Highly charged ion beams applied to fabrication of Nano-scale 3D structures. Sadao MOMOTA Kochi University of Technology

Size: px
Start display at page:

Download "Highly charged ion beams applied to fabrication of Nano-scale 3D structures. Sadao MOMOTA Kochi University of Technology"

Transcription

1 Highly charged ion beams applied to fabrication of Nano-scale 3D structures Sadao MOMOTA Kochi University of Technology

2 Introduction 1 Prospect of microscopic structures 2D Semiconductor 3D Ex. MEMS

3 Introduction 2 Application of 3D structures MEMS Micro Electro Mechanical System ex. 3-Axis Accelerometer Biochip Mold 20 µm Analog Devices Co.

4 Introduction 2 Application of 3D structures MEMS Micro Electro Mechanical System ex. Micro inspection chip Biochip Mold Hitachi, Ltd.

5 Introduction 2 Application of 3D structures MEMS Micro Electro Mechanical System ex. Pattern transfer 10nm diam. & 60nm pitch SiO 2 /Si PMMA Biochip Mold 100 nm S.Y. Chou et al. J. Vac. Sci. Technol., B15(1997)2897

6 Introduction 3 To be developed Fabrication process with 1. High precision/controllability in vertical direction 2. Efficient and simple process 3. Small-size facility

7 Introduction 4 Hopeful candidate Ion beams because 1. Small angular struggling 2. High reactivity 3. Controllable range

8 Introduction 4 Hopeful candidate Highly Charged Ion (HCI) beams

9 Introduction 4 Hopeful candidate beams Highly Charged Ion (HCI) because of remarkably high reactivity extension of Rp

10 Introduction 4 Hopeful candidate beams Highly Charged Ion (HCI) because of remarkably high reactivity extension of Rp IB litho. & swelling process

11 HCI beams 1 Energy of HCI beams E Pot. of Ar ions E = Ekin. + EPot. 6 4 Kinetic energy Ekin. ~ q E Pot. (kev) Ar 9+ 1 kev Ar keV q

12 HCI beams 1 Energy of HCI beams E Pot. of Ar ions E = Ekin. + EPot. 6 4 Kinetic energy Ekin. ~ q Potential energy EPot. ~ q 2.8 E Pot. (kev) Ar 9+ 1 kev 4 Ar keV q

13 HCI beams 2 Enhanced irradiation effect - Additional energy deposition ex. Nano-diamonds created in HOPG sp 2 -> sp 3 Appl. Phys. Lett. 79 (2001) pp. 3866, T. Meguro et al.

14 HCI beams 3 Extension of R p - Higher accelerability ex. 40 Ar q+ on Si, V=100 kv kev ~100 nm Si

15 HCI beams 3 Extension of R p - Higher accelerability ex. 40 Ar q+ on Si, V=100 kv kev 1,000 kev ~100 nm Si

16 HCI beams 3 Extension of R p - Higher accelerability ex. 40 Ar q+ on Si, V=100 kv kev 1,000 kev ~100 nm Si ~1000 nm

17 IB lithography 1 IB lithography Irr. of Ar-beam Modification of material Stencil mask Etching by BHF/HF Difference in etching rate Sample

18 IB lithography 1 IB lithography Irr. of Ar-beam Modification of material Etching by BHF/HF Difference in etching rate

19 IB lithography 1 IB lithography Irr. of Ar-beam Modification of material Etching by BHF/HF Difference in etching rate

20 IB lithography 1 IB lithography Irr. of Ar-beam Modification of material Etching by BHF/HF Difference in etching rate

21 IB lithography 2 Etching process of SOG Ar 1+ : 90 kev, 6.3x10 13 ions/cm Depth (nm) I II III Eching time (sec) 200 Rev. Sci. Instrum. 79 (2008) 02C302, S. Momota et al.

22 IB lithography 2 Etching process of SOG Ar 1+ : 90 kev, 6.3x10 13 ions/cm Depth (nm) I II III Eching time (sec) 200 Rev. Sci. Instrum. 79 (2008) 02C302, S. Momota et al.

23 IB lithography 2 Etching process of SOG Ar 1+ : 90 kev, 6.3x10 13 ions/cm 2 Depth (nm) T 1 Etching rate I II III Max. Etching depth Initial depth Eching time (sec) 200 Rev. Sci. Instrum. 79 (2008) 02C302, S. Momota et al.

24 IB lithography 3 Reduction of etching time Ar 1+,9+, E = 90 kev T 1 (sec) d Depth (nm) T Eching time (sec) Fluence (ions/cm 2 ) Rev. Sci. Instrum. 79 (2008) 02C302, S. Momota et al.

25 IB lithography 4 Enhanced fabrication depth Ar 1+,9+, E = 90 kev Depth (nm) Max. Etching depth Eching time (sec) 200 Rev. Sci. Instrum. 79 (2008) 02C302, S. Momota et al.

26 IB lithography 4 Enhanced fabrication depth Ar 1+,9+, E = 90 kev Depth (nm) d HCI effect Depth (nm) Max. Etching depth Eching time (sec) Fluence (ions/cm 2 ) Rev. Sci. Instrum. 79 (2008) 02C302, S. Momota et al.

27 IB lithography 5 In case of Si Irradiation of Ar q+ Ar kev, 1.3x10 15 ions/cm 2 V = 60 kv E = 60 ~ 540 kev Cu-Mask (43 43 μm) 120 min. in 46 mass% HF Appl. Surf. Sci. 253 (2007) pp. 3284, N. Kawasegi et al.

28 IB lithography 6 Enhanced etching depth Ar 1~9+ on Si Rev. Sci. Instrum. 79 (2008) 02C302, S. Momota et al.

29 IB lithography 6 Enhanced etching depth Ar 1~9+ on Si Rev. Sci. Instrum. 79 (2008) 02C302, S. Momota et al.

30 IB lithography 6 Enhanced etching depth Ar 1~9+ on Si Defect Ion range E = 480 kev Rev. Sci. Instrum. 79 (2008) 02C302, S. Momota et al.

31 IB lithography 7 Just first step 1st step 2nd step Appl. Surf. Sci. 253 (2007) pp. 3284, N. Kawasegi et al.

32 IB lithography 7 Just first step 1st step 2nd step Appl. Surf. Sci. 253 (2007) pp. 3284, N. Kawasegi et al.

33 Swelling effect 1 Growing swelling structure - MD simulation J. Appl. Phys. 106 (2009) , S. Satake et al x ion/cm x ion/cm x ion/cm 2

34 Swelling effect 2 Growing swelling structure - Experimental results Ar 1+ (50 kev) on Si

35 Swelling effect 2 Growing swelling structure - Experimental results Ar 1+ (50 kev) on Si Expansion Sputtering

36 Swelling effect 3 Energy dependence Ar q+ on Si 50 kev to be published in J. Nanosci. and Nanotech., S. Momota et al.

37 Swelling effect 3 Energy dependence Ar q+ on Si 240 kev 50 kev to be published in J. Nanosci. and Nanotech., S. Momota et al.

38 Swelling effect 4 Control of swelling height Expansion rate x Depth of expanded layer Fluence Element Energy = q x V

39 Conclusions Possibility of HCI beams examined IB litho. Swelling process sputtering, NH and further higher precision crucial application theoretical research

40 Conclusions Possibility of HCI beams examined IB litho. Swelling process sputtering, NH HC ion source ECRIS, EBIS higher intensity/q lower cost and further higher precision crucial application theoretical research Microscopic simulation Molecular dynamics

41 Collaboration with Tokyo Univ. of Sci. Toyoma Univ. Thank you for your attention.

42 Appendices

43 HCI beam facility Prod. of HCIs Separation of q Rev.Sci.Instr. 75(2004) pp. 1497, S. Momota et al.

44 Ion beam lithography In case of SOG Irradiation of Ar q+ q = kev Cu-Mask (43 43 μm) Wet etching BHF (HF, NH 4 F) Surface profile Optical microscopy Profilometer Depth (nm) Surface profile Depth X (μm) observed by Alpha step

45 IB lithography 5 In case of Si Irradiation of Ar q+ q = +1 9 V = 60 kv E = kev Cu-Mask (43 43 μm) Etching 46mass% HF Surface profile AFM Ar kev, 1.3x10 15 ions/cm 2 T etch. = 120 min. Appl. Surf. Sci. 253 (2007) pp. 3284, N. Kawasegi et al.

46 Sputtering Sputtering rate nin nout Emitted atoms!! S =!!!!!!!! = Irradiated ions!! nin nout

47 Sputtering Measurement of S 1.Irradiation of Ar q+ q = ~ 900 kev Number of irradiated ions (A) 2.Meas. of mass before/after irradiation Number of sputtered Ag atoms (B) S = (B) (A)

48 Sputtering Sputtering rate vs. q

49 Nano hardness Nano hardness

50 Nano hardness Mod. of mechanical properties Ar-irradiated sapphire crystal 1.2 IB-induced modification of crystal structure!n a n o - h a r d n e s s! Young modulus etc. f D, max Maximum of the accumulated damage HCI beams enhances modification? Nanohardness (GPa) Virgin crystal Nanohardness Young modulus Young modulus (GPa) Irradiation fluence (x10 15 cm -2 ) Nucl. Instr. and Meth. B 240 (2005) pp. 111, J. Jagielski et al.

51 Nano hardness Softening of Si crystal Nano-indentation meas. Nanohardness [GPa] SiO2 Diff. of NH After irradiation Ar 4+, ions/cm 2 Si Depth [nm] Ref. S.A. Pahlovy, Ph.D Thesis, Kochi Univ. of Tech., 2008

52 Nano hardness Charge state dep. of modification of NH Ref. S.A. Pahlovy, Ph.D Thesis, Kochi Univ. of Tech., 2008

53 Ion source for HCIs : 1 ECRIS (ECR ion source) NANOGAN by PANTECHNIK e - with high E acceleration by ECR process Microwave confinement of ions Mirror mag. field Mag. field Gas

54 Ion source for HCIs : 2 EBIS (Electron beam ion source) dresdenebis by DREEBIT e - with high E e - -beam (~10µmφ, >10keV) produced by electron gun confinement of ions Trapped by ele. field induced by electrodes and e - -beam

55 Ion source for HCIs : 3 ILIS (Intense laser ion source) At present no industrial products, but in future... e - with high E Heated by intense laser confinement of ions No fields for confinement because of high density of e -

SURFACE PROCESSING WITH HIGH-ENERGY GAS CLUSTER ION BEAMS

SURFACE PROCESSING WITH HIGH-ENERGY GAS CLUSTER ION BEAMS SURFACE PROCESSING WITH HIGH-ENERGY GAS CLUSTER ION BEAMS Toshio Seki and Jiro Matsuo, Quantum Science and Engineering Center, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan Abstract Gas cluster

More information

Multiscale modelling of D trapping in W

Multiscale modelling of D trapping in W CMS Multiscale modelling of D trapping in W Kalle Heinola, Tommy Ahlgren and Kai Nordlund Department of Physics and Helsinki Institute of Physics University of Helsinki, Finland Contents Background Plasma-wall

More information

Nanostructures induced by highly charged ions

Nanostructures induced by highly charged ions Nanostructures induced by highly charged ions R. Heller, R. Wilhelm, A. S. ElSaid, S. Facsko Institute for Ion Beam Physics and Materials Research in cooperation with: group of F. Aumayr: W. Meissl, G.

More information

MSN551 LITHOGRAPHY II

MSN551 LITHOGRAPHY II MSN551 Introduction to Micro and Nano Fabrication LITHOGRAPHY II E-Beam, Focused Ion Beam and Soft Lithography Why need electron beam lithography? Smaller features are required By electronics industry:

More information

Analyses of LiNbO 3 wafer surface etched by ECR plasma of CHF 3 & CF 4

Analyses of LiNbO 3 wafer surface etched by ECR plasma of CHF 3 & CF 4 1998 DRY PROCESS SYMPOSIUM VI - 3 Analyses of LiNbO 3 wafer surface etched by ECR plasma of CHF 3 & CF 4 Naoki Mitsugi, Kaori Shima, Masumi Ishizuka and Hirotoshi Nagata New Technology Research Laboratories,

More information

Investigation of the bonding strength and interface current of p-siõn-gaas wafers bonded by surface activated bonding at room temperature

Investigation of the bonding strength and interface current of p-siõn-gaas wafers bonded by surface activated bonding at room temperature Investigation of the bonding strength and interface current of p-siõn-gaas wafers bonded by surface activated bonding at room temperature M. M. R. Howlader, a) T. Watanabe, and T. Suga Research Center

More information

Three Approaches for Nanopatterning

Three Approaches for Nanopatterning Three Approaches for Nanopatterning Lithography allows the design of arbitrary pattern geometry but maybe high cost and low throughput Self-Assembly offers high throughput and low cost but limited selections

More information

High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry

High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry Yoko Tada Kunihiro Suzuki Yuji Kataoka (Manuscript received December 28, 2009) As complementary metal oxide

More information

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur Nova 600 NanoLab Dual beam Focused Ion Beam system @ IITKanpur Dual Beam Nova 600 Nano Lab From FEI company (Dual Beam = SEM + FIB) SEM: The Electron Beam for SEM Field Emission Electron Gun Energy : 500

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

High speed focused ion (and electron) beam nanofabrication

High speed focused ion (and electron) beam nanofabrication High speed focused ion (and electron) beam nanofabrication John Melngailis, Department of Electrical and Computer Engineering and Institute for Research in Electronics and Applied Physics University of

More information

Accurate detection of interface between SiO 2 film and Si substrate

Accurate detection of interface between SiO 2 film and Si substrate Applied Surface Science 253 (2007) 5511 5515 www.elsevier.com/locate/apsusc Accurate detection of interface between SiO 2 film and Si substrate H.X. Qian a, W. Zhou a, *, X.M. Li b, J.M. Miao a, L.E.N.

More information

X-ray photoelectron spectroscopy with a laser-plasma source

X-ray photoelectron spectroscopy with a laser-plasma source Proc. SPIE Vol.3157 (1997) pp.176-183 X-ray photoelectron spectroscopy with a laser-plasma source Toshihisa TOMIE a, Hiroyuki KONDO b, Hideaki SHIMIZU a, and Peixiang Lu a a Electrotechnical Laboratory,

More information

Enhanced High Aspect Ratio Etch Performance With ANAB Technology. Keywords: High Aspect Ratio, Etch, Neutral Particles, Neutral Beam I.

Enhanced High Aspect Ratio Etch Performance With ANAB Technology. Keywords: High Aspect Ratio, Etch, Neutral Particles, Neutral Beam I. Enhanced High Aspect Ratio Etch Performance With ANAB Technology. Keywords: High Aspect Ratio, Etch, Neutral Particles, Neutral Beam I. INTRODUCTION As device density increases according to Moore s law,

More information

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies B. Özyilmaz a, G. Richter, N. Müsgens, M. Fraune, M. Hawraneck, B. Beschoten b, and G. Güntherodt Physikalisches

More information

Nanotechnology Nanofabrication of Functional Materials. Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany

Nanotechnology Nanofabrication of Functional Materials. Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany Nanotechnology Nanofabrication of Functional Materials Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany Contents Part I History and background to nanotechnology Nanoworld Nanoelectronics

More information

Supplementary information for

Supplementary information for Supplementary information for Transverse electric field dragging of DNA in a nanochannel Makusu Tsutsui, Yuhui He, Masayuki Furuhashi, Rahong Sakon, Masateru Taniguchi & Tomoji Kawai The Supplementary

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11231 Materials and Methods: Sample fabrication: Highly oriented VO 2 thin films on Al 2 O 3 (0001) substrates were deposited by reactive sputtering from a vanadium target through reactive

More information

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition Gaetano L Episcopo Scanning Electron Microscopy Focus Ion Beam and Pulsed Plasma Deposition Hystorical background Scientific discoveries 1897: J. Thomson discovers the electron. 1924: L. de Broglie propose

More information

Direct-Write Deposition Utilizing a Focused Electron Beam

Direct-Write Deposition Utilizing a Focused Electron Beam Direct-Write Deposition Utilizing a Focused Electron Beam M. Fischer, J. Gottsbachner, S. Müller, W. Brezna, and H.D. Wanzenboeck Institute of Solid State Electronics, Vienna University of Technology,

More information

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods Application of Positron Annihilation for defects investigations in thin films V. Bondarenko, R. Krause-Rehberg Martin-Luther-University Halle-Wittenberg, Halle, Germany Outlook: Introduction to Positron

More information

EE 143 MICROFABRICATION TECHNOLOGY FALL 2014 C. Nguyen PROBLEM SET #7. Due: Friday, Oct. 24, 2014, 8:00 a.m. in the EE 143 homework box near 140 Cory

EE 143 MICROFABRICATION TECHNOLOGY FALL 2014 C. Nguyen PROBLEM SET #7. Due: Friday, Oct. 24, 2014, 8:00 a.m. in the EE 143 homework box near 140 Cory Issued: Tuesday, Oct. 14, 2014 PROBLEM SET #7 Due: Friday, Oct. 24, 2014, 8:00 a.m. in the EE 143 homework box near 140 Cory Electroplating 1. Suppose you want to fabricate MEMS clamped-clamped beam structures

More information

Plasma modification of nanosphere lithography masks made of polystyrene beads

Plasma modification of nanosphere lithography masks made of polystyrene beads JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 12, No. 3, March 2010, p. 740-744 Plasma modification of nanosphere lithography masks made of polystyrene beads D. GOGEL a, M. WEINL a,b, J. K. N.

More information

Atomic layer deposition of titanium nitride

Atomic layer deposition of titanium nitride Atomic layer deposition of titanium nitride Jue Yue,version4, 04/26/2015 Introduction Titanium nitride is a hard and metallic material which has found many applications, e.g.as a wear resistant coating[1],

More information

Chapter 4. Surface defects created by kev Xe ion irradiation on Ge

Chapter 4. Surface defects created by kev Xe ion irradiation on Ge 81 Chapter 4 Surface defects created by kev Xe ion irradiation on Ge 4.1. Introduction As high energy ions penetrate into a solid, those ions can deposit kinetic energy in two processes: electronic excitation

More information

Chapter 3. Step Structures and Epitaxy on Semiconductor Surfaces

Chapter 3. Step Structures and Epitaxy on Semiconductor Surfaces and Epitaxy on Semiconductor Surfaces Academic and Research Staff Professor Simon G.J. Mochrie, Dr. Ophelia Tsui Graduate Students Seugheon Song, Mirang Yoon 3.1 Introduction Sponsors Joint Services Electronics

More information

Overview of the main nano-lithography techniques

Overview of the main nano-lithography techniques Overview of the main nano-lithography techniques Soraya Sangiao sangiao@unizar.es Outline Introduction: Nanotechnology. Nano-lithography techniques: Masked lithography techniques: Photolithography. X-ray

More information

Heterogeneous vortex dynamics in high temperature superconductors

Heterogeneous vortex dynamics in high temperature superconductors Heterogeneous vortex dynamics in high temperature superconductors Feng YANG Laboratoire des Solides Irradiés, Ecole Polytechnique, 91128 Palaiseau, France. June 18, 2009/PhD thesis defense Outline 1 Introduction

More information

CLUSTER SIZE DEPENDENCE OF SPUTTERING YIELD BY CLUSTER ION BEAM IRRADIATION

CLUSTER SIZE DEPENDENCE OF SPUTTERING YIELD BY CLUSTER ION BEAM IRRADIATION CLUSTER SIZE DEPENDENCE OF SPUTTERING YIELD BY CLUSTER ION BEAM IRRADIATION T. Seki 1,2), T. Murase 1), J. Matsuo 1) 1) Quantum Science and Engineering Center, Kyoto University 2) Collaborative Research

More information

Crystalline Surfaces for Laser Metrology

Crystalline Surfaces for Laser Metrology Crystalline Surfaces for Laser Metrology A.V. Latyshev, Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia Abstract: The number of methodological recommendations has been pronounced to describe

More information

physics/ Sep 1997

physics/ Sep 1997 GLAS-PPE/97-6 28 August 1997 Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, Scotland. Telephone: +44 - ()141 3398855 Fax:

More information

Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application

Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application EUV light source plasma Tin icrodroplet Main pulse (CO2 laser pulse) Pre-pulse (Nd:YAG laser

More information

Fabrication of InP nano pillars by ECR Ar ion irradiation

Fabrication of InP nano pillars by ECR Ar ion irradiation Fabrication of InP nano pillars by ECR Ar ion irradiation D. Paramanik 1,2, T. T. Suzuki 1, N. Ikeda 1, Y. Sugimoto 1, T. Nagai 1, M. Takeguchi 1 and C Van Haesendonck 2 1) National Institute for Materials

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

Perspectives in High Intensity Heavy Ion Sources for Future Heavy Ion Accelerators. L. Sun

Perspectives in High Intensity Heavy Ion Sources for Future Heavy Ion Accelerators. L. Sun IMP Perspectives in High Intensity Heavy Ion Sources for Future Heavy Ion Accelerators L. Sun Institute of Modern Physics, CAS, 730000, Lanzhou, China IPAC 18, April 29~May 4, 2018,Vancouver, CA Preface

More information

Ion beam lithography

Ion beam lithography Ion beam lithography Progress in ion technology spot size

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Secondaryionmassspectrometry

Secondaryionmassspectrometry Secondaryionmassspectrometry (SIMS) 1 Incident Ion Techniques for Surface Composition Analysis Mass spectrometric technique 1. Ionization -Electron ionization (EI) -Chemical ionization (CI) -Field ionization

More information

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for Supporting Information for Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for High-Performance Photodetector Zhenjun Tan,,ǁ, Yue Wu,ǁ, Hao Hong, Jianbo Yin, Jincan Zhang,, Li Lin, Mingzhan

More information

EE-612: Lecture 22: CMOS Process Steps

EE-612: Lecture 22: CMOS Process Steps EE-612: Lecture 22: CMOS Process Steps Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 NCN www.nanohub.org Lundstrom EE-612 F06 1 outline 1) Unit Process

More information

Non-Damage Probing and Analysis of ILD Damage at Scrub Marks

Non-Damage Probing and Analysis of ILD Damage at Scrub Marks 2004 Southwest Test Workshop Non-Damage Probing and Analysis of ILD Damage at Scrub Marks Jun Yorita, T.Haga, Y.Hirata, S.Shimada* (E-mail : yorita-jun@sei.co.jp) Electronics Materials R&D Laboratories

More information

MICRO-FOUR-POINT PROBES IN A UHV SCANNING ELECTRON MICROSCOPE FOR IN-SITU SURFACE-CONDUCTIVITY MEASUREMENTS

MICRO-FOUR-POINT PROBES IN A UHV SCANNING ELECTRON MICROSCOPE FOR IN-SITU SURFACE-CONDUCTIVITY MEASUREMENTS Surface Review and Letters, Vol. 7, Nos. 5 & 6 (2000) 533 537 c World Scientific Publishing Company MICRO-FOUR-POINT PROBES IN A UHV SCANNING ELECTRON MICROSCOPE FOR IN-SITU SURFACE-CONDUCTIVITY MEASUREMENTS

More information

In Situ Observation of Damage Evolution in Polycarbonate under Ion Irradiation with Positrons

In Situ Observation of Damage Evolution in Polycarbonate under Ion Irradiation with Positrons Proc. 2nd Japan-China Joint Workshop on Positron Science JJAP Conf. Proc. 2 (2014) 011103 2014 The Japan Society of Applied Physics In Situ Observation of Damage Evolution in Polycarbonate under Ion Irradiation

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM

NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM A. S. ROUSSETSKI P.N. Lebedev Physical Institute Russian Academy of Sciences, 3 Leninsky prospect, 119991 Moscow,

More information

Südliche Stadtmauerstr. 15a Tel: D Erlangen Fax:

Südliche Stadtmauerstr. 15a Tel: D Erlangen Fax: Curriculum Vitae Lionel Santinacci 19.10.1974 Nationality: French Südliche Stadtmauerstr. 15a Tel: + 49 9131 852 7587 D-91054 Erlangen Fax: + 49 9131 852 7582 Germany e-mail: lionel@ww.uni-erlangen.de

More information

Formation of buried conductive micro-channels in single crystal diamond. with MeV C and He implantation

Formation of buried conductive micro-channels in single crystal diamond. with MeV C and He implantation Formation of buried conductive micro-channels in single crystal diamond with MeV C and He implantation F. Picollo 1, P. Olivero 1 *, F. Bellotti 2, J. A. Lo Giudice 1, G. Amato 2, M. 3, N. Skukan 3, 3,

More information

ETCHING Chapter 10. Mask. Photoresist

ETCHING Chapter 10. Mask. Photoresist ETCHING Chapter 10 Mask Light Deposited Substrate Photoresist Etch mask deposition Photoresist application Exposure Development Etching Resist removal Etching of thin films and sometimes the silicon substrate

More information

Development of a nanostructural microwave probe based on GaAs

Development of a nanostructural microwave probe based on GaAs Microsyst Technol (2008) 14:1021 1025 DOI 10.1007/s00542-007-0484-0 TECHNICAL PAPER Development of a nanostructural microwave probe based on GaAs Y. Ju Æ T. Kobayashi Æ H. Soyama Received: 18 June 2007

More information

Application of the ATOMKI-ECRIS for materials research and prospects of the medical utilization

Application of the ATOMKI-ECRIS for materials research and prospects of the medical utilization Application of the ATOMKI-ECRIS for materials research and prospects of the medical utilization Sándor Biri Institute of Nuclear Research (ATOMKI) ECR Laboratory Debrecen, Hungary Co-authors: ATOMKI: Univ.

More information

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays Abstract #: 983 Program # MI+NS+TuA9 Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays D. A. Tulchinsky, M. H. Kelley, J. J. McClelland, R. Gupta, R. J. Celotta National Institute of Standards

More information

INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL

INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL Prof. Mark J. Kushner Department of Electrical and Computer Engineering 1406 W. Green St. Urbana, IL 61801 217-144-5137 mjk@uiuc.edu http://uigelz.ece.uiuc.edu

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to

More information

Scattering-type near-field microscopy for nanoscale optical imaging

Scattering-type near-field microscopy for nanoscale optical imaging Scattering-type near-field microscopy for nanoscale optical imaging Rainer Hillenbrand Nano-Photonics Group Max-Planck-Institut für Biochemie 82152 Martinsried, Germany Infrared light enables label-free

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supplementary Information Vertical Heterostructures of MoS2 and Graphene Nanoribbons

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

VARIATION OF ION ENERGY FLUX WITH INCREASING WORKING GAS PRESSURES USING FARADAY CUP IN PLASMA FOCUS DEVICE

VARIATION OF ION ENERGY FLUX WITH INCREASING WORKING GAS PRESSURES USING FARADAY CUP IN PLASMA FOCUS DEVICE PK ISSN 0022-2941; CODEN JNSMAC Vol. 48, No.1 & 2 (April & October 2008) PP 65-72 VARIATION OF ION ENERGY FLUX WITH INCREASING WORKING GAS PRESSURES USING FARADAY CUP IN PLASMA FOCUS DEVICE Department

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan

Single ion implantation for nanoelectronics and the application to biological systems. Iwao Ohdomari Waseda University Tokyo, Japan Single ion implantation for nanoelectronics and the application to biological systems Iwao Ohdomari Waseda University Tokyo, Japan Contents 1.History of single ion implantation (SII) 2.Novel applications

More information

Etching: Basic Terminology

Etching: Basic Terminology Lecture 7 Etching Etching: Basic Terminology Introduction : Etching of thin films and sometimes the silicon substrate are very common process steps. Usually selectivity, and directionality are the first

More information

High-density data storage: principle

High-density data storage: principle High-density data storage: principle Current approach High density 1 bit = many domains Information storage driven by domain wall shifts 1 bit = 1 magnetic nanoobject Single-domain needed Single easy axis

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Positron Probe Microanalyzer (PPMA) facilities at AIST

Positron Probe Microanalyzer (PPMA) facilities at AIST Positron Probe Microanalyzer (PPMA) and other accelerator based slow positron facilities at AIST B. E. O Rourke, N. Oshima, A. Kinomura, T. Ohdaira and R. Suzuki National Institute of Advanced Industrial

More information

Improvement of depth resolution of VEPAS by a sputtering technique

Improvement of depth resolution of VEPAS by a sputtering technique Martin Luther University Halle Improvement of depth resolution of VEPAS by a sputtering technique R. Krause Rehberg, M. John, R. Böttger, W. Anwand and A. Wagner Martin Luther University Halle & HZDR Dresden

More information

Development and characterization of 3D semiconductor X-rays detectors for medical imaging

Development and characterization of 3D semiconductor X-rays detectors for medical imaging Development and characterization of 3D semiconductor X-rays detectors for medical imaging Marie-Laure Avenel, Eric Gros d Aillon CEA-LETI, DETectors Laboratory marie-laure.avenel@cea.fr Outlines Problematic

More information

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors M. Grydlik 1, P. Rauter 1, T. Fromherz 1, G. Bauer 1, L. Diehl 2, C. Falub 2, G. Dehlinger 2, H. Sigg 2, D. Grützmacher

More information

Development of a Pixel Detector for Ultra-Cold Neutrons

Development of a Pixel Detector for Ultra-Cold Neutrons Development of a Pixel Detector for Ultra-Cold Neutrons S. Kawasaki,a, G. Ichikawa a, M. Hino d, Y. Kamiya b, M. Kitaguchi d, S. Komamiya a,b, T. Sanuki c, S. Sonoda a a Graduate School of Science, University

More information

Tilted ion implantation as a cost-efficient sublithographic

Tilted ion implantation as a cost-efficient sublithographic Tilted ion implantation as a cost-efficient sublithographic patterning technique Sang Wan Kim 1,a), Peng Zheng 1, Kimihiko Kato 1, Leonard Rubin 2, Tsu-Jae King Liu 1 1 Department of Electrical Engineering

More information

Chapter 2 FABRICATION PROCEDURE AND TESTING SETUP. Our group has been working on the III-V epitaxy light emitting materials which could be

Chapter 2 FABRICATION PROCEDURE AND TESTING SETUP. Our group has been working on the III-V epitaxy light emitting materials which could be Chapter 2 7 FABRICATION PROCEDURE AND TESTING SETUP 2.1 Introduction In this chapter, the fabrication procedures and the testing setups for the sub-micrometer lasers, the submicron disk laser and the photonic

More information

1. Narrative Overview Questions

1. Narrative Overview Questions Homework 4 Due Nov. 16, 010 Required Reading: Text and Lecture Slides on Downloadable from Course WEB site: http://courses.washington.edu/overney/nme498.html 1. Narrative Overview Questions Question 1

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

A new protocol to evaluate the charge collection efficiency degradation in semiconductor devices induced by MeV ions

A new protocol to evaluate the charge collection efficiency degradation in semiconductor devices induced by MeV ions Session 12: Modification and Damage: Contribute lecture O-35 A new protocol to evaluate the charge collection efficiency degradation in semiconductor devices induced by MeV ions Ettore Vittone Physics

More information

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES SHENG F. YEN 1, HAROON LAIS 1, ZHEN YU 1, SHENGDONG LI 1, WILLIAM C. TANG 1,2, AND PETER J. BURKE 1,2 1 Electrical Engineering

More information

In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust

In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust FT/P1-19 In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust T. Hino 1), H. Yoshida 1), M. Akiba 2), S. Suzuki 2), Y. Hirohata 1) and Y. Yamauchi 1) 1) Laboratory of Plasma

More information

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification Nuclear Instruments and Methods in Physics Research B 210 (2003) 250 255 www.elsevier.com/locate/nimb Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

More information

MICRO AND NANOPROCESSING TECHNOLOGIES

MICRO AND NANOPROCESSING TECHNOLOGIES LECTURE 5 MICRO AND NANOPROCESSING TECHNOLOGIES Introduction Ion lithography X-ray lithography Soft lithography E-beam lithography Concepts and processes Lithography systems Masks and resists Chapt.9.

More information

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Center for High Performance Power Electronics Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Dr. Wu Lu (614-292-3462, lu.173@osu.edu) Dr. Siddharth Rajan

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Local Anodic Oxidation with AFM: A Nanometer-Scale Spectroscopic Study with Photoemission Microscopy

Local Anodic Oxidation with AFM: A Nanometer-Scale Spectroscopic Study with Photoemission Microscopy Local Anodic Oxidation with AFM: A Nanometer-Scale Spectroscopic Study with Photoemission Microscopy S. Heun, G. Mori, M. Lazzarino, D. Ercolani,* G. Biasiol, and L. Sorba* Laboratorio Nazionale TASC-INFM,

More information

Spontaneous Pattern Formation from Focused and Unfocused Ion Beam Irradiation

Spontaneous Pattern Formation from Focused and Unfocused Ion Beam Irradiation Mat. Res. Soc. Symp. Proc. Vol. 696 2002 Materials Research Society Spontaneous Pattern Formation from Focused and Unfocused Ion Beam Irradiation Alexandre Cuenat and Michael J. Aziz Division of Engineering

More information

Tailoring of optical properties of LiNbO 3 by ion implantation

Tailoring of optical properties of LiNbO 3 by ion implantation SMR/1758-14 "Workshop on Ion Beam Studies of Nanomaterials: Synthesis, Modification and Characterization" 26 June - 1 July 2006 Tailoring of Optical Properties of LiNbO3 by ion implantation Cinzia SADA

More information

Characteristics of Neutral Beam Generated by a Low Angle Reflection and Its Etch Characteristics by Halogen-Based Gases

Characteristics of Neutral Beam Generated by a Low Angle Reflection and Its Etch Characteristics by Halogen-Based Gases Characteristics of Neutral Beam Generated by a Low Angle Reflection and Its Etch Characteristics by Halogen-Based Gases Geun-Young Yeom SungKyunKwan University Problems of Current Etch Technology Scaling

More information

Velocity-dependent transverse momentum distribution of projectilelike fragments at 95 MeV/u. Sadao MOMOTA Kochi University of Technology

Velocity-dependent transverse momentum distribution of projectilelike fragments at 95 MeV/u. Sadao MOMOTA Kochi University of Technology 5th International Conference on Nuclear ragmentation Oct./-/5, Kemer, Turkey Velocity-dependent transverse momentum distribution of projectilelike fragments at 95 MeV/u Sadao MOMOTA Kochi University of

More information

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region Waseda University Research Institute for Science and Engineering Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region Research Institute for Science

More information

, MgAl 2. and MgO irradiated with high energy heavy ions O 3

, MgAl 2. and MgO irradiated with high energy heavy ions O 3 Surface defects in Al 2, MgAl 2 O 4 and MgO irradiated with high energy heavy ions V.A.Skuratov 1, S.J. Zinkle 2 A.E.Efimov 1, K.Havancsak 3 1 Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

More information

Analysis of Carbon Ion Fragmentation and Angular Fragment Distributions using a flexible set-up

Analysis of Carbon Ion Fragmentation and Angular Fragment Distributions using a flexible set-up Analysis of Carbon Ion Fragmentation and Angular Fragment Distributions using a flexible set-up G. Arico1,2, B. Hartmann2, J. Jakubek3, S. Pospisil3, O. Jäkel1,2,4, M. Martisikova1,2 1 University Clinic

More information

height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm.

height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm. Supplementary Figure 1. Few-layer BN nanosheets. AFM image and the corresponding height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm. Supplementary

More information

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses 2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass Photonic Glass Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses Takumi FUJIWARA Tohoku University Department

More information

doi: info:doi/ /jjapcp

doi: info:doi/ /jjapcp doi: info:doi/10.7567/jjapcp.3.011107 Photoluminescence Enhancement of -FeSi2 Nanocrystals Controlled by Transport of Holes in Cu-Doped N-Type Si Substrates Yoshihito Maeda 1,2 *, Takahide Tatsumi 1, Yuya

More information

Chapter 10. Superconducting Quantum Circuits

Chapter 10. Superconducting Quantum Circuits AS-Chap. 10-1 Chapter 10 Superconducting Quantum Circuits AS-Chap. 10-2 10.1 Fabrication of JJ for quantum circuits AS-Chap. 10-3 Motivation Repetition Current-phase and voltage-phase relation are classical,

More information

Free-Space MEMS Tunable Optical Filter in (110) Silicon

Free-Space MEMS Tunable Optical Filter in (110) Silicon Free-Space MEMS Tunable Optical Filter in (110) Silicon Ariel Lipson & Eric M. Yeatman Optical & Semiconductor Group Outline Device - Optical Filter Optical analysis Fabrication Schematic Fabricated 2

More information

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Supplementary Information Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Hyun Jae Song a, Minhyeok Son a, Chibeom Park a, Hyunseob Lim a, Mark P. Levendorf b,

More information

A.5. Ion-Surface Interactions A.5.1. Energy and Charge Dependence of the Sputtering Induced by Highly Charged Xe Ions T. Sekioka,* M. Terasawa,* T.

A.5. Ion-Surface Interactions A.5.1. Energy and Charge Dependence of the Sputtering Induced by Highly Charged Xe Ions T. Sekioka,* M. Terasawa,* T. A.5. Ion-Surface Interactions A.5.1. Energy and Charge Dependence of the Sputtering Induced by Highly Charged Xe Ions T. Sekioka,* M. Terasawa,* T. Mitamura,* M.P. Stöckli, U. Lehnert, and D. Fry The interaction

More information

ALIGNMENT ACCURACY IN A MA/BA8 GEN3 USING SUBSTRATE CONFORMAL IMPRINT LITHOGRAPHY (SCIL)

ALIGNMENT ACCURACY IN A MA/BA8 GEN3 USING SUBSTRATE CONFORMAL IMPRINT LITHOGRAPHY (SCIL) ALIGNMENT ACCURACY IN A MA/BA8 GEN3 USING SUBSTRATE CONFORMAL IMPRINT LITHOGRAPHY (SCIL) Robert Fader Fraunhofer Institute for Integrated Systems and Device Technology (IISB) Germany Ulrike Schömbs SUSS

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ Lecture

More information

Challenges in electron cyclotron resonance plasma etching of LiNbO3 Surface for fabrication of ridge optical waveguides

Challenges in electron cyclotron resonance plasma etching of LiNbO3 Surface for fabrication of ridge optical waveguides Challenges in electron cyclotron resonance plasma etching of LiNbO3 Surface for fabrication of ridge optical waveguides Naoki Mitsugi and Hirotoshi Nagata a) Optoelectronics Research Division, New Technology

More information

Nanoimprint Lithography

Nanoimprint Lithography Nanoimprint Lithography Wei Wu Quantum Science Research Advanced Studies HP Labs, Hewlett-Packard Email: wei.wu@hp.com Outline Background Nanoimprint lithography Thermal based UV-based Applications based

More information