Physics 2112 Unit 11


 Crystal Burns
 11 months ago
 Views:
Transcription
1 Physics 2112 Unit 11 Today s oncept: ircuits Unit 11, Slide 1
2 Stuff you asked about.. what happens when one resistor is in parallel and one is in series with the capacitor Differential equations are tough trickier than the last few prelectures difference between equations for charging and discharging. How much are we expected to know about all these equations. The time constant and exponential decay The concepts were pretty easy to understand. I feel like adding time into the mix will cause some confusion, but at this point in time (no pun intended) I understand the majority of it (minus the equations for the time dependent graphs. more explanation and examples please. conceptually it makes sense to me, but mathematically i'm a little confused. I need to see some example problems being worked out. Unit 11, Slide 2
3 Kirchoff s oltage ule q battery I 0 Differential Equation ircuit (harging) apacitor uncharged, Switch is moved to position a battery q dq dt 0 a battery b bat q dq dt 1 ( q ) q( t) 1 e t / I( t) I 0 e t / Unit 11, Slide 3
4 Question A circuit is wired up as shown below. The capacitor is initially uncharged and switched S1 and S2 are initially open. Then S1 is closed but S2 remains open. What are  o (voltage across immediately after)  f voltage across a long time after) A) o f B) o 0 f ) o 0 f < D) o f 0 S2 Unit 11, Slide 4
5 Question A circuit is wired up as shown below. The capacitor is initially uncharged and switched S1 and S2 are initially open. Then S1 is closed but S2 remains open. What are  I o (current into immediately after)  I f (current into a long time after) A) I o / I f / B) I o 0 I f / ) I o =/ I f 0 D) I o / I f < / S2 Unit 11, Slide 5
6 lose S 1 at t = 0 (leave S 2 open) 2 S1 S2 I I 0 Q/ 0 At t 0 At t big Unit 11, Slide 6
7 Question A circuit is wired up as shown below. The capacitor is initially uncharged and switched S1 and S2 are initially open. Then both S1 and S2 are closed at once. What are  o (voltage across immediately after)  f voltage across a long time after) A) o f B) o 0 f ) o 0 f < D) o f 0 S2 Unit 11, Slide 7
8 Example 11.1 (harging apacitor) 1 = 1uF 10 1 = 1.2MW What is the charge on the capacitor 1second after the switch is closed? What is the current through the resistor 1 second after the switch is closed? onceptual Idea: Use charging equations for a capacitor. Plan: Find time constant, t Find Q f and I o Put in t=1sec
9 Question (harging apacitor) 10 What is the charge on the capacitor 1second after the switch is closed? 1 = 1uF 1 = 1.2MW Based on what we now so far, what do you think the charge on the capacitor will be at t = 1sec? A) a little bit less than 0.37*10*1uF B) a little bit more than 0.37*10*1uF ) a little bit less than 0.63*10*1uF D) a little bit more than 0.63*10*1uF E) 0
10 Question (harging apacitor) 10 What is the charge on the capacitor 1second after the switch is closed? 1 = 1uF 1 = 1.2MW Based on what we now so far, what do you think the current through the resistor will be at t = 1sec? A) a little bit less than 0.37*10/1.2MW B) a little bit more than 0.37*10/1.2MW ) a little bit less than 0.63*10/1.2MW D) a little bit more than 0.63*10/1.2MW E) 0
11 Example 11.2 (harging apacitor) 1 = 1uF 10 1 = 1.2MW What is the charge on the capacitor 10 seconds after the switch is closed? What is the current through the resistor 10 seconds after the switch is closed? onceptual Idea: Use charging equations for a capactor. Plan: Find time constant, t Find Q f and I o Put in t=1sec
12 Question (harging apacitor) 10 What is the charge on the capacitor 10 second after the switch is closed? 1 = 1uF 1 = 1.2MW Based on what we now so far, what do you think the charge on the capacitor will be at t = 10sec? A) a little bit less than 10*1uF B) a little bit more than 10*1uF ) a little bit less than 0.63*10*1uF D) a little bit more than 0.63*10*1uF E) ~0
13 Question (harging apacitor) 10 What is the current into the capacitor 10 second after the switch is closed? 1 = 1uF 1 = 1.2MW Based on what we now so far, what do you think the current into the capacitor will be at t = 10sec? A) a little bit less than 10/1.2MW B) a little bit more than 10/1.2MW ) a little bit less than 0.63*10/1.2MW D) a little bit more than 0.63*10/1.2MW E) ~0
14 Question In the circuit to the left, after the switch is closed, the capacitor takes a certain amount of time t 1 to reach 63% of its full charge Q 1. What if the capacitor had been twice as big ( 2 =2* 1 ). What could you say about the final full charge and the time it will take to reach 63% of the maximum level? A. The final charge will be greater and the charging time will be greater. B. The final charge will be the same and the charging time will be greater.. The final charge will be less and the charging time will be greater. D. The final charge will be the greater and the charging time will be less. E. The final charge will be less and the charging time will be less.
15 Question In the circuit to the left, after the switch is closed, the capacitor takes a certain amount of time t 1 to reach 63% of its full charge Q 1. What if the resistor had been twice as big ( 2 =2* 1 ). What could you say about the final full charge and the time it will take to reach 63% of the maximum level? A. The final charge will be greater and the charging time will be greater. B. The final charge will be the same and the charging time will be greater.. The final charge will be less and the charging time will be greater. D. The final charge will be the greater and the charging time will be less. E. The final charge will be less and the charging time will be less.
16 ircuit (Discharging) apacitor has q 0, Switch is moved to position b Kirchoff s oltage ule q I 0 Differential Equation q dq dt dt dq Q 0 a battery battery b I q( t) q 0 e t / I( t) I 0 e t / Unit 11, Slide 16
17 Example 11.3 (Discharging apacitor) 1 = 1uF = 1.2MW The switch is held in position 1 for a long time and the capacitor becomes fully charged. It is then flipped to position 2. What is the charge on the capacitor 2 seconds after the switch is flipped? onceptual Idea: Use discharging equations for a capacitor. Plan: Find time constant, t Find Q o Put in t=2sec
18 Example 11.4 (A hallenge) S In this circuit, assume,, and i are known. initially uncharged and then switch S is closed. What is t c, the charging time constant? What is the charge on the capacitor at any time t? There s going to be A LOT of algebra. Let s find some: Limiting ases: Unit 11, Slide 18
19 Question I 1 S In this circuit, initially uncharged and then switch S is closed. Immediately after S is closed, what is I 1, the current through 1? ( A B D E 1 3 ) Why? Draw circuit just after S closed (knowing 0) 1 is in series with the parallel combination of 2 and 3 S Unit 11, Slide 19
20 Question S In this circuit, initially uncharged and then switch S is closed. After S has been closed for a long time, what is I, the current through? Why? A B After a long time in a static circuit, the current through any capacitor approaches 0! This means we edraw circuit with open circuit in middle leg I 1 I 0 3 Unit 11, Slide 20
21 Question S In this circuit, initially uncharged and then switch S is closed. After S has been closed for a long time, what is, the voltage across? A B D E Why? 3 I 3 (/( 1 3 )) I 2 I Unit 11, Slide 21
22 Example 11.4 (A hallenge) S 1 2 I 1 I 2 I got: t c In this circuit, assume,, and i are known. initially uncharged and then switch S is closed.  What is t c, the charging time constant?  What is the charge on the capacitor at any time t? onceptual Idea: Use Kirchhoff s Laws. Get equation that relates Q and dq/dt on capacitor. Plan: Use loops to find I 1 and I 2 in terms of Q,, and s. Note dq/dt = I 1 I 2 Separate variables and integrate to get Q(t) Take derivative to find I heck the limiting cases we just determined Q 1 (1 e 3 t / t 3 ) Unit 11, Slide 22
23 Prediction for Lab Bulb 2 S Bulb 1 What will happen after I close the switch? A) Both bulbs come on and stay on. B) Both bulbs come on but then bulb 2 fades out. ) Both bulbs come on but then bulb 1 fades out. D) Both bulbs come on and then both fade out. Unit 11, Slide 23
24 Prediction for Lab Bulb 2 S Bulb 1 Suppose the switch has been closed a long time. Now what will happen after we open the switch? A) Both bulbs come on and stay on. B) Both bulbs come on but then bulb 2 fades out. ) Both bulbs come on but then bulb 1 fades out. D) Both bulbs come on and then both fade out. Unit 11, Slide 24
25 How do Exponentials Work? Q( t) 0 Q e t Fraction of initial charge that remains Q( t) Q How many time constants worth of time that have elapsed t Unit 11, Slide 25
26 Q( t) Q Q( t) 0 Q e t Time constant: t The bigger t is, the longer it takes to get the same change t Unit 11, Slide 26
27 Question The two circuits shown below contain identical capacitors that hold the same charge at t=0. Which of the following statements best describes the charge remaining on the two capacitors for any time after t=0? A. Q 1 < Q 2 B. Q 1 > Q 2. Q 1 = Q 2 D. Q 1 < Q 2 at first but then Q 1 > Q 2 after long time E. Q 1 < Q 2 at first but then Q 1 > Q 2 after long time Unit 11, Slide 27
Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1
Physics 212 Lecture 11 ircuits hange in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 ircuit harging apacitor uncharged, switch is moved to position a Kirchoff
More informationDirectCurrent Circuits. Physics 231 Lecture 61
DirectCurrent Circuits Physics 231 Lecture 61 esistors in Series and Parallel As with capacitors, resistors are often in series and parallel configurations in circuits Series Parallel The question then
More informationPhysics 2112 Unit 19
Physics 11 Unit 19 Today s oncepts: A) L circuits and Oscillation Frequency B) Energy ) RL circuits and Damping Electricity & Magnetism Lecture 19, Slide 1 Your omments differential equations killing me.
More informationPhysics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors
Physics 2112 Unit 20 Outline: Driven A ircuits Phase of V and I onceputally Mathematically With phasors Electricity & Magnetism ecture 20, Slide 1 Your omments it just got real this stuff is confusing
More informationLab 5 RC Circuits. What You Need To Know: Physics 212 Lab
Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists
More informationPhysics 102: Lecture 7 RC Circuits
Physics 102: Lecture 7 C Circuits Physics 102: Lecture 7, Slide 1 C Circuits Circuits that have both resistors and capacitors: K Na Cl C ε K ε Na ε Cl S With resistance in the circuits, capacitors do not
More informationYour comments. Having taken ece 110 made it easy for me to grasp most of the concepts.
Your comments Having taken ece 110 made it easy for me to grasp most of the concepts. God I can go to bed now. Oh wait I can't cuz EXAM??!?!!111 I know that this course has to move at a fast pace and that
More informationPower lines. Why do birds sitting on a highvoltage power line survive?
Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high
More informationVersion 001 CIRCUITS holland (1290) 1
Version CIRCUITS holland (9) This printout should have questions Multiplechoice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated
More informationMasteringPhysics: Assignment Print View. Problem 30.50
Page 1 of 15 Assignment Display Mode: View Printable Answers phy260s08 homework 13 Due at 11:00pm on Wednesday, May 14, 2008 View Grading Details Problem 3050 Description: A 15cmlong nichrome wire is
More informationLecture 12 Chapter 28 RC Circuits Course website:
Lecture 12 Chapter 28 RC Circuits Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 28: Section 28.9 RC circuits Steady current Timevarying
More informationCourse Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits
ourse Updates http://www.phys.hawaii.edu/~varner/phys272spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this
More informationChapter 7 DirectCurrent Circuits
Chapter 7 DirectCurrent Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 VoltageCurrent Measurements... 8 7.6
More informationPhysics 248, Spring 2009 Lab 7: Capacitors and RCDecay
Name Section Physics 248, Spring 2009 Lab 7: Capacitors and RCDecay Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete
More informationTactics Box 23.1 Using Kirchhoff's Loop Law
PH203 Chapter 23 solutions Tactics Box 231 Using Kirchhoff's Loop Law Description: Knight/Jones/Field Tactics Box 231 Using Kirchhoff s loop law is illustrated Learning Goal: To practice Tactics Box 231
More informationDC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy
DC Circuits Electromotive Force esistor Circuits Connections in parallel and series Kirchoff s ules Complex circuits made easy C Circuits Charging and discharging Electromotive Force (EMF) EMF, E, is the
More informationphysics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION
Chapter 31 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 31 Fundamentals of Circuits Chapter Goal: To understand the fundamental physical principles
More informationSwitch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction
Switch Lab 9. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and
More informationInductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance.
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationElectricity & Optics
Physics 241 Electricity & Optics Lecture 12 Chapter 25 sec. 6, 26 sec. 1 Fall 217 Semester Professor Koltick Circuits With Capacitors C Q = C V V = Q C + V R C, Q Kirchhoff s Loop Rule: V I R V = V I R
More informationPhys 102 Lecture 9 RC circuits
Phys 102 Lecture 9 RC circuits 1 Recall from last time... We solved various circuits with resistors and batteries (also capacitors and batteries) ε R 1 R 2 R 3 R 1 ε 1 ε 2 R 3 What about circuits that
More informationExperiment 8: Capacitance and the Oscilloscope
Experiment 8: Capacitance and the Oscilloscope Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYSLAB 1493/1494/2699 Outline Capacitance: Capacitor
More informationCapacitance, Resistance, DC Circuits
This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple
More informationRC Circuits. Lecture 13. Chapter 31. Physics II. Course website:
Lecture 13 Chapter 31 Physics II RC Circuits Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html Steady current
More informationChapter 19. Electric Current, Resistance, and DC Circuit Analysis
Chapter 19 Electric Current, Resistance, and DC Circuit Analysis I = dq/dt Current is charge per time SI Units: Coulombs/Second = Amps Direction of Electron Flow _ + Direction of Conventional Current:
More informationPhysics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5.
Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. 1. Which one of the following statements best explains why tiny bits of paper are attracted to a charged rubber rod? A) Paper
More informationElectricity and Magnetism DC Circuits ResistanceCapacitance Circuits
Electricity and Magnetism DC Circuits ResistanceCapacitance Circuits Lana Sheridan De Anza College Feb 12, 2018 Last time using Kirchhoff s laws Overview two Kirchhoff trick problems resistancecapacitance
More informationPhysics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor:
Physics 4 Fall 5: Exam #3 Solutions Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will
More informationConcepTest Clicker Questions. Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli
ConcepTest Clicker Questions Chapter 26 Physics: for Scientists & Engineers with Modern Physics, 4th edition Giancoli 2008 Pearson Education, Inc. This work is protected by United States copyright laws
More informationPhysics 220: Worksheet 7
(1 A resistor R 1 =10 is connected in series with a resistor R 2 =100. A current I=0.1 A is present through the circuit. What is the power radiated in each resistor and also in the total circuit? (2 A
More informationChapter 26 & 27. Electric Current and Direct Current Circuits
Chapter 26 & 27 Electric Current and Direct Current Circuits Electric Current and Direct Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination
More informationDirect Current (DC) Circuits
Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be
More informationSuperconductors A class of materials and compounds whose resistances fall to virtually zero below a certain temperature, T C T C is called the critical temperature The graph is the same as a normal metal
More informationInductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits
Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Selfinductance A timevarying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying
More informationElectricity & Magnetism
Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams
More informationFirst Order RC and RL Transient Circuits
First Order R and RL Transient ircuits Objectives To introduce the transients phenomena. To analyze step and natural responses of first order R circuits. To analyze step and natural responses of first
More informationElectrical measurements:
Electrical measurements: Last time we saw that we could define circuits though: current, voltage and impedance. Where the impedance of an element related the voltage to the current: This is Ohm s law.
More informationPhysics 2112 Unit 16
Physics 2112 Unit 16 Concept: Motional EMF Unit 16, Slide 1 Your Comments Hopefully I will understand more after lecture. May be time to open the book. can we go over the conducting loop moving toward
More informationCapacitors GOAL. EQUIPMENT. CapacitorDecay.cmbl 1. Building a Capacitor
PHYSICS EXPERIMENTS 133 Capacitor 1 Capacitors GOAL. To measure capacitance with a digital multimeter. To make a simple capacitor. To determine and/or apply the rules for finding the equivalent capacitance
More informationChapter 30 Self Inductance, Inductors & DC Circuits Revisited
Chapter 30 Self Inductance, Inductors & DC Circuits Revisited SelfInductance and Inductors Self inductance determines the magnetic flux in a circuit due to the circuit s own current. B = LI Every circuit
More informationChapter 23 Revision problem. While we are waiting, please try problem 14 You have a collection of six 1kOhm resistors.
Chapter 23 Revision problem While we are waiting, please try problem 14 You have a collection of six 1kOhm resistors. 1 Electric Circuits Elements of a circuit Circuit topology Kirchhoff s law for voltage
More informationPhysics 212 Midterm 2 Form A
1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 1019 C B. 6.4 1019 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus
More informationDiscussion Question 7A P212, Week 7 RC Circuits
Discussion Question 7A P1, Week 7 RC Circuits The circuit shown initially has the acitor uncharged, and the switch connected to neither terminal. At time t = 0, the switch is thrown to position a. C a
More informationTransient response of RC and RL circuits ENGR 40M lecture notes July 26, 2017 ChuanZheng Lee, Stanford University
Transient response of C and L circuits ENG 40M lecture notes July 26, 2017 ChuanZheng Lee, Stanford University esistor capacitor (C) and resistor inductor (L) circuits are the two types of firstorder
More informationChapter 20 Electric Circuits
Chapter 0 Electric Circuits Chevy olt  Electric vehicle of the future Goals for Chapter 9 To understand the concept of current. To study resistance and Ohm s Law. To observe examples of electromotive
More informationLecture #3. Review: Power
Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is
More informationElectricity and Magnetism DC Circuits ResistanceCapacitance Circuits
Electricity and Magnetism DC Circuits ResistanceCapacitance Circuits Lana Sheridan De Anza College Feb 12, 2018 Last time using Kirchhoff s laws Overview two Kirchhoff trick problems resistancecapacitance
More informationPhysics 212. Lecture 9. Electric Current
Physics 212 Lecture 9 Electric Current Exam Here, Tuesday, June 26, 8 9:30 AM Will begin at 7:30 for those who must leave by 9. Office hours 17 PM, Rm 232 Loomis Bring your ID! Physics 212 Lecture 9,
More informationChapter 31: RLC Circuits. PHY2049: Chapter 31 1
hapter 31: RL ircuits PHY049: hapter 31 1 L Oscillations onservation of energy Topics Damped oscillations in RL circuits Energy loss A current RMS quantities Forced oscillations Resistance, reactance,
More informationPRACTICE EXAM 1 for Midterm 2
PRACTICE EXAM 1 for Midterm 2 Multiple Choice Questions 1) The figure shows three identical lightbulbs connected to a battery having a constant voltage across its terminals. What happens to the brightness
More informationInductance, RL Circuits, LC Circuits, RLC Circuits
Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance
More informationfirst name (print) last name (print) brock id (ab17cd) (lab date)
(ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 1 Capacitance In this Experiment you will learn the relationship between the voltage and charge stored on a capacitor;
More informationChapter 26 DirectCurrent and Circuits.  Resistors in Series and Parallel  Kirchhoff s Rules  Electric Measuring Instruments  RC Circuits
Chapter 26 DirectCurrent and Circuits  esistors in Series and Parallel  Kirchhoff s ules  Electric Measuring Instruments  C Circuits . esistors in Series and Parallel esistors in Series: V ax I V
More informationGr. 11 Physics Electricity
Gr. 11 Physics Electricity This chart contains a complete list of the lessons and homework for Gr. 11 Physics. Please complete all the worksheets and problems listed under Homework before the next class.
More informationChapter 14 CAPACITORS IN AC AND DC CIRCUITS
hapter 14apacitors hapter 14 APAITORS IN A AND D IRUITS So far, all we have discussed have been electrical elements in which the voltage across the element is proportional to the current through the
More informationLab 5 CAPACITORS & RC CIRCUITS
L051 Name Date Partners Lab 5 CAPACITORS & RC CIRCUITS OBJECTIVES OVERVIEW To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance of conducting parallel
More informationConcepTest PowerPoints
ConcepTest PowerPoints Chapter 16 Physics: Principles with Applications, 7 th edition Giancoli 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely
More informationInductance, RL and RLC Circuits
Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic
More informationChapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1
Chapter 20: Electromagnetic Induction PHY2054: Chapter 20 1 Electromagnetic Induction Magnetic flux Induced emf Faraday s Law Lenz s Law Motional emf Magnetic energy Inductance RL circuits Generators and
More informationPhysics 2401 Summer 2, 2008 Exam II
Physics 2401 Summer 2, 2008 Exam II e = 1.60x1019 C, m(electron) = 9.11x1031 kg, ε 0 = 8.845x1012 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x1027 kg. n = nano = 109, µ = micro = 106, m
More informationMultiloop Circuits and Kirchoff's Rules
1 of 8 01/21/2013 12:50 PM Multiloop Circuits and Kirchoff's Rules 71399 Before talking about what a multiloop circuit is, it is helpful to define two terms, junction and branch. A junction is a point
More informationName: Lab Partner: Section:
Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor
More informationELECTRIC CURRENT. Ions CHAPTER Electrons. ELECTRIC CURRENT and DIRECTCURRENT CIRCUITS
LCTRC CURRNT CHAPTR 25 LCTRC CURRNT and DRCTCURRNT CRCUTS Current as the motion of charges The Ampère Resistance and Ohm s Law Ohmic and nonohmic materials lectrical energy and power ons lectrons nside
More informationLecture 3 BRANCHES AND NODES
Lecture 3 Definitions: Circuits, Nodes, Branches Kirchoff s Voltage Law (KVL) Kirchoff s Current Law (KCL) Examples and generalizations RC Circuit Solution 1 Branch: BRANCHES AND NODES elements connected
More informationCapacitor Action. 3. Capacitor Action Theory Support. Electronics  AC Circuits
Capacitor Action Topics covered in this presentation: Capacitors on DC Capacitors on AC Capacitor Charging Capacitor Discharging 1 of 18 Charging a Capacitor (DC) Before looking at how capacitors charge
More informationLecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1
Physics 1 ecture 1 esonance and power in A circuits Physics 1 ecture 1, Slide 1 I max X X = w I max X w e max I max X X = 1/w I max I max I max X e max = I max Z I max I max (X X ) f X X Physics 1 ecture
More informationNotes and Solved Problems for Common Exam 3 (Does not include Induction)
Notes and Solved Problems for Common Exam 3 (Does not include Induction) 8. MULTI LOOP CIRCUITS Key concepts: Multi loop circuits of batteries and resistors: loops, branches and junctions should be distinguished.
More informationEnergy Conservation in Circuits Final Charge on a Capacitor. Recorder Manager Skeptic Energizer
Energy Conservation in Circuits Final Charge on a Capacitor Recorder Manager Skeptic Energizer Using an ammeter Set up a digital multimeter to be an ammeter. Since you will be measuring currents larger
More informationLab 08 Capacitors 2. Figure 2 Series RC circuit with SPDT switch to charge and discharge capacitor.
Lab 08: Capacitors Last edited March 5, 2018 Learning Objectives: 1. Understand the shortterm and longterm behavior of circuits containing capacitors. 2. Understand the mathematical relationship between
More informationReal Analog  Circuits 1 Chapter 6: Lab Projects
6.3.2: Leakage urrents and Electrolytic apacitors eal Analog ircuits 1 hapter 6: Lab Projects Overview: Voltagecurrent relationships for ideal capacitors do not always adequately explain measured capacitor
More informationLab 10: DC RC circuits
Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:
More informationElectric Current & DC Circuits
Electric Current & DC Circuits Circuits Click on the topic to go to that section Conductors Resistivity and Resistance Circuit Diagrams Measurement EMF & Terminal Voltage Kirchhoff's Rules Capacitors*
More information( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t
Objectives: To explore the charging and discharging cycles of RC circuits with differing amounts of resistance and/or capacitance.. Reading: Resnick, Halliday & Walker, 8th Ed. Section. 279 Apparatus:
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 7: R Circuit (modified 4/5/3) OBJECTIVES. To observe electrical oscillations, measure their frequencies, and verify energy
More informationCopyright 2008 Pearson Education, Inc., publishing as Pearson AddisonWesley.
Lights, sound systems, microwave ovens, and computers are all connected by wires to a battery or an electrical outlet. How and why does electric current flow through a wire? Chapter Goal: To learn how
More information12 Chapter Driven RLC Circuits
hapter Driven ircuits. A Sources... . A ircuits with a Source and One ircuit Element... 3.. Purely esistive oad... 3.. Purely Inductive oad... 6..3 Purely apacitive oad... 8.3 The Series ircuit...
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationActive Figure 32.3 (SLIDESHOW MODE ONLY)
RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor
More informationPRACTICE EXAM 2 for Midterm 2
PRACTICE EXAM 2 for Midterm 2 Multiple Choice Questions 1) In the circuit shown in the figure, all the lightbulbs are identical. Which of the following is the correct ranking of the brightness of the bulbs?
More informationKirchhoff s Rules and RC Circuits
PHYSICS II LAB 5 SP212 Kirchhoff s Rules and RC Circuits Pages 10 11 are Appendixes added for extra information. Pages 1 9 only are the Lab instructions. I. Introduction A. Today s Lab will investigate
More informationPhysics 122 Class #26 (4/16/15) Announcements RC Circuits Magnetism
Physics 122 Class #26 (4/16/15) Announcements RC Circuits Magnetism Announcements Read Ch. 32 for Tuesday, excepting sections 32.9, 32.10 Written Homework 31.45, 31.60, 31.70 (due next Thurs) Test #3 is
More informationExperiment FT1: Measurement of Dielectric Constant
Experiment FT1: Measurement of Dielectric Constant Name: ID: 1. Objective: (i) To measure the dielectric constant of paper and plastic film. (ii) To examine the energy storage capacity of a practical capacitor.
More informationActivity 4: The ElectricCircuit Interaction
RECORD SHEET Activity 4: The ElectricCircuit Interaction Name Date Class Key Questions 1. 2. Explore Your Ideas Experiment 1: When does an electriccircuit interaction occur? 1. Draw a picture of the
More informationRC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1
(32.9) We have only been discussing DC circuits so far. However, using a capacitor we can create an RC circuit. In this example, a capacitor is charged but the switch is open, meaning no current flows.
More informationPH2200 Practice Exam II Summer 2003
PH00 Practice Exam II Summer 00 INSTRUCTIONS. Write your name and student identification number on the answer sheet and mark your recitation section.. Please cover your answer sheet at all times.. This
More informationThe RC Time Constant
The RC Time Constant Objectives When a directcurrent source of emf is suddenly placed in series with a capacitor and a resistor, there is current in the circuit for whatever time it takes to fully charge
More informationElectric Current & DC Circuits How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits
Slide 1 / 127 Slide 2 / 127 Electric Current & DC Circuits www.njctl.org Slide 3 / 127 How to Use this File Slide 4 / 127 Electric Current & DC Circuits Each topic is composed of brief direct instruction
More informationPhysics 1502: Lecture 8 Today s Agenda. Today s Topic :
Physics 1502: Lecture 8 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics today: due next Friday Go to masteringphysics.com
More informationELECTRIC CURRENT IN CONDUCTORS CHAPTER  32
1. Q(t) t + Bt + c a) t Q Q 'T ' T t T b) Bt Q B Q 'T' t T c) C [Q] C T ELECTRIC CURRENT IN CONDUCTORS CHPTER  3 1 1 d) Current t dq d t Bt C dt dt t + B 5 5 + 3 53.. No. of electrons per second 16 electrons
More informationElectricity and Light Pre Lab Questions
Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.
More informationSlide 1 / 26. Inductance by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationPhysics Electricity and Magnetism Lecture 06  Capacitance. Y&F Chapter 24 Sec. 16
Physics  lectricity and Magnetism Lecture 6  apacitance Y&F hapter 4 Sec.  6 Overview Definition of apacitance alculating the apacitance Parallel Plate apacitor Spherical and ylindrical apacitors apacitors
More informationChapter 21 Electric Current and Direct Current Circuits
Chapter 21 Electric Current and Direct Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s
More informationChapter 21 Electric Current and Direct Current Circuits
Chapter 21 Electric Current and Direct Current Circuits 1 Overview of Chapter 21 Electric Current and Resistance Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s Rules
More informationNORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I
NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #4: Electronic Circuits I Lab Writeup Due: Mon/Wed/Thu/Fri, Feb. 12/14/15/16, 2018 Background The concepts
More informationAP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to
1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.
More informationCircuits. Electric Current & DC Circuits. Slide 1 / 127. Slide 2 / 127. Slide 3 / 127. Slide 4 / 127. Slide 5 / 127. Slide 6 / 127
Slide 1 / 127 Slide 2 / 127 New Jersey Center for Teaching and Learning Electric Current & DC Circuits www.njctl.org Progressive Science Initiative This material is made freely available at www.njctl.org
More informationPhysics272 Lecture 20. AC Power Resonant Circuits Phasors (2dim vectors, amplitude and phase)
Physics7 ecture 0 A Power esonant ircuits Phasors (dim vectors, amplitude and phase) What is reactance? You can think of it as a frequencydependent resistance. 1 ω For high ω, χ ~0  apacitor looks
More informationA positive value is obtained, so the current is counterclockwise around the circuit.
Chapter 7. (a) Let i be the current in the circuit and take it to be positive if it is to the left in. We use Kirchhoff s loop rule: ε i i ε 0. We solve for i: i ε ε + 6. 0 050.. 4.0Ω+ 80. Ω positive value
More informationPhysics 2112 Unit 6: Electric Potential
Physics 2112 Unit 6: Electric Potential Today s Concept: Electric Potential (Defined in terms of Path Integral of Electric Field) Unit 6, Slide 1 Stuff you asked about: I am very confused about the integrals
More information