R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Size: px
Start display at page:

Download "R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder"

Transcription

1 R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

2 Sampled-data response: i L /i c Sampled-data transfer function : î L (s) î c (s) = (1 ) 1 e st 1 e st st = M 2 M a M 1 M a Use Matlab to plot frequency response Buck converter example: M a = M 2 /3 α = 0.5 f s = 200 khz Note peaking and second-order response near f s /2 ECEN 5807, Spring

3 The second-order Padé approximation î L (s) î c (s) e st s = (1 ) 1 e st ! e st st! 2 s! s /2 s! s /2 s! s /2 s! s /2!! 2! Result: î L (s) î c (s) s 2 1! s /2 s! s /2! 2 ECEN 5807, Spring

4 Approximating the sampled-data response: i L /i c Second-order Padé approximation Original Buck converter example: M a = M 2 /10 α = D = 0.5 f s = 200 khz ECEN 5807, Spring

5 Addition of pole to F m d F m 1 s ω p Addition of simple pole within F m block Leads to second-order response in i L /i c f p = 4 1 2D 2D M! a M 2 f s v g F g F v v i L i c ECEN 5807, Spring

6 Determination of ω p ECEN 5807, Spring

7 Inclusion of f p in G vc (s) f s /2 Switching frequency = 200 khz G vd G vc, with f p G vc, no f p ECEN 5807, Spring

8 Simulink model for current mode control Start with averaged model of converter power stage, then append block containing current mode controller model: Current mode controller block requires information from power stage model: Average inductor current Slope m 1 Slope m 2 These three quantities are placed in a vector current data ECEN 5807, Spring

9 Current mode controller block! The CPM controller solves for the duty cycle: d hi L i = i c m a dt s m 1 m 2 2 dd 0 T s F m Solve for d: v g F g "" F v v 1 d = 1! 0 2 m a 1 m 1 m 2 B@ vut 2 (i c i L )(m 1 m 2 ) 1 m a m 1 m 2 2 Ts CA 2 " i c i L ECEN 5807, Spring

10 Optional correction: high-frequency pole v g d F m 1 s ω p F g F v v f p = 4 1 2D 2D M! a M 2 f s Addition of the high frequency pole in this manner is valid for small signals only. This model does not correctly predict the high-frequency components of the large-signal transient response. i L See buck CPM models on course web page i c ECEN 5807, Spring

11 Small-signal G vc predicted by Simulink model Compare with plots from last lecture The buck model includes losses ECEN 5807, Spring

12 B.3 Simulation of Current Mode Controllers Develop a model of the currentprogrammed controller, which can be combined with existing CCM- DCM averaged switch models V g 12 V L i L R L CCM-DCM1 3 d 35 µh X switch f s = 200 khz L = 35 µη 0.05 Ω C 100 µf i LOAD R 10 Ω v Controller model outputs a duty cycle, in response to control input i c (or v c ) and the sensed converter voltages and currents v c CPM control current 1 2 d R f i L v(1)v(3) v(3) E i E 1 E 2 X cpm R f = 1 Ω f s = 200 khz L = 35 µη V a = 0.6 V Fundamentals of Power Electronics 72 Chapter 12: Current Programmed Control

13 Averaged controller waveforms i L (t) i c i L (t) i c m a i pk m a i pk m 1 m 2 m1 m 2 dt s d 2 T s =(1 d)t s t dt s d 2 T s 0 t v L (t) v 1 (t) Ts v L (t) v 1 (t) Ts v 2 (t) Ts 0 t v 2 (t) Ts 0 t T s T s CCM DCM Fundamentals of Power Electronics 73 Chapter 12: Current Programmed Control

14 Equations Need to write large-signal equations of controller, in a form that leads to convergence of simulator and that works for both CCM and DCM Basic equations: d 2 =1d (CCM) m 1 = v 1 (t) Ts L m 2 = v 2 (t) Ts L i pk = i c m a dt s d 2 = i pk m 2 T s (DCM) Average inductor current: d 2 = MIN 1 d, i L (t) Ts = di pk m 1dT s 2 Artificial ramp amplitude: V a = m a T s R f d 2 i pk m 2d 2 T s 2 Substitute and solve (partially) for d: i pk m 2 T s (CCM and DCM) d = 2i c (d d 2 )2 i L (t) Ts m 2 d 2 2 T s 2m a (d d 2 )T s m 1 dt s Fundamentals of Power Electronics 74 Chapter 12: Current Programmed Control

15 CPM controller subcircuit model Output: duty cycle d.subckt CPM control current 1 2 d params: L=100e-6 fs=1e5 Va=0.5 Rf=1 * generate d2 for CCM or DCM Inputs: Ed2 d2 0 table d CPM control current 1 2 v c (t) Ts R f i L (t) Ts v 1 (t) Ts v 2 (t) Ts {MIN(L*fs*(v(control)-va*v(d))/Rf/(v(2)),1-v(d))} (0,0)(1,1) * generate inductor current slopes, see Eqs.(B.24) and (B.26) Em1 m1 0 value={rf*v(1)/l/fs} Em2 m2 0 value={rf*v(2)/l/fs} * compute duty cycle d, see Eq.(B.32) Eduty d 0 table {2*(v(control)*(v(d)v(d2))-v(current)-v(m2)*v(d2)*v(d2)/2) /(v(m1)*v(d)2*va*(v(d)v(d2)))} (0.01,0.01) (0.99,0.99).ends Fundamentals of Power Electronics 75 Chapter 12: Current Programmed Control

16 CPM buck example CPM buck converter.param Va=0.6.param fs=200khz.param L=35uH.ac DEC KHz iout 0 4 ac 0.lib switch.lib Vg V ac 0 Xswitch CCM-DCM1 PARAMS: L={L} fs={fs} L1 2 3 {L} RL C uF Rload Xcpm ctr ni nm1 nm2 5 CPM PARAMS: L={L} fs={fs} va={va} Rf=1 Ei ni 0 value={i(l1)} Em1 nm1 0 value={v(1)-v(3)} Em2 nm2 0 value={v(3)} Vic ctr 0 dc 1.4V ac 1.probe.end V g 12 V v c L i L R L CCM-DCM1 3 CPM 35 µh control current 1 2 d d X switch f s = 200 khz L = 35 µη R f i L v(1)v(3) v(3) E i E 1 E 2 X cpm 0.05 Ω C 100 µf R f = 1 Ω f s = 200 khz L = 35 µη V a = 0.6 V i LOAD R 10 Ω v Fundamentals of Power Electronics 76 Chapter 12: Current Programmed Control

17 Control-to-output frequency response Duty cycle control vs current programmed control G 40 db 20 db 0 db 20 db G vc G vd G In both cases: V = 8.1 V D = For CPM: V c = 1.4 V 40 db G vd 0 V a = 0.6 V 60 db G vc Hz 100 Hz 1 khz 10 khz 100 khz f Fundamentals of Power Electronics 77 Chapter 12: Current Programmed Control

18 Line-to-output frequency response Duty cycle control vs current programmed control G vg 20 db 0 db 20 db 40 db 60 db 80 db Duty cycle control d(t) = constant Current programmed mode v c (t) = constant In both cases: V = 8.1 V D = For CPM: V c = 1.4 V V a = 0.6 V 100 db 10 Hz 100 Hz 1 khz 10 khz 100 khz f Fundamentals of Power Electronics 78 Chapter 12: Current Programmed Control

19 Output impedance Duty cycle control vs current programmed control Z out 20 dbω 0 dbω 20 dbω Current programmed mode v c (t) = constant Duty cycle control d(t) = constant In both cases: V = 8.1 V D = For CPM: V c = 1.4 V V a = 0.6 V 40 dbω 10 Hz 100 Hz 1 khz 10 khz 100 khz f Fundamentals of Power Electronics 79 Chapter 12: Current Programmed Control

20 12.4 Discontinuous conduction mode Again, use averaged switch modeling approach Result: simply replace Transistor by power sink Diode by power source Inductor dynamics appear at high frequency, near to or greater than the switching frequency Small-signal transfer functions contain a single low frequency pole DCM CPM boost and buck-boost are stable without artificial ramp DCM CPM buck without artificial ramp is stable for D < 2/3. A small artificial ramp m a 0.086m 2 leads to stability for all D. Fundamentals of Power Electronics 80 Chapter 12: Current Programmed Control

21 DCM CPM buck-boost example i L (t) i 1 (t) Switch network i 2 (t) v 1 (t) v 2 (t) i c m a i pk v g (t) C R v(t) m 1 m 2 = v 2 T s L L i L (t) v L (t) = v 1 T s L v 1 (t) Ts 0 t 0 v 2 (t) Ts Fundamentals of Power Electronics 81 Chapter 12: Current Programmed Control

22 Analysis i pk = m 1 d 1 T s i L (t) m 1 = v 1(t) Ts L i c m a i pk i c = i pk m a d 1 T s = m 1 m a d 1 T s v L (t) m 1 = v 1 T s L v 1 (t) Ts m 2 = v 2 T s L 0 t d 1 (t)= i c (t) 0 m 1 m a T s v 2 (t) Ts Fundamentals of Power Electronics 82 Chapter 12: Current Programmed Control

23 Averaged switch input port equation i 1 (t) Ts = 1 T s i 1 (t) Ts = 1 2 i pk(t)d 1 (t) t t T s i 1 (τ)dτ = q 1 T s i 1 (t) Area q 1 i pk i 1 (t) Ts i 1 (t) Ts = 1 2 m 1d 1 2 (t)t s i 1 (t) Ts = v 1 (t) Ts 1 2 Li 2 c f s 1 m a m 1 2 i 2 (t) i 2 (t) Ts i pk Area q 2 i 1 (t) Ts v 1 (t) Ts = 1 2 Li 2 c f s 1 m a m 1 2 = p(t) T s t d 1 T s d 2 T s d 3 T s T s Fundamentals of Power Electronics 83 Chapter 12: Current Programmed Control

24 Discussion: switch network input port Averaged transistor waveforms obey a power sink characteristic During first subinterval, energy is transferred from input voltage source, through transistor, to inductor, equal to W = 1 2 Li 2 pk This energy transfer process accounts for power flow equal to p(t) Ts = Wf s = 1 2 Li 2 pk f s which is equal to the power sink expression of the previous slide. Fundamentals of Power Electronics 84 Chapter 12: Current Programmed Control

25 Averaged switch output port equation i 2 (t) Ts = 1 T s t t T s i 2 (τ)dτ = q 2 T s i 1 (t) Area q 1 i pk q 2 = 1 2 i pkd 2 T s d 2 (t)=d 1 (t) v 1 (t) Ts i 1 (t) Ts v 2 (t) Ts i 2 (t) i 2 (t) Ts = p(t) T s v 2 (t) Ts i pk Area q 2 i 2 (t) Ts v 2 (t) Ts = 1 2 Li 2 c(t) f s 1 m a m 1 2 = p(t) T s T s i 2 (t) Ts d 1 T s d 2 T s d 3 T s t Fundamentals of Power Electronics 85 Chapter 12: Current Programmed Control

26 Discussion: switch network output port Averaged diode waveforms obey a power sink characteristic During second subinterval, all stored energy in inductor is transferred, through diode, to load Hence, in averaged model, diode becomes a power source, having value equal to the power consumed by the transistor power sink element Fundamentals of Power Electronics 86 Chapter 12: Current Programmed Control

27 Averaged equivalent circuit i 1 (t) Ts i 2 (t) Ts v 1 (t) Ts p(t) Ts v 2 (t) Ts v g (t) Ts C R v(t) Ts L Fundamentals of Power Electronics 87 Chapter 12: Current Programmed Control

28 Steady state model: DCM CPM buck-boost V g P R V Solution V 2 R = P P = 1 2 LI 2 c(t) f s 1 M a M 1 2 V= PR = I c RL f s 2 1 M a M 1 for a resistive load 2 Fundamentals of Power Electronics 88 Chapter 12: Current Programmed Control

29 Models of buck and boost Buck L v g (t) Ts p(t) Ts C R v(t) Ts Boost L v g (t) Ts p(t) Ts C R v(t) Ts Fundamentals of Power Electronics 89 Chapter 12: Current Programmed Control

30 Summary of steady-state DCM CPM characteristics Table Steady-state DCM CPM characteristics of basic converters Converter M I crit Stability range when m a = 0 Buck P load P P load 1 2 I c Mm a T s 0 M < 2 3 Boost P load P load P I c M M 1 2 M m a T s 0 D 1 Buck-boost Depends on load characteristic: P load = P I c M M 1 m a T s 2 M 1 0 D 1 I > I crit for CCM I < I crit for DCM Fundamentals of Power Electronics 90 Chapter 12: Current Programmed Control

31 Buck converter: output characteristic with m a = 0 I I c I = P V g V P V = P V 1 V g V CCM unstable for M > 1 2 CPM buck characteristic with m a = 0 resistive load line I = V/R with a resistive load, there can be two operating points the operating point having V > 0.67V g can be shown to be unstable 1 2 I c B CCM DCM 4P V g A DCM unstable for M > V g 2 3 V g V g V Fundamentals of Power Electronics 91 Chapter 12: Current Programmed Control

32 Linearized small-signal models: Buck i 1 i 2 L i L v g v 1 r 1 f 1 i c g 1 v 2 g 2 v 1 f 2 i c r 2 v 2 C R v Fundamentals of Power Electronics 92 Chapter 12: Current Programmed Control

33 Linearized small-signal models: Boost i L L i 1 i 2 v g v 1 r 1 f 1 i c g 1 v 2 g 2 v 1 f 2 i c r 2 v 2 C R v Fundamentals of Power Electronics 93 Chapter 12: Current Programmed Control

34 Linearized small-signal models: Buck-boost i 1 i 2 v 1 r 1 f 1 i c g 1 v 2 g 2 v 1 f 2 i c r 2 v 2 v g C R v L i L Fundamentals of Power Electronics 94 Chapter 12: Current Programmed Control

35 DCM CPM small-signal parameters: input port Table Current programmed DCM small-signal equivalent circuit parameters: input port Converter g 1 f 1 r 1 Buck 1 R M 2 1 M 1 m a m 1 1 m a m 1 2 I 1 I c R 1 M 1 M 2 m a m 1 1 m a m 1 Boost 1 R M M 1 2 I I c R M 2 2 M 1 M 2 m a m 1 1 m a m 1 Buck-boost 0 2 I 1 I c 1 R M 2 m a m 1 1 m a m 1 Fundamentals of Power Electronics 95 Chapter 12: Current Programmed Control

36 DCM CPM small-signal parameters: output port Table Current programmed DCM small-signal equivalent circuit parameters: output port Converter g 2 f 2 r 2 Buck 1 R M 1 M m a m 1 2 M M 1 m a m 1 2 I I c R 1 M 1 m a m 1 12M m a m 1 Boost 1 R M M 1 2 I 2 R M 1 I c M Buck-boost 2M R m a m 1 2 I 2 I c R 1 m a m 1 Fundamentals of Power Electronics 96 Chapter 12: Current Programmed Control

37 Simplified DCM CPM model, with L = 0 Buck, boost, buck-boost all become v g r 1 f 1 i c g 1 v g 2 v g f 2 i c r 2 C R v G vc (s)= v i c vg =0= G c0 1 s ω p G vg (s)= v v g i c =0 = G g0 1 s ω p G c0 = f 2 R r 2 ω p = 1 R r 2 C G g0 = g 2 R r 2 Fundamentals of Power Electronics 97 Chapter 12: Current Programmed Control

38 Buck ω p Plug in parameters: ω p = 1 RC 23M 1M m a m 2 M 2M 1M 1M M m a m 2 For m a = 0, numerator is negative when M > 2/3. ω p then constitutes a RHP pole. Converter is unstable. Addition of small artificial ramp stabilizes system. m a > leads to stability for all M 1. Output voltage feedback can also stabilize system, without an artificial ramp Fundamentals of Power Electronics 98 Chapter 12: Current Programmed Control

39 12.5 Summary of key points 1. In current-programmed control, the peak switch current i s (t) follows the control input i c (t). This widely used control scheme has the advantage of a simpler control-to-output transfer function. The line-to-output transfer functions of current-programmed buck converters are also reduced. 2. The basic current-programmed controller is unstable when D > 0.5, regardless of the converter topology. The controller can be stabilized by addition of an artificial ramp having slope ma. When m a 0.5 m 2, then the controller is stable for all duty cycle. 3. The behavior of current-programmed converters can be modeled in a simple and intuitive manner by the first-order approximation i L (t) T s i c (t). The averaged terminal waveforms of the switch network can then be modeled simply by a current source of value i c, in conjunction with a power sink or power source element. Perturbation and linearization of these elements leads to the small-signal model. Alternatively, the smallsignal converter equations derived in Chapter 7 can be adapted to cover the current programmed mode, using the simple approximation i L (t) i c (t). Fundamentals of Power Electronics 99 Chapter 12: Current Programmed Control

40 Summary of key points 4. The simple model predicts that one pole is eliminated from the converter line-to-output and control-to-output transfer functions. Current programming does not alter the transfer function zeroes. The dc gains become load-dependent. 5. The more accurate model of Section 12.3 correctly accounts for the difference between the average inductor current i L (t) T s and the control input i c (t). This model predicts the nonzero line-to-output transfer function G vg (s) of the buck converter. The current-programmed controller behavior is modeled by a block diagram, which is appended to the small-signal converter models derived in Chapter 7. Analysis of the resulting multiloop feedback system then leads to the relevant transfer functions. 6. The more accurate model predicts that the inductor pole occurs at the crossover frequency fc of the effective current feedback loop gain T i (s). The frequency f c typically occurs in the vicinity of the converter switching frequency f s. The more accurate model also predicts that the line-to-output transfer function G vg (s) of the buck converter is nulled when m a = 0.5 m 2. Fundamentals of Power Electronics 100 Chapter 12: Current Programmed Control

41 Summary of key points 7. Current programmed converters operating in the discontinuous conduction mode are modeled in Section The averaged transistor waveforms can be modeled by a power sink, while the averaged diode waveforms are modeled by a power source. The power is controlled by i c (t). Perturbation and linearization of these averaged models, as usual, leads to small-signal equivalent circuits. Fundamentals of Power Electronics 101 Chapter 12: Current Programmed Control

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Introduction 11.1. DCM Averaged Switch Model 11.2. Small-Signal AC Modeling of the DCM Switch Network 11.3. High-Frequency

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 1.. Averaged switch modeling with the simple approximation i 1 (t) i (t) i (t) v g (t) v 1 (t)

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1.7. The low-q approximation Given a second-order denominator polynomial, of the form G(s)= 1

More information

Converter System Modeling via MATLAB/Simulink

Converter System Modeling via MATLAB/Simulink Converter System Modeling via MATLAB/Simulink A powerful environment for system modeling and simulation MATLAB: programming and scripting environment Simulink: block diagram modeling environment that runs

More information

Chapter 8: Converter Transfer Functions

Chapter 8: Converter Transfer Functions Chapter 8. Converter Transfer Functions 8.1. Review of Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right half-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 2.4 Cuk converter example L 1 C 1 L 2 Cuk converter, with ideal switch i 1 i v 1 2 1 2 C 2 v 2 Cuk

More information

Part II Converter Dynamics and Control

Part II Converter Dynamics and Control Part II Converter Dynamics and Control 7. AC equivalent circuit modeling 8. Converter transfer functions 9. Controller design 10. Ac and dc equivalent circuit modeling of the discontinuous conduction mode

More information

6.3. Transformer isolation

6.3. Transformer isolation 6.3. Transformer isolation Objectives: Isolation of input and output ground connections, to meet safety requirements eduction of transformer size by incorporating high frequency isolation transformer inside

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Part II" Converter Dynamics and Control! 7.!AC equivalent circuit modeling! 8.!Converter transfer

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder ZOH: Sampled Data Sytem Example v T Sampler v* H Zero-order hold H v o e = 1 T 1 v *( ) = v( jkω

More information

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency 3.1. The dc transformer model 3.2. Inclusion of inductor copper loss 3.3. Construction of equivalent circuit model 3.4. How to

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Objective of Part II! Develop tools for modeling, analysis, and design of converter control systems!

More information

Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters

Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters Bob Erickson and Dragan Maksimovic Colorado Power Electronics Center (CoPEC) University of Colorado, Boulder 80309-0425 http://ece-www.colorado.edu/~pwrelect

More information

Feedback design for the Buck Converter

Feedback design for the Buck Converter Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation

More information

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 1. In the single-phase rectifier shown below in Fig 1a., s = 1mH and I d = 10A. The input voltage v s has the pulse waveform shown

More information

LECTURE 44 Averaged Switch Models II and Canonical Circuit Models

LECTURE 44 Averaged Switch Models II and Canonical Circuit Models ETUE 44 Averaged Switch Models II and anonical ircuit Models A Additional Averaged ossless Switch Models 1 Single Transformer ircuits a buck b boost 2 Double ascade Transformer Models: a Buck Boost b Flyback

More information

Lecture 47 Switch Mode Converter Transfer Functions: Tvd(s) and Tvg(s) A. Guesstimating Roots of Complex Polynomials( this section is optional)

Lecture 47 Switch Mode Converter Transfer Functions: Tvd(s) and Tvg(s) A. Guesstimating Roots of Complex Polynomials( this section is optional) Lecture 47 Switch Mode Converter Transfer Functions: T vd (s) and T vg (s) A. Guesstimating Roots of Complex Polynomials( this section is optional). Quick Insight n=. n th order case. Cuk example 4. Forth

More information

EEL 5245 POWER ELECTRONICS I Lecture #14: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM)

EEL 5245 POWER ELECTRONICS I Lecture #14: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM) EE 545 POWER EECTRONICS I ecture #4: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM) Objectives Overview of Discontinuous Conduction Mode Buck Converter Analysis (DCM) Simulation

More information

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o ----------- ----------- w L =Q - w o πf o w h =Qw o w L ~ RC w h w L f(l) w h f(c) B. Construction from T(s) Asymptotes

More information

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d)

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) 1 ECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) I. Quasi-Static Approximation A. inear Models/ Small Signals/ Quasistatic I V C dt Amp-Sec/Farad V I dt Volt-Sec/Henry 1. Switched

More information

The output voltage is given by,

The output voltage is given by, 71 The output voltage is given by, = (3.1) The inductor and capacitor values of the Boost converter are derived by having the same assumption as that of the Buck converter. Now the critical value of the

More information

The Pennsylvania State University. The Graduate School. Department of Electrical Engineering ANALYSIS OF DC-TO-DC CONVERTERS

The Pennsylvania State University. The Graduate School. Department of Electrical Engineering ANALYSIS OF DC-TO-DC CONVERTERS The Pennsylvania State University The Graduate School Department of Electrical Engineering ANALYSIS OF DC-TO-DC CONVERTERS AS DISCRETE-TIME PIECEWISE AFFINE SYSTEMS A Thesis in Electrical Engineering by

More information

Regulated DC-DC Converter

Regulated DC-DC Converter Regulated DC-DC Converter Zabir Ahmed Lecturer, BUET Jewel Mohajan Lecturer, BUET M A Awal Graduate Research Assistant NSF FREEDM Systems Center NC State University Former Lecturer, BUET 1 Problem Statement

More information

Figure Circuit for Question 1. Figure Circuit for Question 2

Figure Circuit for Question 1. Figure Circuit for Question 2 Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

ANALYSIS OF SMALL-SIGNAL MODEL OF A PWM DC-DC BUCK-BOOST CONVERTER IN CCM.

ANALYSIS OF SMALL-SIGNAL MODEL OF A PWM DC-DC BUCK-BOOST CONVERTER IN CCM. ANALYSIS OF SMALL-SIGNAL MODEL OF A PWM DC-DC BUCK-BOOST CONVERTER IN CCM. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering By Julie J. Lee

More information

Power Electronics

Power Electronics Prof. Dr. Ing. Joachim Böcker Power Electronics 3.09.06 Last Name: Student Number: First Name: Study Program: Professional Examination Performance Proof Task: (Credits) (0) (0) 3 (0) 4 (0) Total (80) Mark

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder Cloed-loop buck converter example: Section 9.5.4 In ECEN 5797, we ued the CCM mall ignal model to

More information

Section 5 Dynamics and Control of DC-DC Converters

Section 5 Dynamics and Control of DC-DC Converters Section 5 Dynamics and ontrol of D-D onverters 5.2. Recap on State-Space Theory x Ax Bu () (2) yxdu u v d ; y v x2 sx () s Ax() s Bu() s ignoring x (0) (3) ( si A) X( s) Bu( s) (4) X s si A BU s () ( )

More information

ECE1750, Spring Week 11 Power Electronics

ECE1750, Spring Week 11 Power Electronics ECE1750, Spring 2017 Week 11 Power Electronics Control 1 Power Electronic Circuits Control In most power electronic applications we need to control some variable, such as the put voltage of a dc-dc converter,

More information

Computationally efficient models for simulation of non-ideal DC DC converters operating in continuous and discontinuous conduction modes

Computationally efficient models for simulation of non-ideal DC DC converters operating in continuous and discontinuous conduction modes Sādhanā Vol. 40, Part 7, October 2015, pp. 2045 2072. c Indian Academy of Sciences Computationally efficient models for simulation of non-ideal DC DC converters operating in continuous and discontinuous

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

Averaged dynamics of a coupled-inductor boost converter under sliding mode control using a piecewise linear complementarity model

Averaged dynamics of a coupled-inductor boost converter under sliding mode control using a piecewise linear complementarity model IMA Journal of Applied Mathematics (5) Page of doi:.93/imamat/dri7 Averaged dynamics of a coupledinductor boost converter under sliding mode control using a piecewise linear complementarity model NILIANA

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1. Review of Bode plots Decibels Table 8.1. Expressing magnitudes in decibels G db = 0 log 10

More information

Generalized Analysis for ZCS

Generalized Analysis for ZCS Generalized Analysis for ZCS The QRC cells (ZCS and ZS) analysis, including the switching waveforms, can be generalized, and then applies to each converter. nstead of analyzing each QRC cell (L-type ZCS,

More information

EE Branch GATE Paper 2010

EE Branch GATE Paper 2010 Q.1 Q.25 carry one mark each 1. The value of the quantity P, where, is equal to 0 1 e 1/e 2. Divergence of the three-dimensional radial vector field is 3 1/r 3. The period of the signal x(t) = 8 is 0.4

More information

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits Prof. Anyes Taffard Physics 120/220 Voltage Divider Capacitor RC circuits Voltage Divider The figure is called a voltage divider. It s one of the most useful and important circuit elements we will encounter.

More information

Sliding-Mode Control of the DC-DC Ćuk Converter in Discontinuous Conduction Mode

Sliding-Mode Control of the DC-DC Ćuk Converter in Discontinuous Conduction Mode Sliding-Mode Control of the DC-DC Ćuk Converter in Discontinuous Conduction Mode Vadood Hajbani, Mahdi Salimi 2 Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran. Email:

More information

Chapter 8: Converter Transfer Functions

Chapter 8: Converter Transfer Functions Chapter 8. Converter Transer Functions 8.1. Review o Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right hal-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.

More information

Teaching of Switch-Mode Power Electronics Using A Building-Block Approach, Assisted by PSpice Modeling

Teaching of Switch-Mode Power Electronics Using A Building-Block Approach, Assisted by PSpice Modeling Teaching of SwitchMode Power Electronics Using BuildingBlock pproach, ssisted by PSpice Modeling [, 2] Ned Mohan Email: mohan@ece.umn.edu Department of ECE University of Minnesota Minneapolis, MN 55455

More information

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Lecture - 19 Modeling DC-DC convertors Good day to all of you. Today,

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

LECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A.

LECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A. ETUE 12 ossy onverters (Static State osses but Neglecting Switching osses) HW #2 Erickson hapter 3 Problems 6 & 7 A. General Effects Expected: (load) as (load) B. Switch and esistive osses hange M(D) Modified

More information

Switching Flow Graph Model

Switching Flow Graph Model Switching Flow Graph Model Keyue Smedley Power Electronics Laboratory University of California Irvine Smedley@uci.edu Switching flow graph model Modeling of single phase active power filter 2 Switching

More information

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve ISPACS2017 Paper 2017 ID 21 Nov. 9 NQ-L5 Paper ID 21, Estimation of Circuit Component Values in Buck Converter using Efficiency Curve S. Sakurai, N. Tsukiji, Y. Kobori, H. Kobayashi Gunma University 1/36

More information

Chapter 7 DC-DC Switch-Mode Converters

Chapter 7 DC-DC Switch-Mode Converters Chapter 7 DC-DC Switch-Mode Converters dc-dc converters for switch-mode dc power supplies and dc-motor drives 7-1 Block Diagram of DC-DC Converters Functional block diagram 7-2 Stepping Down a DC Voltage

More information

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 = ECE 3050A, Spring 2004 Page Problem (20 points This problem must be attempted) The simplified schematic of a feedback amplifier is shown. Assume that all transistors are matched and g m ma/v and r ds.

More information

Lecture 50 Changing Closed Loop Dynamic Response with Feedback and Compensation

Lecture 50 Changing Closed Loop Dynamic Response with Feedback and Compensation Lecture 50 Changing Closed Loop Dynamic Response with Feedback and Compensation 1 A. Closed Loop Transient Response Waveforms 1. Standard Quadratic T(s) Step Response a. Q > 1/2 Oscillatory decay to a

More information

Elements of Power Electronics PART I: Bases

Elements of Power Electronics PART I: Bases Elements of Power Electronics PART I: Bases Fabrice Frébel (fabrice.frebel@ulg.ac.be) September 21 st, 2017 Goal and expectations The goal of the course is to provide a toolbox that allows you to: understand

More information

To find the step response of an RC circuit

To find the step response of an RC circuit To find the step response of an RC circuit v( t) v( ) [ v( t) v( )] e tt The time constant = RC The final capacitor voltage v() The initial capacitor voltage v(t ) To find the step response of an RL circuit

More information

Electrical Circuits (2)

Electrical Circuits (2) Electrical Circuits (2) Lecture 7 Transient Analysis Dr.Eng. Basem ElHalawany Extra Reference for this Lecture Chapter 16 Schaum's Outline Of Theory And Problems Of Electric Circuits https://archive.org/details/theoryandproblemsofelectriccircuits

More information

7.3 State Space Averaging!

7.3 State Space Averaging! 7.3 State Space Averaging! A formal method for deriving the small-signal ac equations of a switching converter! Equivalent to the modeling method of the previous sections! Uses the state-space matrix description

More information

GATE 2010 Electrical Engineering

GATE 2010 Electrical Engineering GATE 2010 Electrical Engineering Q.1 Q.25 carry one mark each 1. The value of the quantity P, where P = xe dx, is equal to (A) 0 (B) 1 (C) e (D) 1/e 2. Divergence of the three-dimensional radial vector

More information

I R TECHNICAL RESEARCH REPORT. Sampled-Data Modeling and Analysis of PWM DC-DC Converters Under Hysteretic Control. by C.-C. Fang, E.H.

I R TECHNICAL RESEARCH REPORT. Sampled-Data Modeling and Analysis of PWM DC-DC Converters Under Hysteretic Control. by C.-C. Fang, E.H. TECHNICAL RESEARCH REPORT Sampled-Data Modeling and Analysis of PWM DC-DC Converters Under Hysteretic Control by C.-C. Fang, E.H. Abed T.R. 98-56 I R INSTITUTE FOR SYSTEMS RESEARCH ISR develops, applies

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory Session 2

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

The Usage of the Digital Controller in Regulating Boost Converter

The Usage of the Digital Controller in Regulating Boost Converter Circuits and Systems, 205, 6, 268-279 Published Online December 205 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/0.4236/cs.205.62027 The Usage of the Digital Controller in Regulating Boost

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators

More information

Chapter 14: Inductor design

Chapter 14: Inductor design Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure 14.3 Multiple-winding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points

More information

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject

More information

Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors

Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors Lecture 12: nductors nductors Hydraulic analogy Duality with capacitor Charging and discharging Robert R. McLeod, University of Colorado http://hilaroad.com/camp/projects/magnet.html 99 Lecture 12: nductors

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1)

LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1) CIRCUITS by Ulaby & Maharbiz LECTURE 8 RC AND RL FIRST-ORDER CIRCUITS (PART 1) 07/18/2013 ECE225 CIRCUIT ANALYSIS All rights reserved. Do not copy or distribute. 2013 National Technology and Science Press

More information

Electronics. Basics & Applications. group talk Daniel Biesinger

Electronics. Basics & Applications. group talk Daniel Biesinger Electronics Basics & Applications group talk 23.7.2010 by Daniel Biesinger 1 2 Contents Contents Basics Simple applications Equivalent circuit Impedance & Reactance More advanced applications - RC circuits

More information

First-order transient

First-order transient EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

More information

Electric Circuits I FINAL EXAMINATION

Electric Circuits I FINAL EXAMINATION EECS:300, Electric Circuits I s6fs_elci7.fm - Electric Circuits I FINAL EXAMINATION Problems Points.. 3. 0 Total 34 Was the exam fair? yes no 5//6 EECS:300, Electric Circuits I s6fs_elci7.fm - Problem

More information

Lab #4 Capacitors and Inductors. Capacitor Transient and Steady State Response

Lab #4 Capacitors and Inductors. Capacitor Transient and Steady State Response Capacitor Transient and Steady State Response Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all be represented

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

B. T(s) Modification Design Example 1. DC Conditions 2. Open Loop AC Conditions 3. Closed Loop Conditions

B. T(s) Modification Design Example 1. DC Conditions 2. Open Loop AC Conditions 3. Closed Loop Conditions Lecture 51 Tailoring Dynamic Response with Compensation A. Compensation Networks 1. Overview of G c (Alterations and Tailoring) a. Crude Single Pole G C Tailoring b. Elegant Double Pole/Double Zero G C

More information

Modeling Buck Converter by Using Fourier Analysis

Modeling Buck Converter by Using Fourier Analysis PIERS ONLINE, VOL. 6, NO. 8, 2010 705 Modeling Buck Converter by Using Fourier Analysis Mao Zhang 1, Weiping Zhang 2, and Zheng Zhang 2 1 School of Computing, Engineering and Physical Sciences, University

More information

ECE2210 Final given: Fall 13

ECE2210 Final given: Fall 13 ECE22 Final given: Fall 3. (23 pts) a) Draw the asymptotic Bode plot (the straight-line approximation) of the transfer function below. Accurately draw it on the graph provided. You must show the steps

More information

EE 410/510: Electromechanical Systems Chapter 4

EE 410/510: Electromechanical Systems Chapter 4 EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies

More information

I R TECHNICAL RESEARCH REPORT. Poles and Zeros for Sampled-Data Duty-Ratio-to-Output Dynamics of Buck and Boost Converters. by C.-C. Fang T.R.

I R TECHNICAL RESEARCH REPORT. Poles and Zeros for Sampled-Data Duty-Ratio-to-Output Dynamics of Buck and Boost Converters. by C.-C. Fang T.R. TECHNICAL RESEARCH REPORT Poles and Zeros for Sampled-Data Duty-Ratio-to-Output Dynamics of Buck and Boost Converters by C.-C. Fang T.R. 99-6 I R INSTITUTE FOR SYSTEMS RESEARCH ISR develops, applies and

More information

Modeling, Analysis and Control of an Isolated Boost Converter for System Level Studies

Modeling, Analysis and Control of an Isolated Boost Converter for System Level Studies 1 Modeling, Analysis and Control of an Isolated Boost Converter for System Level Studies Bijan Zahedi, Student Member, IEEE, and Lars E. Norum, Senior Member, IEEE Abstract-- This paper performs a modeling

More information

ECE3050 Assignment 7

ECE3050 Assignment 7 ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linear-log scales for the phase plots. On the magnitude

More information

15.1 Transformer Design: Basic Constraints. Chapter 15: Transformer design. Chapter 15 Transformer Design

15.1 Transformer Design: Basic Constraints. Chapter 15: Transformer design. Chapter 15 Transformer Design Chapter 5 Transformer Design Some more advanced design issues, not considered in previous chapter: : n Inclusion of core loss Selection of operating flux density to optimize total loss Multiple winding

More information

Electric Circuits I. Inductors. Dr. Firas Obeidat

Electric Circuits I. Inductors. Dr. Firas Obeidat Electric Circuits I Inductors Dr. Firas Obeidat 1 Inductors An inductor is a passive element designed to store energy in its magnetic field. They are used in power supplies, transformers, radios, TVs,

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS. 8 Electrical Engineering RIB-R T7 Session 08-9 S.No. : 9078_LS RIB Rank Improvement Batch ELECTRICL ENGINEERING nalog Electronics NSWERS. (d) 7. (a) 3. (c) 9. (a) 5. (d). (d) 8. (c) 4. (c) 0. (c) 6. (b)

More information

34 Control Methods for Switching Power Converters

34 Control Methods for Switching Power Converters 4 Control Methods for Switching Power Converters J. Fernando Silva, Ph.D. and Sónia Ferreira Pinto, Ph.D. Instituto Superior Técnico, DEEC, CAUTL, Laboratório Máquinas Eléctricas e Electrónica de Potência,

More information

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s ECE 54: Session 5; Page / Spring 04 ECE 54: Lecture 5 Reducing Capacitor Switching Transients Define units: MW 000kW MVA MW MVAr MVA Example : f 60Hz ω πf ω 76.99 rad s t 0 0.00000sec 60 sec Add inductive

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

ECE2262 Electric Circuit

ECE2262 Electric Circuit ECE2262 Electric Circuit Chapter 7: FIRST AND SECOND-ORDER RL AND RC CIRCUITS Response to First-Order RL and RC Circuits Response to Second-Order RL and RC Circuits 1 2 7.1. Introduction 3 4 In dc steady

More information

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER: UNIT VII IASING & STAILIZATION AMPLIFIE: - A circuit that increases the amplitude of given signal is an amplifier - Small ac signal applied to an amplifier is obtained as large a.c. signal of same frequency

More information

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V. When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 14 121011 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Steady-State Analysis RC Circuits RL Circuits 3 DC Steady-State

More information

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week /5/ Physics 6 Lecture Filters Today Basics: Analog versus Digital; Passive versus Active Basic concepts and types of filters Passband, Stopband, Cut-off, Slope, Knee, Decibels, and Bode plots Active Components

More information

Switched Mode Power Conversion

Switched Mode Power Conversion Inductors Devices for Efficient Power Conversion Switches Inductors Transformers Capacitors Inductors Inductors Store Energy Inductors Store Energy in a Magnetic Field In Power Converters Energy Storage

More information

M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]

M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29] M. C. Escher: Waterfall 18/9/2015 [tsl425 1/29] Direct Current Circuit Consider a wire with resistance R = ρl/a connected to a battery. Resistor rule: In the direction of I across a resistor with resistance

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Transient Response of Transmission Lines and TDR/TDT

Transient Response of Transmission Lines and TDR/TDT Transient Response of Transmission Lines and TDR/TDT Tzong-Lin Wu, Ph.D. EMC Lab. Department of Electrical Engineering National Sun Yat-sen University Outlines Why do we learn the transient response of

More information

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33 Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1

More information

Electric Circuits. Overview. Hani Mehrpouyan,

Electric Circuits. Overview. Hani Mehrpouyan, Electric Circuits Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 15 (First Order Circuits) Nov 16 th, 2015 Hani Mehrpouyan (hani.mehr@ieee.org) Boise State c 2015 1 1 Overview

More information