Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

Size: px
Start display at page:

Download "Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller"

Transcription

1 EECS 105 Spring 2017, Module 4 Frequency Response Prof. Ali M. Niknejad Department of EECS

2 Announcements l HW9 due on Friday 2

3 Review: CD with Current Mirror 3

4 Review: CD with Current Mirror 4

5 Review: CD with Current Mirror 5

6 Capacitors in MOS Device C gs = (2 / 3)WLC ox + C ov C gd = C ov C sb = C jsb (area + perimeter) junction C db = C jdb (area + perimeter) junction 6

7 Common-Source Voltage Amplifier Small-signal model: C sb is connected to gnd on both sides, therefore can be ignored R S Can solve problem directly by nodal analysis or using 2-port models of transistor OK if circuit is small (1-2 nodes) 7 We can find the complete transfer function of the circuit, but in many cases it s good enough to get an estimate of the -3dB bandwidth

8 CS Voltage Amp Small-Signal Model Two Nodes! Easy For now we will ignore C db to simplify the math 8

9 Frequency Response KCL at input and output nodes; analysis is made complicated V out = g m r o R L V in 1+ jω /ω p1 [ ]( 1 jω /ω z ) ( )( 1+ jω /ω p2 ) Zero Low-frequency gain: ( ) ( )( 1+ j0) V out = g r R m o L 1 j0 V in 1+ j0 Two Poles g m r o R L ü Zero: ω z = g m C gs + C gd 9

10 Calculating the Poles ω p1 1 R s C gs + ( 1+ g m R out )C gd { } + R out C gd ω p2 R out / R S R S C gs + ( 1+ g m R out )C gd { } + R out C gd Usually >> 1 Results of complete analysis: not exact and little insight 10 These poles are calculated after doing some algebraic manipulations on the circuit. It s hard to get any intuition from the above expressions. There must be an easier way!

11 Method: The Miller Effect 11

12 The Miller Effect 12

13 Using The Miller Effect Effective input capacitance: C in = 1 jωc Miller = 1 1 A v,cgd 1 jωc gd = 1 jω ( 1 A vcgd )C gd 13

14 CS Voltage Amp Small-Signal Model Modified Small-Signal Model with Miller Effect: C gs +C Miller We can approximate the first pole by using Miller capacitance This gives us a good approximation of the -3dB bandwidth 14

15 Comparison with Exact Analysis Miller result (calculate RC time constant of input pole): Exact result: ω p1 1 = R S C gs + ( 1+ g m R out ʹ )C gd ω p1 1 = R S C gs + ( 1+ g m R out ʹ )C gd + R out ʹ C gd As a result of the Miller effect there is a fundamental gain-bandwidth tradeoff 15

16 Common Drain Amplifier Calculate Bandwidth of the Common Drain (Source- Follower) 16 Procedure: 1. Replace current source with MOSFET-based current mirror 2. Draw small-signal model with capacitors (for simplicity, we will focus on C gd and C gs ) 3. Find the DC small-signal gain 4. Use the Miller effect to calculate the input capacitance 5. Calculate the dominant pole

17 Two-Port CC Model with Capacitors R S 17 -Find DC Gain -Find Miller capacitor for C gs -- note that the gate-source capacitor is between the input and output!

18 Voltage Gain Across C gs Write KCL at output node: v out r o r oc = g m v gs = g m (v in v out ) 1 v out + g m r o r = g v m in oc v out v in = r o g m 1 + g r m oc = g m (r o r oc ) 1+ g m (r o r oc ) = A vcgs 18

19 Compute Miller Effected Capacitance Now use the Miller Effect to compute C in : Remember that C gs is the capacitor from the input to the output R S C in = C gd + C M C in = C gd + (1 A vcgs )C gs Miller Cap C in = C gd + (1 g m (r o r oc ) 1+ g m (r o r oc ) )C gs 1 C in = C gd + ( 1+ g m (r o r oc ) )C gs 19 C in C gd (for large g m (r o //r oc ))

20 Bandwidth of Source Follower Input low-pass filter s 3 db frequency: C ω 1 p = R S C gd + gs 1+ g m (r o r oc ) Substitute favorable values of R S, r o : R 1/ S g m r o >>1/ g m ω p 1 1/ g m ( ) C gd + C gs C gd / g m 1+ BIG Very high frequency! Model not valid at these high frequencies ω p g m / C gd 20

21 Some Examples Common source amplifier: A vcgd = Negative, large number (-100) C Miller = (1 A V,Cgd )C gd 100C gd Miller Multiplied Cap has detrimental impact on bandwidth Common drain amplifier: A vcgs = Slightly less than 1 C Miller = (1 A V,Cgs )C gs! 0 Bootstrapped cap has negligible impact on bandwidth! 21

22

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

I. Frequency Response of Voltage Amplifiers

I. Frequency Response of Voltage Amplifiers I. Frequency Response of Voltage Amplifiers A. Common-Emitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o --->, r oc --->, R L ---> Find V BIAS such that I C

More information

The Miller Approximation

The Miller Approximation The Miller Approximation The exact analysis is not particularly helpful for gaining insight into the frequency response... consider the effect of C µ on the input only I t C µ V t g m V t R'out = r o r

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

Chapter 9 Frequency Response. PART C: High Frequency Response

Chapter 9 Frequency Response. PART C: High Frequency Response Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cut-off frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A - β β VXX Q 2

More information

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005 6.02 Microelectronic Devices and Circuits Fall 2005 Lecture 23 Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier December, 2005 Contents:. Introduction 2. Intrinsic frequency response

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

ECEN 326 Electronic Circuits

ECEN 326 Electronic Circuits ECEN 326 Electronic Circuits Frequency Response Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering High-Frequency Model BJT & MOS B or G r x C f C or D r

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

Multistage Amplifier Frequency Response

Multistage Amplifier Frequency Response Multistage Amplifier Frequency Response * Summary of frequency response of single-stages: CE/CS: suffers from Miller effect CC/CD: wideband -- see Section 0.5 CB/CG: wideband -- see Section 0.6 (wideband

More information

Lecture 23 - Frequency Resp onse of Amplifiers (I) Common-Source Amplifier. May 6, 2003

Lecture 23 - Frequency Resp onse of Amplifiers (I) Common-Source Amplifier. May 6, 2003 6.0 Microelectronic Devices and Circuits Spring 003 Lecture 3 Lecture 3 Frequency Resp onse of Amplifiers (I) CommonSource Amplifier May 6, 003 Contents:. Intro duction. Intrinsic frequency resp onse of

More information

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) Metal-Oxide-Semiconductor ield Effect Transistor (MOSET) Source Gate Drain p p n- substrate - SUB MOSET is a symmetrical device in the most general case (for example, in an integrating circuit) In a separate

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

EECS 105: FALL 06 FINAL

EECS 105: FALL 06 FINAL University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 2-3:30 Wednesday December 13, 12:30-3:30pm EECS 105: FALL 06 FINAL NAME Last

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

EE 240B Spring Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models. Elad Alon Dept. of EECS

EE 240B Spring Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models. Elad Alon Dept. of EECS EE 240B Spring 2018 Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models Elad Alon Dept. of EECS Square Law Model? Assumptions made to come up with this model: Charge density determined

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

Exact Analysis of a Common-Source MOSFET Amplifier

Exact Analysis of a Common-Source MOSFET Amplifier Exact Analysis of a Common-Source MOSFET Amplifier Consider the common-source MOSFET amplifier driven from signal source v s with Thévenin equivalent resistance R S and a load consisting of a parallel

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

Voltage AmpliÞer Frequency Response

Voltage AmpliÞer Frequency Response Voltage AmpliÞer Frequency Response Chapter 9 multistage voltage ampliþer 5 V M 7B M 7 M 5 R 35 kω M 6B M 6 Q 4 100 µa X M 3 Q B Q v OUT V s M 1 M 8 M9 V BIAS M 10 Approaches: 1. brute force OCTC -- do

More information

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Text sec 1.2 pp. 28-32; sec 3.2 pp. 128-129 Current source Ideal goal Small signal model: Open

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

ECE 255, Frequency Response

ECE 255, Frequency Response ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.

More information

Sample-and-Holds David Johns and Ken Martin University of Toronto

Sample-and-Holds David Johns and Ken Martin University of Toronto Sample-and-Holds David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 18 Sample-and-Hold Circuits Also called track-and-hold circuits Often needed in A/D converters

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

Refinements to Incremental Transistor Model

Refinements to Incremental Transistor Model Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for non-ideal transistor behavior Incremental output port resistance Incremental changes

More information

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad Berkeley Matching Networks Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad February 9, 2016 1 / 33 Impedance Matching R S i i i o Z in + v i Matching Network + v o Z out RF design

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

Homework 6 Solutions and Rubric

Homework 6 Solutions and Rubric Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

Lecture 14: Electrical Noise

Lecture 14: Electrical Noise EECS 142 Lecture 14: Electrical Noise Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2008 by Ali M. Niknejad A.M.Niknejad University of California, Berkeley EECS 142 Lecture 14 p.1/20

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

CE/CS Amplifier Response at High Frequencies

CE/CS Amplifier Response at High Frequencies .. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Design of Analog Integrated Circuits Chapter 11: Introduction to Switched- Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers 6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers Michael Perrott Massachusetts Institute of Technology March 8, 2005 Copyright 2005 by Michael H. Perrott Notation for Mean,

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

Lecture 04: Single Transistor Ampliers

Lecture 04: Single Transistor Ampliers Lecture 04: Single Transistor Ampliers Analog IC Design Dr. Ryan Robucci Department of Computer Science and Electrical Engineering, UMBC Spring 2015 Dr. Ryan Robucci Lecture IV 1 / 37 Single-Transistor

More information

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process EECS240 Spring 202 CMOS Cross Section Metal p - substrate p + diffusion Lecture 2: CMOS Technology and Passive Devices Poly n - well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 Today s Lecture

More information

Lecture 06: Current Mirrors

Lecture 06: Current Mirrors Lecture 06: Current Mirrors Analog IC Design Dr. Ryan Robucci Department of Computer Science and Electrical Engineering, UMBC Spring 2015 Dr. Ryan Robucci Lecture VI 1 / 26 Lowered Resistance Looking into

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time

More information

Two-Port Noise Analysis

Two-Port Noise Analysis Berkeley Two-Port Noise Analysis Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2015 by Ali M. Niknejad 1/26 Equivalent Noise Generators v 2 n Noisy Two-Port i 2 n Noiseless Two-Port Any noisy two port

More information

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,

More information

Digital Microelectronic Circuits ( )

Digital Microelectronic Circuits ( ) Digital Microelectronic ircuits (361-1-3021 ) Presented by: Dr. Alex Fish Lecture 5: Parasitic apacitance and Driving a Load 1 Motivation Thus far, we have learned how to model our essential building block,

More information

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multi-stage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f6fs_elct7.fm - Electronics II Final Examination Problems Points. 5. 0 3. 5 Total 40 Was the exam fair? yes no The University of Toledo f6fs_elct7.fm - Problem 5 points Given is

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 EE C245 ME C218 Introduction to MEMS Design Fall 2011 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 12 CMOS Delay & Transient Response

Lecture 12 CMOS Delay & Transient Response EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 12 CMOS Delay & Transient Response Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

More information

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.

More information

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E.

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E. Lecture 070 Stage Frequency esponse I (/0/0) Page 070 LECTUE 070 SINGLESTAGE FEQUENCY ESPONSE I (EADING: GHLM 488504) Objective The objective of this presentation is:.) Illustrate the frequency analysis

More information

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson First, let s take a moment to further explore device matching for current mirrors: I R I 0 Q 1 Q 2 and ask what happens when Q 1 and Q 2 operate at different temperatures. It turns out that grinding through

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

Practice 7: CMOS Capacitance

Practice 7: CMOS Capacitance Practice 7: CMOS Capacitance Digital Electronic Circuits Semester A 2012 MOSFET Capacitances MOSFET Capacitance Components 3 Gate to Channel Capacitance In general, the gate capacitance is similar to a

More information

Charge-Storage Elements: Base-Charging Capacitance C b

Charge-Storage Elements: Base-Charging Capacitance C b Charge-Storage Elements: Base-Charging Capacitance C b * Minority electrons are stored in the base -- this charge q NB is a function of the base-emitter voltage * base is still neutral... majority carriers

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! MOS Capacitances.  Extrinsic.  Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!

More information

CMOS Analog Circuits

CMOS Analog Circuits CMOS Analog Circuits L6: Common Source Amplifier-1 (.8.13) B. Mazhari Dept. of EE, IIT Kanpur 19 Problem statement : Design an amplifier which has the following characteristics: + CC O in R L - CC A 100

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Chapter 2 Switched-Capacitor Circuits

Chapter 2 Switched-Capacitor Circuits Chapter 2 Switched-Capacitor Circuits Abstract his chapter introduces SC circuits. A brief description is given for the main building blocks of a SC filter (operational amplifiers, switches, capacitors,

More information

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2 EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages

More information

The Gradual Channel Approximation for the MOSFET:

The Gradual Channel Approximation for the MOSFET: 6.01 - Electronic Devices and Circuits Fall 003 The Gradual Channel Approximation for the MOSFET: We are modeling the terminal characteristics of a MOSFET and thus want i D (v DS, v GS, v BS ), i B (v

More information

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,

More information

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances EE 435 Lecture 37 Parasitic Capacitances in MOS Devices String DAC Parasitic Capacitances Parasitic Capacitors in MOSFET (will initially consider two) Parasitic Capacitors in MOSFET C GCH Parasitic Capacitors

More information

Chapter 10 Feedback. PART C: Stability and Compensation

Chapter 10 Feedback. PART C: Stability and Compensation 1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there. ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages -9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today

Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today EECS141 1 Hw 8 Posted Last one to be graded Due Friday April 30 Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today EECS141 2 1 6 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 Frequency

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Discussion 5A Transfer Function When we write the transfer function of an arbitrary circuit, it always takes the

More information

Figure 1: MOSFET symbols.

Figure 1: MOSFET symbols. c Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The MOSFET Device Symbols Whereas the JFET has a diode junction between

More information

Circuit Topologies & Analysis Techniques in HF ICs

Circuit Topologies & Analysis Techniques in HF ICs Circuit Topologies & Analysis Techniques in HF ICs 1 Outline Analog vs. Microwave Circuit Design Impedance matching Tuned circuit topologies Techniques to maximize bandwidth Challenges in differential

More information

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00

More information

Stability and Frequency Compensation

Stability and Frequency Compensation 類比電路設計 (3349) - 2004 Stability and Frequency ompensation hing-yuan Yang National hung-hsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analog) SI Circuit Design Spring 2018 ecture 2: MOS ransistor Modeling Sam Palermo Analog & Mixed-Signal Center exas A&M University Announcements If you haven t already, turn in your 0.18um

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information