EE100Su08 Lecture #9 (July 16 th 2008)

Size: px
Start display at page:

Download "EE100Su08 Lecture #9 (July 16 th 2008)"

Transcription

1 EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart s office hours Midterm #1: Attach a note to the FRONT of your test with your complaint and drop it in HW box Questions? This week: Operational Amplifiers (Op-Amps) Op-Amp Model Negative Feedback for Stability Components around Op-Amp define the Circuit Function Nonlinear circuits Op-Amp from 2-Port Blocks Slide 1

2 The Operational Amplifier The operational amplifier ( op amp ) is a basic building block used in analog circuits. Its behavior is modeled using a dependent source. When combined with resistors, capacitors, and inductors, it can perform various useful functions: amplification/scaling of an input signal sign changing (inversion) of an input signal addition of multiple input signals subtraction of one input signal from another integration (over time) of an input signal differentiation (with respect to time) of an input signal analog filtering nonlinear functions like exponential, log, sqrt, etc Isolate input from output; allow cascading Slide 2

3 Op Amp Terminals 3 signal terminals: 2 inputs and 1 output IC op amps have 2 additional terminals for DC power supplies Common-mode signal= (v 1 v 2 )/2 Differential signal = v 1 -v 2 V positive power supply Inverting input v 2 Non-inverting input v 1 - v 0 output V negative power supply Slide 3

4 Op Amp Notation and Model Slide 4

5 Op Amp Notation and Model Slide 5

6 Op Amp Notation and Model Slide 6

7 Op Amp Notation and Model Slide 7

8 Op Amp Notation and Model Slide 8

9 Op Amp Notation and Model Slide 9

10 Op Amp Notation and Model Slide 10

11 Slide 11

12 Slide 12

13 Slide 13

14 Slide 14

15 Slide 15

16 Summing-Point Constraint Check if under negative feedback Small v i result in large v o Output v o is connected to the inverting input to reduce v i Resulting in v i =0 Summing-point constraint v 1 = v 2 i 1 = i 2 =0 Virtual short circuit Not only voltage drop is 0 (which is short circuit), input current is 0 This is different from short circuit, hence called virtual short circuit. Slide 16

17 Ideal Op-Amp Analysis Technique Assumption 1: The potential between the op-amp input terminals, v () v (-), equals zero. Assumption 2: The currents flowing into the op-amp s two input terminals both equal zero. No Currents R 1 No Potential Difference R 2 VIN EXAMPLE V 0 Slide 17

18 Ideal Op-Analysis: Non-Inverting Amplifier Assumption 1: The potential between the op-amp input terminals, v () v (-), equals zero. Assumption 2: The currents flowing into the op-amp s two input terminals both equal zero. R 1 VIN EXAMPLE KCL with currents in only two branches R 2 V 0 V IN appears here v R v in v in v R out = 1 2 R1 R2 out = v in R1 0 Non-inverting Amplifier Slide 18

19 Ideal voltage amplifier v in - _ R 2 R 1 Non-Inverting Amplifier v 0 v1 = v2 = vin, i1 = i2 = 0 v 2 Use KCL At Node 2. 2 R L Closed loop gain ( v0 v2) ( v2 0) i = = R R 2 1 vo ( R1 R2) A = = v R in Input impedance 1 = A = v i v v v o in in = Slide 19

20 Ideal Op-Amp Analysis: Inverting Amplifier R 1 R 2 I 2 V IN -V R R L V OUT Voltage is V R Only two currents for KCL V V R V R OUT 1 IN = V R V R R R V R 2 OUT = 0 ( V V ) Inverting Amplifier with reference voltage 2 1 in R Slide 20

21 Negative feedback checked Use summing-point constraint i v in - R 1 2 v 2 v 1 _ R 2 Inverting Amplifier v 0 R L v Closed loop gain = Av = v v1 = v2 = 0, i1 = i2 = 0 Use KCL At Node 2. ( vin v2) ( vout v2) i = = R1 R2 Rv 2 o vo = R1 vin Input impedance = = R1 i o in Ideal voltage source independent of load resistor Slide 21

22 Voltage Follower v in - v 2 v 0 _ RL R R i 2 1 = 0 ( v0 v2) ( v2 0) = = R R 2 1 vo ( R1 R2) R2 A = = = 1 = 1 v R R in 1 1 Slide 22

23 Slide 23

24 Slide 24

25 Slide 25

26 Slide 26

27 Slide 27

28 Slide 28

29 Summing Amplifier v 1 R 1 - R 0 - v 2 - R 2 _ v 0 v 3 R 3 Slide 29

30 Difference Amplifier R 2 v R 1 _ v 0 v 2 R 3 R 4 Slide 30

31 Want v o Integrator = K vindt What is the difference between: v in - R C V 0 - Slide 31

32 Differentiator Want R v in - C _ v 0 Slide 32

33 Nonlinear Opamp Circuits Start reading through online notes: Introduction to nonlinear circuit analysis. Outline: Differences between positive and negative feedback. Oscillator circuit. Slide 33

34 High Quality Dependent Source In an Amplifier V AMPLIFIER SYMBOL Differential Amplifier V V A 0 V 0 = A(V V ) AMPLIFIER MODEL Circuit Model in linear region R i V 1 AV 1 V 0 V 0 depends only on input (V V - ) See the utility of this: this Model when used correctly mimics the behavior of an amplifier but omits the complication of the many many transistors and other components. Slide 34

35 Model for Internal Operation A is differential gain or open loop gain Ideal op amp A Ri R = 0 o v 1 Circuit Model i 1 R o i o Common mode gain = 0 ( v v ) = = 2 v = A v A v 1 2 vcm, vd v1 v2 o cm cm d d Since v = A( v v ), A = 0 o 1 2 cm v 2 i 2 _ R i A(v 1 v 2 ) v o Slide 35

36 Model and Feedback Negative feedback connecting the output port to the negative input (port 2) Positive feedback connecting the output port to the positive input (port 1) Input impedance: R looking into the input terminals Output impedance: Impedance in series with the output terminals v 1 v 2 Circuit Model i 1 i 2 R o i o R i v o _ A(v 1 v 2 ) Slide 36

37 Op-Amp and Use of Feedback A very high-gain differential amplifier can function in an extremely linear fashion as an operational amplifier by using negative feedback. R 1 R 2 R 1 R 2 VIN Summing Point Negative feedback Stabilizes the output V 0 V IN R i - V 1 Circuit Model Hambley Example pp. 644 for Power Steering AV 1 V 0 We can show that that for A and R i, V 0 V IN R 1 R 1 R 2 Stable, finite, and independent of the properties of the OP AMP! Slide 37

38 Application: Digital-to-Analog Conversion A DAC can be used to convert the digital representation of an audio signal into an analog voltage that is then used to drive speakers -- so that you can hear it! Weighted-adder D/A converter S4 10K 8V - S3 S2 S1 4-Bit D/A 20K 40K 80K (Transistors are used as electronic switches) 5K V 0 S1 closed if LSB =1 S2 " if next bit = 1 S3 " if " " = 1 S4 " if MSB = 1 Slide 38 Binary number (volts) MSB LSB Analog output

39 Analog Output (V) Characteristic of 4-Bit DAC 0100 Digital Input Slide

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

Midterm 1 Announcements

Midterm Announcements eiew session: 5-8pm TONIGHT 77 Cory Midterm : :30-pm on Tuesday, July Dwelle 45. Material coered HW-3 Attend only your second lab slot this wee EE40 Summer 005: Lecture 9 Instructor:

More information

EE40 Midterm Review Prof. Nathan Cheung

EE40 Midterm Review Prof. Nathan Cheung 10/29/2009 Slide 1 I feel I know the topics but I cannot solve the problems Now what? Slide 2 R L C Properties Slide 3 Ideal Voltage Source *Current depends d on

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,

More information

Operational Amplifiers

Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

D is the voltage difference = (V + - V - ).

1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

More information

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OP-AMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform

More information

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week

/5/ Physics 6 Lecture Filters Today Basics: Analog versus Digital; Passive versus Active Basic concepts and types of filters Passband, Stopband, Cut-off, Slope, Knee, Decibels, and Bode plots Active Components

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

More information

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution)

Georgia Institute of Technology School of Electrical and Computer Engineering Midterm-1 Exam (Solution) ECE-6414 Spring 2012 Friday, Feb. 17, 2012 Duration: 50min First name Solutions Last name Solutions

More information

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.

More information

EE100Su08 Lecture #11 (July 21 st 2008)

EE100Su08 Lecture #11 (July 21 st 2008) Bureaucratic Stuff Lecture videos should be up by tonight HW #2: Pick up from office hours today, will leave them in lab. REGRADE DEADLINE: Monday, July 28 th 2008,

More information

or Op Amps for short

or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Define voltage gain, current gain, transresistance gain, and transconductance gain. Explain the operation

More information

Lecture #3. Review: Power

Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

More information

Electromechanical devices MM2EMD. Lecture 5 Using Operational Amplifiers (opamps) in the real world

University of Nottingham Electromechanical devices MM2EMD Lecture 5 Using Operational Amplifiers (opamps) in the real world Dr. roderick.mackenzie@nottingham.ac.uk Summer 2015 @rcimackenzie Released under

More information

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,

More information

EXTENDING THE RESOLUTION OF PARALLEL DIGITAL-ANALOG CONVERTERS

CMOS Analog IC Design Page 10.3-1 10.3 - EXTENDING THE RESOLUTION OF PARALLEL DIGITAL-ANALOG CONVERTERS TECHNIQUE: Divide the total resolution N into k smaller sub-dacs each with a resolution of N k. Result:

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

Lecture 4: Feedback and Op-Amps

Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,

More information

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters

Lecture 7, ATIK Continuous-time filters 2 Discrete-time filters What did we do last time? Switched capacitor circuits with nonideal effects in mind What should we look out for? What is the impact on system

More information

Homework 3 Solution. Due Friday (5pm), Feb. 14, 2013

University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 3 Solution Due Friday (5pm), Feb. 14, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled

More information

PARALLEL DIGITAL-ANALOG CONVERTERS

CMOS Analog IC Design Page 10.2-1 10.2 - PARALLEL DIGITAL-ANALOG CONVERTERS CLASSIFICATION OF DIGITAL-ANALOG CONVERTERS CMOS Analog IC Design Page 10.2-2 CURRENT SCALING DIGITAL-ANALOG CONVERTERS GENERAL

More information

UC DAVIS. Circuits I Course Outline

UC DAVIS Circuits I Course Outline ENG 17 Professor Spencer Fall 2010 2041 Kemper Hall Lecture: MWF 4:10-5:00, 1003 Giedt Hall 752-6885 Discussion Section 1: W 1:10-2:00, 55 Roessler CRN: 61417 Discussion

More information

E40M Review - Part 1

E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

4/27 Friday. I have all the old homework if you need to collect them.

4/27 Friday Last HW: do not need to turn it. Solution will be posted on the web. I have all the old homework if you need to collect them. Final exam: 7-9pm, Monday, 4/30 at Lambert Fieldhouse F101 Calculator

More information

Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers. Kevin D. Donohue, University of Kentucky 1

Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers Kevin D. Donohue, University of Kentucky Simple circuits with single loops or node-pairs can result

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday

Physics 364, Fall 2012, reading due 2012-09-20. Email your answers to ashmansk@hep.upenn.edu by 11pm on Thursday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: This

More information

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors

Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,

More information

Active Circuits: Life gets interesting

Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

Lecture 1. EE70 Fall 2007

Lecture 1 EE70 Fall 2007 Instructor Joel Kubby (that would be me) Office: BE-249 Office Hours: M,W,F 2-3 PM or by appointment Phone: (831) 459-1073 E-mail: jkubby@soe.ucsc.edu Teaching Assistant Drew Lohn

More information

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

(Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

More information

ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly.

Elec 250: Linear Circuits I 5/4/08 ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly. S.W. Neville Elec 250: Linear Circuits

More information

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

EE 435 ecture 2: Basic Op mp Design - Single Stage ow Gain Op mps 1 Review from last lecture: How does an amplifier differ from an operational amplifier?? Op mp mplifier mplifier used in open-loop applications

More information

Pipelined multi step A/D converters

Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India 04 Nov 2006 Motivation for multi step A/D conversion Flash converters: Area and power consumption increase

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

E2.2 Analogue Electronics

E2.2 Analogue Electronics Instructor : Christos Papavassiliou Office, email : EE 915, c.papavas@imperial.ac.uk Lectures : Monday 2pm, room 408 (weeks 2-11) Thursday 3pm, room 509 (weeks 4-11) Problem,

More information

CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers

6.00 CIRCUITS AN ELECTRONICS ependent Sources and Amplifiers Review Nonlinear circuits can use the node method Small signal trick resulted in linear response Today ependent sources Amplifiers Reading:

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Design Engineering MEng EXAMINATIONS 2016

IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

Edited By : Engr. Muhammad Muizz bin Mohd Nawawi

Edited By : Engr. Muhammad Muizz bin Mohd Nawawi In an electronic circuit, a combination of high voltage (+5V) and low voltage (0V) is usually used to represent a binary number. For example, a binary number

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

OPAMPs I: The Ideal Case

I: The Ideal Case The basic composition of an operational amplifier (OPAMP) includes a high gain differential amplifier, followed by a second high gain amplifier, followed by a unity gain, low impedance,

More information

Examination paper for TFY4185 Measurement Technique/ Måleteknikk

Page 1 of 14 Department of Physics Examination paper for TFY4185 Measurement Technique/ Måleteknikk Academic contact during examination: Patrick Espy Phone: +47 41 38 65 78 Examination date: 15 August

More information

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13

RevisionLecture 1: E1.1 Analysis of Circuits (2014-4530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer

More information

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

Lecture 6, ATIK Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters What did we do last time? Switched capacitor circuits The basics Charge-redistribution analysis Nonidealties

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

Electronic Circuits Summary

Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

EE 435 ecture 2: Basic Op Amp Design - Single Stage ow Gain Op Amps 1 Review from last lecture: How does an amplifier differ from an operational amplifier?? Op Amp Amplifier Amplifier used in open-loop

More information

Active Circuits: Life gets interesting

Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (P AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

Switched Capacitor: Sampled Data Systems

Switched Capacitor: Sampled Data Systems Basic switched capacitor theory How has Anadigm utilised this. Theory-Basic SC and Anadigm-1 Resistor & Charge Relationship I + V - I Resistance is defined in terms

More information

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE NAME. Section 1 2 3 UNIVERSITY OF LAHORE Department of Computer engineering Linear Circuit Analysis Laboratory Manual 2 Compiled by Engr. Ahmad Bilal

More information

Active Circuits: Life gets interesting

Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

Analog and Telecommunication Electronics

Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics D2 - DAC taxonomy and errors» Static and dynamic parameters» DAC taxonomy» DAC circuits» Error sources AY 2015-16

More information

EIT Quick-Review Electrical Prof. Frank Merat

CIRCUITS 4 The power supplied by the 0 volt source is (a) 2 watts (b) 0 watts (c) 2 watts (d) 6 watts (e) 6 watts 4Ω 2Ω 0V i i 2 2Ω 20V Call the clockwise loop currents i and i 2 as shown in the drawing

More information

Lecture 340 Characterization of DACs and Current Scaling DACs (5/1/10) Page 340-1

Lecture 34 Characterization of DACs and Current Scaling DACs (5//) Page 34 LECTURE 34 CHARACTERZATON OF DACS AND CURRENT SCALNG DACS LECTURE ORGANZATON Outline ntroduction Static characterization of DACs

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

- Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 5: Electrical and Electromagnetic System Components The objective of this

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

Electronics II. Final Examination

The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20

EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20 Design Example Continued Continuing our analysis for countdown timer circuit. We know for a capacitor C: I = C dv

More information

Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology

Switched Capacitor Circuits II Dr. Paul Hasler Georgia Institute of Technology Basic Switch-Cap Integrator = [n-1] - ( / ) H(jω) = - ( / ) 1 1 - e -jωt ~ - ( / ) / jωt (z) - z -1 1 (z) = H(z) = - ( / )

More information

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name:

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed Scientific calculators are allowed Complete

More information

Section 4. Nonlinear Circuits

Section 4 Nonlinear Circuits 1 ) Voltage Comparators V P < V N : V o = V ol V P > V N : V o = V oh One bit A/D converter, Practical gain : 10 3 10 6 V OH and V OL should be far apart enough Response Time:

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

Homework Assignment 08

Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Sample-and-Holds David Johns and Ken Martin University of Toronto

Sample-and-Holds David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 18 Sample-and-Hold Circuits Also called track-and-hold circuits Often needed in A/D converters

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

ECE Networks & Systems

ECE 342 1. Networks & Systems Jose E. Schutt Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 What is Capacitance? 1 2 3 Voltage=0 No Charge No Current Voltage build

More information

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome

More information

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon email: callafon@ucsd.edu TA: Younghee Han tel. (858) 8221763/8223457, email: y3han@ucsd.edu class information and lab handouts will be available

More information

EE 435. Lecture 38. DAC Design Current Steering DACs Charge Redistribution DACs ADC Design

EE 435 Lecture 38 DAC Design Current Steering DACs Charge edistribution DACs ADC Design eview from last lecture Current Steering DACs X N Binary to Thermometer ndecoder (all ON) S S N- S N V EF F nherently

More information

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology -Bombay

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology -Bombay Week -01 Module -05 Inverting amplifier and Non-inverting amplifier Welcome to another

More information

Lecture 10, ATIK. Data converters 3

Lecture, ATIK Data converters 3 What did we do last time? A quick glance at sigma-delta modulators Understanding how the noise is shaped to higher frequencies DACs A case study of the current-steering

More information

Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Homework 5. This homework is due February 29, 2016, at Noon.

EECS 16 Designing Information Devices and Systems II Spring 2016 nant Sahai and Michel Maharbiz Homework 5 This homework is due February 29, 2016, at Noon. 1. Homework process and study group Who else

More information

Nyquist-Rate D/A Converters. D/A Converter Basics.

Nyquist-Rate D/A Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 20 D/A Converter Basics. B in D/A is a digital signal (or word), B in b i B in = 2 1

More information

EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3

EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed You may use the equation sheet provided but

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each)

Subject Code: 17333 Model Answer Page 1/ 27 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

ECE2262 Electric Circuits

ECE2262 Electric Circuits Equivalence Chapter 5: Circuit Theorems Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 1 5. 1 Equivalence

More information

Prof. Shayla Sawyer CP08 solution

What does the time constant represent in an exponential function? How do you define a sinusoid? What is impedance? How is a capacitor affected by an input signal that changes over time? How is an inductor

More information

20.2 Design Example: Countdown Timer

EECS 16A Designing Information Devices and Systems I Fall 018 Lecture Notes Note 0 0.1 Design Procedure Now that we ve analyzed many circuits, we are ready to focus on designing interesting circuits to

More information

Electronics. Basics & Applications. group talk Daniel Biesinger

Electronics Basics & Applications group talk 23.7.2010 by Daniel Biesinger 1 2 Contents Contents Basics Simple applications Equivalent circuit Impedance & Reactance More advanced applications - RC circuits

More information

Industrial Technology: Electronic Technology Crosswalk to AZ Math Standards

Page 1 of 1 August 1998 1M-P1 Compare and contrast the real number system and its various subsystems with regard to their structural characteristics. PO 2 PO 3 2.0 Apply mathematics calculations. 2.1 Apply

More information

INSTRUMENTAL ENGINEERING

INSTRUMENTAL ENGINEERING Subject Code: IN Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Section B Section C Section D Section E Section F Section G Section H Section

More information

Topic 4. The CMOS Inverter

Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

More information

Time Varying Circuit Analysis

MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Lecture - 19 Modeling DC-DC convertors Good day to all of you. Today,

More information

FEEDBACK AND STABILITY

FEEDBCK ND STBILITY THE NEGTIVE-FEEDBCK LOOP x IN X OUT x S + x IN x OUT Σ Signal source _ β Open loop Closed loop x F Feedback network Output x S input signal x OUT x IN x F feedback signal x IN x S x

More information

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay Week 05 Module - 05 Tutorial No.4 Welcome everyone my name is Basudev Majumder, I am

More information

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit

More information

Network Topology-2 & Dual and Duality Choice of independent branch currents and voltages: The solution of a network involves solving of all branch currents and voltages. We know that the branch current

More information

Prepare for this experiment!

Notes on Experiment #10 Prepare for this experiment! Read the P-Amp Tutorial before going on with this experiment. For any Ideal p Amp with negative feedback you may assume: V - = V + (But not necessarily

More information