f I e = I b+ 1- I f I b M a M a M a M f f ctm,fl W lb l f b Maximum bending moment applied to the section until the instant when the deflection is calculated. Nominal cracking moment of the section, which is calculated using the following expression: M f = f ctm, fl W b Mean flexural tensile strength of the concrete, according to Strength modulus of the gross section relative to the end fibre tensioned. Moment of inertia of the gross section. Moment of inertia of the simply bent cracked section, which is obtained by disregarding the tensioned concrete zone and homogenising the areas of the active and passive reinforcements and multiplying these by the coefficient of equivalence. CHAPTER 11-5

6 2. The maximum deflection of a member may be obtained from the Materials Strength Formulae, and using as the modulus of longitudinal deformation in the concrete the modulus defined in 39.6, and using as the constant moment of inertia for the entire member the moment corresponding to the reference section which is defined below: a) In simply supported members: the central section. b) In cantilevered members: the initial section. c) On internal spans of continuous members. I e = 0.50 I ec I ee Iee2 l ec Equivalent inertia of the span s centre section. l Equivalent inertia of the support section. ee d) In end spans, with continuity only on one of the supports, I e = 0.75 l ec I ee When calculating instantaneous deflections in non-cracked members of constant crosssection, the gross inertia of the section shall be used Calculation of time-dependent deflection Additional time-dependent deflections, produced by persistent loads resulting from the deformations due to creep and shrinkage, may be calculated unless greater accuracy is required, by multiplying the corresponding instantaneous deflection by the factor λ. ξ λ = 1+50ρ p' ξ Geometric ratio of the compression reinforcement, A s ' with reference to the area of the effective section, b 0 d, in the reference section. As ρ = b0 d Coefficient that is a function of the duration of the load which shall be taken from one of the following values: 5 or more years year months months month weeks 0.5 For age j of the load, and t for the deflection calculation, the value of ξ to be used for the calculation of λ is ξ (t) - ξ (j). If the load is applied in fractions, P1, P 2..., P n, the following value of ξ may be adopted: ξ = (ξ 1 P 1 + ξ 2 P ξ n P n ) / (P 1 + P P n ) CHAPTER 11-6

7 50.3 Elements subjected to torsional stress The rotation of linear members or elements subjected to torsion may be calculated by simple integration of the rotations per unit length obtained from the following expression: T θ = In the case of non-cracked sections 0,3 Ec I j T θ = In the case of cracked sections 0,1 Ec I j T E c I j Torsional moment in service. Secant modulus of longitudinal deformation defined in Moment of torsional inertia of the gross concrete section Elements subjected to pure tension Deformations in members subjected to pure tension may be calculated by multiplying the mean elongation per unit of the reinforcements ε sm, obtained in accordance with , by the member s length. Article 51. Vibration Limit State 51.1 General considerations Vibrations may affect the service performance of structures for functional reasons. Vibrations may be uncomfortable for occupants and users, may affect the operating of equipment sensitive to this type of phenomenon, for example Dynamic performance Generally, in order to satisfy the Vibration Limit State, the structure must be designed for natural vibration frequencies being sufficiently different of definite critical values. CHAPTER 11-7

### Serviceability Deflection calculation

Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

### Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0.

Example (8.1): Using the ACI Code approximate structural analysis, design for a warehouse, a continuous one-way solid slab supported on beams 4.0 m apart as shown in Figure 1. Assume that the beam webs

### Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

### Design of AAC wall panel according to EN 12602

Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

### twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

### SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

### ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

### CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

### Dr. Hazim Dwairi. Example: Continuous beam deflection

Example: Continuous beam deflection Analyze the short-term and ultimate long-term deflections of end-span of multi-span beam shown below. Ignore comp steel Beam spacing = 3000 mm b eff = 9000/4 = 2250

### Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

### - Rectangular Beam Design -

Semester 1 2016/2017 - Rectangular Beam Design - Department of Structures and Material Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction The purposes

### Serviceability Limit States

Serviceability Limit States www.eurocode2.info 1 Outline Crack control and limitations Crack width calculations Crack width calculation example Crack width calculation problem Restraint cracking Deflection

### Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2

Detailing Lecture 9 16 th November 2017 Reinforced Concrete Detailing to Eurocode 2 EC2 Section 8 - Detailing of Reinforcement - General Rules Bar spacing, Minimum bend diameter Anchorage of reinforcement

### Lecture-05 Serviceability Requirements & Development of Reinforcement

Lecture-05 Serviceability Requirements & Development of Reinforcement By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Section 1: Deflections

### Chapter. Materials. 1.1 Notations Used in This Chapter

Chapter 1 Materials 1.1 Notations Used in This Chapter A Area of concrete cross-section C s Constant depending on the type of curing C t Creep coefficient (C t = ε sp /ε i ) C u Ultimate creep coefficient

### Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

### 1. ARRANGEMENT. a. Frame A1-P3. L 1 = 20 m H = 5.23 m L 2 = 20 m H 1 = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m. b. Frame P3-P6

Page 3 Page 4 Substructure Design. ARRANGEMENT a. Frame A-P3 L = 20 m H = 5.23 m L 2 = 20 m H = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m b. Frame P3-P6 L = 25 m H 3 = 8.39 m L 2 = 3 m H 4 = 8.5 m L

### CHAPTER 6: ULTIMATE LIMIT STATE

CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.

Example on Design of Slab Bridge Design Data and Specifications Chapter 5 SUPERSTRUCTURES Superstructure consists of 10m slab, 36m box girder and 10m T-girder all simply supported. Only the design of Slab

### Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension

Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension but strong in compression Steel tendon is first stressed

### BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

### DESIGN OF STAIRCASE. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia

DESIGN OF STAIRCASE Dr. Izni Syahrizal bin Ibrahim Faculty of Civil Engineering Universiti Teknologi Malaysia Email: iznisyahrizal@utm.my Introduction T N T G N G R h Flight Span, L Landing T = Thread

### Software Verification

EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 16-1 depicts a plot of the uncracked and cracked conditions, Ψ 1 State 1, and, Ψ State, for a reinforced

### PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

### CHAPTER 4. Design of R C Beams

CHAPTER 4 Design of R C Beams Learning Objectives Identify the data, formulae and procedures for design of R C beams Design simply-supported and continuous R C beams by integrating the following processes

### QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

### UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

### 2012 MECHANICS OF SOLIDS

R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

### STRUCTURAL ANALYSIS CHAPTER 2. Introduction

CHAPTER 2 STRUCTURAL ANALYSIS Introduction The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify

### Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

### QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

### Software Verification

PROGRAM NAME: SAFE 014 EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 16-1 depicts a plot of the uncracked and cracked conditions, 1 State 1, and, State,

### 3 Hours/100 Marks Seat No.

*17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

### Mechanics of Materials Primer

Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

### Bridge deck modelling and design process for bridges

EU-Russia Regulatory Dialogue Construction Sector Subgroup 1 Bridge deck modelling and design process for bridges Application to a composite twin-girder bridge according to Eurocode 4 Laurence Davaine

### Simplified procedures for calculation of instantaneous and long-term deflections of reinforced concrete beams

Simplified procedures for calculation of instantaneous and long-term deflections of reinforced concrete beams José Milton de Araújo 1 Department of Materials and Construction, University of Rio Grande

### Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

### ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

### SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

### Composite bridge design (EN1994-2) Bridge modelling and structural analysis

EUROCODES Bridges: Background and applications Dissemination of information for training Vienna, 4-6 October 2010 1 Composite bridge design (EN1994-2) Bridge modelling and structural analysis Laurence

### 3.5 Reinforced Concrete Section Properties

CHAPER 3: Reinforced Concrete Slabs and Beams 3.5 Reinforced Concrete Section Properties Description his application calculates gross section moment of inertia neglecting reinforcement, moment of inertia

### Flexure: Behavior and Nominal Strength of Beam Sections

4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

### Chapter Objectives. Design a beam to resist both bendingand shear loads

Chapter Objectives Design a beam to resist both bendingand shear loads A Bridge Deck under Bending Action Castellated Beams Post-tensioned Concrete Beam Lateral Distortion of a Beam Due to Lateral Load

### 2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft

Code No: 07A62102 R07 Set No. 2 III B.Tech II Semester Regular/Supplementary Examinations,May 2010 Aerospace Vehicle Structures -II Aeronautical Engineering Time: 3 hours Max Marks: 80 Answer any FIVE

### Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

5.4 Beams As stated previousl, the effect of local buckling should invariabl be taken into account in thin walled members, using methods described alread. Laterall stable beams are beams, which do not

### PES Institute of Technology

PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

### CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES

S. Kakay et al. Int. J. Comp. Meth. and Exp. Meas. Vol. 5 No. (017) 116 14 CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES SAMDAR KAKAY DANIEL BÅRDSEN

### PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

### Assignment 1 - actions

Assignment 1 - actions b = 1,5 m a = 1 q kn/m 2 Determine action on the beam for verification of the ultimate limit state. Axial distance of the beams is 1 to 2 m, cross section dimensions 0,45 0,20 m

### STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains

STRENGTH OF MATERIALS-I Unit-1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between

### Appendix J. Example of Proposed Changes

Appendix J Example of Proposed Changes J.1 Introduction The proposed changes are illustrated with reference to a 200-ft, single span, Washington DOT WF bridge girder with debonded strands and no skew.

### Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

### Longitudinal strength standard

(1989) (Rev. 1 199) (Rev. Nov. 001) Longitudinal strength standard.1 Application This requirement applies only to steel ships of length 90 m and greater in unrestricted service. For ships having one or

### MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I Engineering Mechanics Branch of science which deals with the behavior of a body with the state of rest or motion, subjected to the action of forces.

### 2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

### Entrance exam Master Course

- 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

### ENG2000 Chapter 7 Beams. ENG2000: R.I. Hornsey Beam: 1

ENG2000 Chapter 7 Beams ENG2000: R.I. Hornsey Beam: 1 Overview In this chapter, we consider the stresses and moments present in loaded beams shear stress and bending moment diagrams We will also look at

### APPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS

APPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS D-1 An extensive literature search revealed many methods for the calculation of live load distribution factors. This appendix will discuss, in detail,

### R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

### Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19 CIVIL ENGINEERING

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

### PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

### STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams

STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite

### This procedure covers the determination of the moment of inertia about the neutral axis.

327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

### REINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING (ACE009)

LECTURE NOTES ON REINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING (ACE009) III B. Tech I semester (Regulation- R16) Mr. Gude Ramakrishna Associate Professor DEPARTMENT OF CIVIL ENGINEERING INSTITUTE OF

### Practical Design to Eurocode 2

Practical Design to Eurocode 2 The webinar will start at 12.30 (Any questions beforehand? use Questions on the GoTo Control Panel) Course Outline Lecture Date Speaker Title 1 21 Sep Jenny Burridge Introduction,

### 9.5 Compression Members

9.5 Compression Members This section covers the following topics. Introduction Analysis Development of Interaction Diagram Effect of Prestressing Force 9.5.1 Introduction Prestressing is meaningful when

### SPECIFIC VERIFICATION Chapter 5

As = 736624/(0.5*413.69) = 3562 mm 2 (ADAPT 3569 mm 2, B29, C6) Data Block 27 - Compressive Stresses The initial compressive strength, f ci, is the strength entered in the Material/Concrete input screen.

### Annex - R C Design Formulae and Data

The design formulae and data provided in this Annex are for education, training and assessment purposes only. They are based on the Hong Kong Code of Practice for Structural Use of Concrete 2013 (HKCP-2013).

### Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

### CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

### Structural Analysis I Chapter 4 - Torsion TORSION

ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

### EUROCODE EN SEISMIC DESIGN OF BRIDGES

Brussels, 18-20 February 2008 Dissemination of information workshop 1 EUROCODE EN1998-2 SEISMIC DESIGN OF BRIDGES Basil Kolias Basic Requirements Brussels, 18-20 February 2008 Dissemination of information

### CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS

4.1. INTRODUCTION CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS A column is a vertical structural member transmitting axial compression loads with or without moments. The cross sectional dimensions of a column

### DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL When the height of the retaining wall exceeds about 6 m, the thickness of the stem and heel slab works out to be sufficiently large and the design becomes

### Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

### CHAPTER 4: BENDING OF BEAMS

(74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

### Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

### PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT

Structural Concrete Software System TN191_PT7_punching_shear_aci_4 011505 PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT 1. OVERVIEW Punching shear calculation applies to column-supported slabs, classified

### Beam Design - Shed Roof Back Wall Beam-S

Beam Design - Shed Roof Back Wall Beam-S 1. Beam Data Load Type: Uniform Dist. Load Support: Simple Beam Beam Type: Glulam Species: Western Species Grade: 24F-V4 1.8E DF/DF Size: 2.5 x 6 Design Span (L):

### Where and are the factored end moments of the column and >.

11 LIMITATION OF THE SLENDERNESS RATIO----( ) 1-Nonsway (braced) frames: The ACI Code, Section 6.2.5 recommends the following limitations between short and long columns in braced (nonsway) frames: 1. The

### Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

### Hardened Concrete. Lecture No. 16

Hardened Concrete Lecture No. 16 Fatigue strength of concrete Modulus of elasticity, Creep Shrinkage of concrete Stress-Strain Plot of Concrete At stress below 30% of ultimate strength, the transition

### Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering 71 Introduction

### five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

### five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

### Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

### Design Beam Flexural Reinforcement

COPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEBER 2001 CONCRETE FRAE DESIGN ACI-318-99 Technical Note This Technical Note describes how this program completes beam design when the ACI 318-99

### Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

### Design of Reinforced Concrete Structures (II)

Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of one-way ribbed slabs After finding the value of total load (Dead and live loads), the elements are

### 18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

CE6306 STREGNTH OF MATERIALS Question Bank Unit-I STRESS, STRAIN, DEFORMATION OF SOLIDS PART-A 1. Define Poison s Ratio May/June 2009 2. What is thermal stress? May/June 2009 3. Estimate the load carried

### Beam Design - FLOOR JOIST

Beam Design - FLOOR JOIST 1. Beam Data Load Type: Uniform Dist. Load Support: Simple Beam Beam Type: Sawn Lumber Species: Douglas Fir-Larch Grade: DF No.2 Size: 2 x 10 Design Span (L): 11.83 ft. Clear

### Chapter 3. Load and Stress Analysis

Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

### Bending and Shear in Beams

Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,

### Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

### Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION

Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 6: SHEAR AND TORSION Reinforced