LECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A.

Size: px
Start display at page:

Download "LECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A."

Transcription

1 ETUE 12 ossy onverters (Static State osses but Neglecting Switching osses) HW #2 Erickson hapter 3 Problems 6 & 7 A. General Effects Expected: (load) as (load) B. Switch and esistive osses hange M(D) Modified D oltage Transfer Functions M(D) with loss M(D) for no loss 1. General aspects of the origin of M(D) changes in static state loss terms:, d, d, and on a. max / min b. / Slopes 2. General solution for lossy Boost onverter a. only: M(D, ), η 1 b. Static State Device D losses: M(D, d, on, D) 3. Buck onverter a. Problem 3.3 of Erickson 4. General solution for lossy BuckBoost onverter a. M(D, d, on, ), Problem 3.4 of Erickson 5. ompare for a specific task: a. Buck vs. BuckBoost ircuits, Problem 3.5 of Erickson 1

2 2 A. GENEA EFFETS EXPETED ON M(D) ossy onverters: onsider the static state D loss only, no dynamic switch loss will be considered here Generally one expects, due to finite out, from any power supply for to fall as increases. n converters out is much more complex, especially with feedback. out effect on For fixed P out and in for a converter the input current increases proportional to the losses so that P in =P out losses. The losses we will consider will also include device losses but only in the static states due to finite on and on values. B. Effects on voltage D transfer function M(D) due to resistive and device voltage drops. Besides decreasing converter efficiency static state losses will also effect dc transfer functions. M(D) becomes a function of, on, on, etc. when losses are included as shown below. 1. max / min changes as seen by any converter inductor will cause di/dt slope changes. i = / (in units of A/sec) slopes change, affecting D and D themselves just by including resistance and device voltage drops. Hence, the value of M(D) changes. 2. ncluding inductor resistance, device on, as well as on changes M(D), from M(D) with these effects ignored. ets consider the inductor

3 3 resistance effects. a. llustrative (inductor series equivalent resistance) effects in boost topology M will change from M(D) to M(D, ) as shown below. is finite not only because of simple copper resistive losses. Wound inductors at high frequencies (0.1 1 MHz) have additional core and proximity effect losses. To a first approximation: ac/ dc =0.5 (wire dia. in cm)x f 1/2 x100 arger diameter wire has more effect than a small diameter Below we carefully distinguish between with the dominant for the load. Boost with during D Boost with during D i i i g v v g v i v v (t) g 1. sec balance across DT s D'T s t D[ g ] D [ g ] = 0 g D = 0 2. urrenttime balance across the capacitor i (t) DT s D'T s g / t /

4 4 D[/] D [ /] = 0 D / = 0 Usual Second term has all effects o Boost = of including finite 1 1. g D' lossless >D 2 big effect 1 term 2 Also big effects occur for D' D 0 or for D 1.0 Note some extreme converter operating conditions will amplify finite effects. Note well: (1) is the load resistor (2) = inductor losses For D 1.0 / has a big effect on M(D) As / 0 no effect on M(D) Note also as D fi 1.0, M(D) has big rollover if is even 1% of the load resistance. Note also in D gain at high D that for D< 0.2, effects are minimal. Summary The operating duty cycle, D value, amplifies equivalent series resistance,, effects. D > 0.5 and / even 1% you see big changes to M(D). D < 0.5 you see no effects.

5 5 g D' D' Equivalent ircuit with D Transformer : Use to get the operating efficiency η = P out / P in D':1 Equivalent circuit model of the boost converter, including a D :1 dc transformer and the inductor winding resistance. eferring to the secondary to get one loop equation. D' g /D' /D' 2 o learly want << D 2 Easy if D = 1.0, D = 0 Hard to achieve if D 0 D 1.0 deal o = g ase 1 1/D 2 D' 1

6 6 g deal (input) = D' ase D' 1 P η = out = o = P D ' 1 in g 2 D' 1 η(d, /) 1) As the on duty cycle D 0 one gets high η but efficiency is little effected by 2) D 1 and D 0 η 0 still we get much lower η for not negligible and much greater sensitivity to changes. ompare the above to the ossless Boost: 1 D':1 2 g o 2 = D 1 η = D o / g = P o /P in o = g /D = 1.0 (lossless) Next we include static device losses to the system loss. b. Static State Device oss Effects in the Boost Topology.

7 7 n our static states of the switching devices we only consider on from the transistor but both D and D for the diode when on, because on (T) 0. We expect to obtain M(D,, on, D, D ) and η(d,, on, D and D ). i 1 g 2 v i g v Fig Boost converter circuit, including inductor resistance. SW position 1: SW position 2: Fig Boost converter example. Transistor is on case: on () Diode on case: D and D Effects of on, D and D follow from revised circuits which change values of and hence circuit D and D periods as well. Period DT s ircuit onnections Period D T s ircuit onnections D i g on i v i g v D i v Next, we invoke both voltsec and currentsec balance on the inductor voltage,, and capacitor current,, respectively.

8 8 v (t) (1) oltsec balance on vs. time DT s D'T s g on D[ g on ] D [ g D D o ] t g D D nput onditions = 0 yields: g D on D D D D D o = 0 This is the input circuit loop for the above equation: D on D' D D' D on D' D g D' o i (t) (2) urrentsec balance on c vs. time / DT s D'T s t D[/] [ /] = 0 / Output conditions yield the simple equivalent output circuit result: D' D / = 0

9 9 ombining nput/output with a D transformer: D on D' D D' D D':1 g 1 1 D' o D 1 = =M(D, D' D D' g g ON, on, D, D ) D 1 2 D' lossless D esistive Effects ideal factor Only for do we get full output For the extreme D = 0 D on = 0, D D = D and resistive factor is slightly simplified P η = o D' = = D', but / g differs with losses Pin g g D' η = 1 D 1 Don D' D = η(d,, on, D, D ) 2 g D' Diode on esistive oltage Effects (3) The following is problem 3.3 of hapter 3 Erickson Buck onverter with: nput 1 1 filter 1 has 1 winding resistance due to copper wire

10 10 Transistor with on Diode with D and D ossless Buck: 1 1:D 2 g o o = D g 1 = 2 /D η = o /(D g ) = P o /P in = 1.0 (lossless) g i 1 v1 i 1 1 i 2 D1 2 i 2 a) Q(on) 1 on g i 1 1 i = g = 2 on = = 2 / Next we will consider the switch case when the transistor is off and the diode is on.

11 11 Q(off) g i 1 i 1 1 D D 2 i 2 1 = g = D 2 D = 1 2 = 2 / Do oltsecond balance on s / harge balance on s 1. 1 : D( g ) D ( g ) = 0 g = : D( 2 on ) D ( D 2 D 2 2 ) = 0 D 2 on D 1 D D D 2 D 2 2 = : 1 D 2 = 0 1 = D : 2 / = 0 2 = / 1 nput ircuit From 1, 3, and 4 1 = g 1 1 = g D 2 1 = g D 1 1 = g D 1 Output ircuit: Then: (2) D on D g D 2 1 D D D D 2 = 0 D 2

12 12 D on D 2 1 D' D D' D 2 Dg 2 Fig. 1 D Trf Model: g 1 : D D on D 2 1 D' D D' D 2 2 Fig. 2 b) From Fig. 1 = D on D g D 2 1 D D D D 2 c) Using the oltage Divider: = (D 2 g D D ) Don D 1 D'D 2 Filtered Buck = (D D D ) g 2 D D D' g on 1 D 2 η = = (1 D' D ) D g D 2 D D D' g on 1 D 2

13 13 Next we solve the general equations for the BuckBoost 4. BuckBoost solved in general g D 1:D D':1 o (a) Equivalent Series esistance,, losses only Assume lossless except for eflect all to load side. For D short and open. D' For D conditions: g (D/D') /D'2 (b) Device losses only BuckBoost with device loss ( 0) Transistor: on Diode: D o o = D' 2 D g D' D 1:D D' D D on D':1 g o

14 14 D D' g (D/D') D on /D' 2 o D D o = g D ' Don D' 2 (c) BuckBoost onverter including all static losses. This is problem 3.4 from Erickson 1 A g = µh f s = 40 khz load 5 out required is 5 and g = 1.5 Diode: D = 0.5 Schottky D = 0 (approx.) Transistor: on = 35 mω deal BuckBoost: o D D = = 1 D D' g eal BuckBoost: we will find in the next few pages D D o = g D ' other ( on, ) Diode esistive Effect Effect

15 Below we work out Erickson problem 3.4 for illustration of how to do the HW for hapter 3 HW # 2 will be Erickson hapter 3 Pbms.6 and 7. This will be due next week along with any questions asked in the lectures 15

16 16

17 17 (5) ompare Buck vs. BuckBoost Topology for D onditions Only. This is problem 3.5 of Erickson. 500 D Bus DD onverter 10A 400 Transistor: on = 0.5 Ω D 0 Diode: D 0 nductor: 0

18 18 Find D and η for placing different topologies inside the D D converter. Then compare why one topology might be favored over the other for the specified conditions. Prob. 3.5 Only loss is Mosfet with on = 0.5Ω Buck i g 500v D 1 Mosfet on and Diode off. g i on v v oad=10a i oad=10a i 400v i g 500v BuckBoost v Mosfet on and Diode off. g i on i v D1 i oad=10a i 400v oad=10a i v (t)= g i on g on v (t)= g i on g on i c (t) = i i c (t) = 10 Mosfet off and Diode on. Mosfet off and Diode on. i v i 10A v (t)= v (t)= i c (t) = i i c (t) = i Thus averaging we get: Thus averaging we get: <v > = (g on )D ()D = 0 <v > = (g on)d ()D = 0 <i c > = D( 10) D ( 10) = 0 <i c > = D(10) D ( 10) = 0 So Dg Don = 0 So Dg on D D = 0 10 = 0 = 10 D 10 = 0 = 10/D g v i i 10A

19 19 Don Don Dg Dg D' g. 1:D. Don g g. 1:D. Don. D':1. First we need D: Dg 10onD = 0 Dg 10onD/D D = 0 Dg gd 2 10onD 2D D 2 = 0 D = /(g on) D 2 (g ) D(2 g 10on) = 0 Using the quadratic equation for D: D = 0.81; D = 0.19 D = 0.45; D = 0.55 Solving for efficiency: g = D Solving for efficiency: g = D η = P out /P in = load /gd η = P out /P in = load /gd = (4000)/[Dg(10)] =(4000)/[gD(10/D )] η = 0.99 = 99% η = = 97.8% P loss = P in P out P loss = P in P out P loss = = 50 Watts P loss = = 90 Watts The BUK is better for this application! Another way to calculate the Power loss is to use the voltage divider and find g with espect to as shown below: = Dg Dg = Don D'( Don ) D' 2 Knowing that: = Dg for the lossless Buck: = Dg/D for the BuckBoost: we can see that =1 Don for the lossless Buck case thus: η = η = Don ( Don ) D' 2 η = 0.99 = 99% η = 0.98 = 98% since η = Pout/Pin: Pin = Pout/η = 4000/.99 = W Pin = Pout/η = 4000/.98 = W Ploss = = 40.4 W Ploss = = W The BUK is better for this application!

LECTURE 44 Averaged Switch Models II and Canonical Circuit Models

LECTURE 44 Averaged Switch Models II and Canonical Circuit Models ETUE 44 Averaged Switch Models II and anonical ircuit Models A Additional Averaged ossless Switch Models 1 Single Transformer ircuits a buck b boost 2 Double ascade Transformer Models: a Buck Boost b Flyback

More information

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency 3.1. The dc transformer model 3.2. Inclusion of inductor copper loss 3.3. Construction of equivalent circuit model 3.4. How to

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 2.4 Cuk converter example L 1 C 1 L 2 Cuk converter, with ideal switch i 1 i v 1 2 1 2 C 2 v 2 Cuk

More information

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Introduction 11.1. DCM Averaged Switch Model 11.2. Small-Signal AC Modeling of the DCM Switch Network 11.3. High-Frequency

More information

6.3. Transformer isolation

6.3. Transformer isolation 6.3. Transformer isolation Objectives: Isolation of input and output ground connections, to meet safety requirements eduction of transformer size by incorporating high frequency isolation transformer inside

More information

ECE1750, Spring 2018 Week Buck Converter

ECE1750, Spring 2018 Week Buck Converter ECE1750, Sprg 018 Week 5 Buck Converter 1 Objective to efficiently reduce DC voltage The DC equivalent of an AC transformer I I + + DC DC Buck Converter ossless objective: P = P, which means that I = I

More information

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 Physics 212 Lecture 11 ircuits hange in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 ircuit harging apacitor uncharged, switch is moved to position a Kirchoff

More information

Section 8: Magnetic Components

Section 8: Magnetic Components Section 8: Magnetic omponents Inductors and transformers used in power electronic converters operate at quite high frequency. The operating frequency is in khz to MHz. Magnetic transformer steel which

More information

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d)

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) 1 ECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) I. Quasi-Static Approximation A. inear Models/ Small Signals/ Quasistatic I V C dt Amp-Sec/Farad V I dt Volt-Sec/Henry 1. Switched

More information

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve ISPACS2017 Paper 2017 ID 21 Nov. 9 NQ-L5 Paper ID 21, Estimation of Circuit Component Values in Buck Converter using Efficiency Curve S. Sakurai, N. Tsukiji, Y. Kobori, H. Kobayashi Gunma University 1/36

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1.7. The low-q approximation Given a second-order denominator polynomial, of the form G(s)= 1

More information

12 Chapter Driven RLC Circuits

12 Chapter Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

Elements of Power Electronics PART I: Bases

Elements of Power Electronics PART I: Bases Elements of Power Electronics PART I: Bases Fabrice Frébel (fabrice.frebel@ulg.ac.be) September 21 st, 2017 Goal and expectations The goal of the course is to provide a toolbox that allows you to: understand

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 1. In the single-phase rectifier shown below in Fig 1a., s = 1mH and I d = 10A. The input voltage v s has the pulse waveform shown

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

Generalized Analysis for ZCS

Generalized Analysis for ZCS Generalized Analysis for ZCS The QRC cells (ZCS and ZS) analysis, including the switching waveforms, can be generalized, and then applies to each converter. nstead of analyzing each QRC cell (L-type ZCS,

More information

Section 5 Dynamics and Control of DC-DC Converters

Section 5 Dynamics and Control of DC-DC Converters Section 5 Dynamics and ontrol of D-D onverters 5.2. Recap on State-Space Theory x Ax Bu () (2) yxdu u v d ; y v x2 sx () s Ax() s Bu() s ignoring x (0) (3) ( si A) X( s) Bu( s) (4) X s si A BU s () ( )

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Switched Mode Power Conversion

Switched Mode Power Conversion Inductors Devices for Efficient Power Conversion Switches Inductors Transformers Capacitors Inductors Inductors Store Energy Inductors Store Energy in a Magnetic Field In Power Converters Energy Storage

More information

Physics 2112 Unit 11

Physics 2112 Unit 11 Physics 2112 Unit 11 Today s oncept: ircuits Unit 11, Slide 1 Stuff you asked about.. what happens when one resistor is in parallel and one is in series with the capacitor Differential equations are tough

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure

More information

Resonant Matching Networks

Resonant Matching Networks Chapter 1 Resonant Matching Networks 1.1 Introduction Frequently power from a linear source has to be transferred into a load. If the load impedance may be adjusted, the maximum power theorem states that

More information

Power Electronics

Power Electronics Prof. Dr. Ing. Joachim Böcker Power Electronics 3.09.06 Last Name: Student Number: First Name: Study Program: Professional Examination Performance Proof Task: (Credits) (0) (0) 3 (0) 4 (0) Total (80) Mark

More information

Chapter 3: Capacitors, Inductors, and Complex Impedance

Chapter 3: Capacitors, Inductors, and Complex Impedance hapter 3: apacitors, Inductors, and omplex Impedance In this chapter we introduce the concept of complex resistance, or impedance, by studying two reactive circuit elements, the capacitor and the inductor.

More information

Regulated DC-DC Converter

Regulated DC-DC Converter Regulated DC-DC Converter Zabir Ahmed Lecturer, BUET Jewel Mohajan Lecturer, BUET M A Awal Graduate Research Assistant NSF FREEDM Systems Center NC State University Former Lecturer, BUET 1 Problem Statement

More information

EEL 5245 POWER ELECTRONICS I Lecture #14: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM)

EEL 5245 POWER ELECTRONICS I Lecture #14: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM) EE 545 POWER EECTRONICS I ecture #4: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM) Objectives Overview of Discontinuous Conduction Mode Buck Converter Analysis (DCM) Simulation

More information

Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters

Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters Bob Erickson and Dragan Maksimovic Colorado Power Electronics Center (CoPEC) University of Colorado, Boulder 80309-0425 http://ece-www.colorado.edu/~pwrelect

More information

The output voltage is given by,

The output voltage is given by, 71 The output voltage is given by, = (3.1) The inductor and capacitor values of the Boost converter are derived by having the same assumption as that of the Buck converter. Now the critical value of the

More information

L4970A 10A SWITCHING REGULATOR

L4970A 10A SWITCHING REGULATOR L4970A 10A SWITCHING REGULATOR 10A OUTPUT CURRENT.1 TO 40 OUTPUT OLTAGE RANGE 0 TO 90 DUTY CYCLE RANGE INTERNAL FEED-FORWARD LINE REGULA- TION INTERNAL CURRENT LIMITING PRECISE.1 ± 2 ON CHIP REFERENCE

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1 Physics 1 ecture 1 esonance and power in A circuits Physics 1 ecture 1, Slide 1 I max X X = w I max X w e max I max X X = 1/w I max I max I max X e max = I max Z I max I max (X -X ) f X -X Physics 1 ecture

More information

Switch or amplifies f. Capacitor i. Capacitance is measured in micro/pico farads ii. Filters frequencies iii. Stores electrical energy

Switch or amplifies f. Capacitor i. Capacitance is measured in micro/pico farads ii. Filters frequencies iii. Stores electrical energy Applied Science Study Guide By Patton and Zahen 1. Relationships between Science and Technology a. Circuits are a relationship between Science and technology because the power within a current comes from

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Sampled-data response: i L /i c Sampled-data transfer function : î L (s) î c (s) = (1 ) 1 e st

More information

Chapter 8: Converter Transfer Functions

Chapter 8: Converter Transfer Functions Chapter 8. Converter Transfer Functions 8.1. Review of Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right half-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.

More information

PRACTICE EXAM 1 for Midterm 2

PRACTICE EXAM 1 for Midterm 2 PRACTICE EXAM 1 for Midterm 2 Multiple Choice Questions 1) The figure shows three identical lightbulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Chapter 14: Inductor design

Chapter 14: Inductor design Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure 14.3 Multiple-winding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

Parasitics in Power Electronics Avoid them or Turn Enemies into Friends

Parasitics in Power Electronics Avoid them or Turn Enemies into Friends ECPE Workshop Future Trends or Power Semiconductors ETH Zürich, 27.1.212 Parasitics in Power Electronics Avoid them or Turn Enemies into Friends Fraunhoer Institute or Integrated Systems and Device Technology

More information

S.E. Sem. III [ETRX] Electronic Circuits and Design I

S.E. Sem. III [ETRX] Electronic Circuits and Design I S.E. Sem. [ETRX] Electronic ircuits and Design Time : 3 Hrs.] Prelim Paper Solution [Marks : 80 Q.1(a) What happens when diode is operated at high frequency? [5] Ans.: Diode High Frequency Model : This

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

Converter System Modeling via MATLAB/Simulink

Converter System Modeling via MATLAB/Simulink Converter System Modeling via MATLAB/Simulink A powerful environment for system modeling and simulation MATLAB: programming and scripting environment Simulink: block diagram modeling environment that runs

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

assess the biasing requirements for transistor amplifiers

assess the biasing requirements for transistor amplifiers 1 INTODUTION In this lesson we examine the properties of the bipolar junction transistor (JT) amd its typical practical characteristics. We then go on to devise circuits in which we can take best advantage

More information

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A. ATENATING UENT 3 3 IDENTIFY: i Icosωt and I I/ SET UP: The specified value is the root-mean-square current; I 34 A EXEUTE: (a) I 34 A (b) I I (34 A) 48 A (c) Since the current is positive half of the time

More information

AOP605 Complementary Enhancement Mode Field Effect Transistor

AOP605 Complementary Enhancement Mode Field Effect Transistor AOP65 Complementary Enhancement Mode Field Effect Transistor General Description The AOP65/L uses advanced trench technology to provide excellent and low gate charge. The complementary MOSFETs form a highspeed

More information

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o ----------- ----------- w L =Q - w o πf o w h =Qw o w L ~ RC w h w L f(l) w h f(c) B. Construction from T(s) Asymptotes

More information

Chapter 10 Instructor Notes

Chapter 10 Instructor Notes G. izzoni, Principles and Applications of lectrical ngineering Problem solutions, hapter 10 hapter 10 nstructor Notes hapter 10 introduces bipolar junction transistors. The material on transistors has

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.

More information

CHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3

CHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3 urrent onvention HEM*3440 hemical nstrumentation Topic 3 udimentary Electronics ONENTON: Electrical current flows from a region of positive potential energy to a region of more negative (or less positive)

More information

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller EECS 105 Spring 2017, Module 4 Frequency Response Prof. Ali M. Niknejad Department of EECS Announcements l HW9 due on Friday 2 Review: CD with Current Mirror 3 Review: CD with Current Mirror 4 Review:

More information

ECE1750, Spring Week 11 Power Electronics

ECE1750, Spring Week 11 Power Electronics ECE1750, Spring 2017 Week 11 Power Electronics Control 1 Power Electronic Circuits Control In most power electronic applications we need to control some variable, such as the put voltage of a dc-dc converter,

More information

TSP10N60M / TSF10N60M

TSP10N60M / TSF10N60M TSP10N60M / TSF10N60M 600V N-Channel MOSFET General Description This Power MOSFET is produced using Truesemi s advanced planar stripe DMOS technology. This advanced technology has been especially tailored

More information

Chapter 2 Circuit Elements

Chapter 2 Circuit Elements hapter ircuit Elements hapter ircuit Elements.... Introduction.... ircuit Element onstruction....3 esistor....4 Inductor... 4.5 apacitor... 6.6 Element Basics... 8.6. Element eciprocals... 8.6. eactance...

More information

Circuits. 1. The Schematic

Circuits. 1. The Schematic + ircuits 1. The Schematic 2. Power in circuits 3. The Battery 1. eal Battery vs. Ideal Battery 4. Basic ircuit nalysis 1. oltage Drop 2. Kirchoff s Junction Law 3. Series & Parallel 5. Measurement Tools

More information

Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one

Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one 1 Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one would deliberately add to a circuit. Other times,

More information

AO V Dual N-Channel MOSFET

AO V Dual N-Channel MOSFET AO688 V Dual NChannel MOSFET General Description The AO688 uses advanced trench technology to provide excellent R DS(ON), low gate charge and operation with gate voltages as low as.5v. This device is suitable

More information

Modeling, Analysis and Control of an Isolated Boost Converter for System Level Studies

Modeling, Analysis and Control of an Isolated Boost Converter for System Level Studies 1 Modeling, Analysis and Control of an Isolated Boost Converter for System Level Studies Bijan Zahedi, Student Member, IEEE, and Lars E. Norum, Senior Member, IEEE Abstract-- This paper performs a modeling

More information

AOT404 N-Channel Enhancement Mode Field Effect Transistor

AOT404 N-Channel Enhancement Mode Field Effect Transistor AOT44 N-Channel Enhancement Mode Field Effect Transistor General Description The AOT44 uses advanced trench technology and design to provide excellent R DS(ON) with low gate charge. This device is suitable

More information

500V N-Channel MOSFET

500V N-Channel MOSFET 830 / 830 500V N-Channel MOSFET General Description This Power MOSFET is produced using SL semi s advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize

More information

Lecture 47 Switch Mode Converter Transfer Functions: Tvd(s) and Tvg(s) A. Guesstimating Roots of Complex Polynomials( this section is optional)

Lecture 47 Switch Mode Converter Transfer Functions: Tvd(s) and Tvg(s) A. Guesstimating Roots of Complex Polynomials( this section is optional) Lecture 47 Switch Mode Converter Transfer Functions: T vd (s) and T vg (s) A. Guesstimating Roots of Complex Polynomials( this section is optional). Quick Insight n=. n th order case. Cuk example 4. Forth

More information

Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors

Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors Lecture 12: nductors nductors Hydraulic analogy Duality with capacitor Charging and discharging Robert R. McLeod, University of Colorado http://hilaroad.com/camp/projects/magnet.html 99 Lecture 12: nductors

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Part II" Converter Dynamics and Control! 7.!AC equivalent circuit modeling! 8.!Converter transfer

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

MEP 382: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis

MEP 382: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis Faculty of Engineering MEP 38: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis Outline oltage and Current Ohm s Law Kirchoff s laws esistors Series and Parallel oltage Dividers

More information

AN019. A Better Approach of Dealing with Ripple Noise of LDO. Introduction. The influence of inductor effect over LDO

AN019. A Better Approach of Dealing with Ripple Noise of LDO. Introduction. The influence of inductor effect over LDO Better pproach of Dealing with ipple Noise of Introduction It has been a trend that cellular phones, audio systems, cordless phones and portable appliances have a requirement for low noise power supplies.

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω -j 8 30 o I j 4 j 4 I 2 -j2v For loop, 8 30 = (2 j4)i ji 2

More information

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such

More information

Lecture 15. LC Circuit. LC Oscillation - Qualitative. LC Oscillator

Lecture 15. LC Circuit. LC Oscillation - Qualitative. LC Oscillator Lecture 5 Phys. 07: Waves and Light Physics Department Yarmouk University 63 Irbid Jordan &KDSWHUElectromagnetic Oscillations and Alternating urrent L ircuit In this chapter you will see how the electric

More information

1. Review of Circuit Theory Concepts

1. Review of Circuit Theory Concepts 1. Review of Circuit Theory Concepts Lecture notes: Section 1 ECE 65, Winter 2013, F. Najmabadi Circuit Theory is an pproximation to Maxwell s Electromagnetic Equations circuit is made of a bunch of elements

More information

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

Part II Converter Dynamics and Control

Part II Converter Dynamics and Control Part II Converter Dynamics and Control 7. AC equivalent circuit modeling 8. Converter transfer functions 9. Controller design 10. Ac and dc equivalent circuit modeling of the discontinuous conduction mode

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

Chapter 9 Bipolar Junction Transistor

Chapter 9 Bipolar Junction Transistor hapter 9 ipolar Junction Transistor hapter 9 - JT ipolar Junction Transistor JT haracteristics NPN, PNP JT D iasing ollector haracteristic and Load Line ipolar Junction Transistor (JT) JT is a three-terminal

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 6 lectrodynamics Direct current circuits parallel and series connections Kirchhoff s rules circuits Hours of operation: Monday and Tuesday Wednesday and Thursday Friday,

More information

dv dv 2 2 dt dt dv dt

dv dv 2 2 dt dt dv dt 1/3/14 hapter 8 Second order circuits A circuit with two energy storage elements: One inductor, one capacitor Two capacitors, or Two inductors i Such a circuit will be described with second order differential

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut dthiebaut@smith.edu Crash Course in Electricity and Electronics Zero Physics background expected!

More information

N-Channel Enhancement-Mode Vertical DMOS FET

N-Channel Enhancement-Mode Vertical DMOS FET N-Channel Enhancement-Mode Vertical DMOS FET Features Free from secondary breakdown Low power drive requirement Ease of paralleling Low C ISS and fast switching speeds Excellent thermal stability Integral

More information

Scheme I SAMPLE QUESTION PAPER I

Scheme I SAMPLE QUESTION PAPER I SAMPLE QUESTION PAPER I Marks : 70 Time: 3 Hours Q.1) A) Attempt any FIVE of the following. a) Define active components. b) List different types of resistors. c) Describe method to test following passive

More information

IRF5851. HEXFET Power MOSFET. Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Low Gate Charge.

IRF5851. HEXFET Power MOSFET. Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Low Gate Charge. PD-93998B HEXFET Power MOSFET l l l l l Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Low Gate Charge G S2 G2 2 3 6 5 4 D S D2 N-Ch P-Ch DSS 20-20 R DS(on)

More information

Your Comments. THIS IS SOOOO HARD. I get the concept and mathematical expression. But I do not get links among everything.

Your Comments. THIS IS SOOOO HARD. I get the concept and mathematical expression. But I do not get links among everything. Your omments THIS IS SOOOO HAD. I get the concept and mathematical expression. But I do not get links among everything. ery confusing prelecture especially what happens when switches are closed/opened

More information

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741 (Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

More information

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9. Electronic Circuits PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

SPS Presents: A Cosmic Lunch!

SPS Presents: A Cosmic Lunch! SPS Presents: A Cosmic Lunch! Who: Dr. Brown will be speaking about Evolution of the Elements: from Periodic table to Standard Model and Beyond! When: October 7 th at am Where: CP 79 (by the front office)

More information

EE Branch GATE Paper 2010

EE Branch GATE Paper 2010 Q.1 Q.25 carry one mark each 1. The value of the quantity P, where, is equal to 0 1 e 1/e 2. Divergence of the three-dimensional radial vector field is 3 1/r 3. The period of the signal x(t) = 8 is 0.4

More information

P-Channel Enhancement Mode Mosfet

P-Channel Enhancement Mode Mosfet WPM34 WPM34 P-Channel Enhancement Mode Mosfet Features Higher Efficiency Extending Battery Life Miniature SOT3-3 Surface Mount Package Super high density cell design for extremely low RDS (ON) http://www.willsemi.com

More information

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday Physics 364, Fall 2012, reading due 2012-09-20. Email your answers to ashmansk@hep.upenn.edu by 11pm on Thursday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: This

More information

Wireless charging using a separate third winding for reactive power supply

Wireless charging using a separate third winding for reactive power supply Wireless charging using a separate third winding for reactive power supply Master s thesis in Energy and Environment IAN ŠALKOIĆ Department of Energy and Environment Division of Electric Power Engineering

More information

Fast-Slow Scale Bifurcation in Higher Order Open Loop Current-Mode Controlled DC-DC Converters

Fast-Slow Scale Bifurcation in Higher Order Open Loop Current-Mode Controlled DC-DC Converters Fast-Slow Scale Bifurcation in Higher Order Open oop urrent-mode ontrolled D-D onverters I. Daho*, D. Giaouris*, S. Banerjee**, B. Zahawi*, and V. Pickert* * School of Electrical, Electronic and omputer

More information