Secondaryionmassspectrometry

Size: px
Start display at page:

Download "Secondaryionmassspectrometry"

Transcription

1 Secondaryionmassspectrometry (SIMS) 1 Incident Ion Techniques for Surface Composition Analysis

2 Mass spectrometric technique 1. Ionization -Electron ionization (EI) -Chemical ionization (CI) -Field ionization (FI) -Field desorption (FD) - Secondary ion mass spectrometry (SIMS) 2. Fragmentation M+. positive ions negative ions neutral or molecular fragments 3. Ion mass analysis M: fi M+. + e- molecule molecular ion Bulk technique Surface technique Ex. Mass CH +. 4 = MW of CH 4 mass e - 2 = = 16

3 Ionization in SIMS Sputtering process or Ion etching Also called Ion Scattering spectroscopy (ISS) 95% of particles generated from first two layers (~1 nm) (~hundreds evto few kev) Primary ion Collision cascade in near-surface region, resulting in primary and secondary recoils Primary recoils Sample damages throughout the ion track Primary ion is implanted in material Secondary recoils Particles are emitted (sputtered) from the surface. 3

4 At 0 fs PI Primary recoils At 100 fs Secondary ions Time snapshots from a molecular dynamics simulation At 200 fs Secondary ions Secondary recoils 4

5 Sputtering process or Ion etching Useful technique for Oxide layer formed on Ta metal 1) Surface cleaning 2) Depth profiling (for AES and XPS) 3) Spectroscopy through fragment analysis Neutrals (>99%) Secondary neutral mass spectrometry (SNMS) Secondary ions (<1%) Secondary ion mass spectrometry (SIMS) 5

6 Secondary ion mass spectrometry (SIMS) Secondary ions originate from top few atomic layers surface sensitive Positive SIMS Negative SIMS Information from SIMS -Quantitative chemical composition -Structural information Key characteristics of SIMS spectra -Sensitive to isotopic components 6

7 Positive SIMS spectrum from PTFE Structural information from SIMS Fragmentation of PTFE 12 = C + 31 = CF + 50 = CF = C 2 F = C 3 F = C 2 F = C 2 F = C 3 F 5 + 7

8 Extremely low sputtering rate Continuous sputtering negligible surface damage (called non-destructive ) SSIMS The sampling depth of static SIMS is 1-2 nm 8

9 Potentials of SSIMS 1. Polymers fingerprint is related to fragmentation 9

10 Mass spectrum is related to average MW and polydispersity 10

11 11

12 2. Adsorbed molecules Fe exposed to CO gas Fe 2 C 12

13 Energy between 1 30 kev Sputter rate = nm/sec 13

14 Secondary ion yield (implies the SIMS ionization efficiency) = fraction of sputtered atoms that become ionized Elemental effect Low IE high positive ion yield Positive ion High EA high negative ion yield 14

15 Fragmentation of organic substances CH 2 = 14 15

16 16

17 Mass analyzer Quadrupole Most popular mass analyzers 1. Quadrupole 2. Time of flight (TOF) Limitation -typically m/z ranges of 0 to 1000) 4 parallel rods have fixed DC and alternating RF potentials applied to them Ions are passed along the poles and move depending on the electric fields, so that only ions of a particular m/z will be in resonance and passed to detector. 17

18 Time-of of-flight SIMS: How does it work? 2 nd ions are extracted and accelerated through the field-free flight tube All 2 nd ions have same E k E = k 1 2 mv v = (2E k /m) 1/2 2 v a (1/m) 1/2 m/z ranges of to t = L v = m L 2E k t = time of flight

19 Comparison of mass analyzers for SIMS Type Resolution m/ m Mass range Relative sensitivity Quadrupole < TOF > TOF-SIMS with high resolution is useful for identify the fragments having really close m/z. m/z ~15 19

20 Mass interferences High resolution mode M/ M ~ 5000 Positive SIMS spectrum of Silicon bombarded with oxygen ions 20

21 Trace Metal Contamination in semiconductor Low level metal contaminants can have a serious impact on semiconductor device performance. Fig.3: In the example shown above the mass 56 peak has been analyzed with a mass resolution (m/δm) of greater than 15,000 revealing metal and organic contaminants that are present at the same nominal mass as 28Si2+. 21

22 22

23 23

24 1.Surface spectroscopy (static SIMS): TOF-SIMS analysis modes 24

25 25

26 26

27 27

28 28

29 Surface modification Positive ToF-SIMS spectra of Cleaned PTFE and Ar-PTFE x10 6 Cleaned PTFE Intensity C + CF + CF + 2 C 2 F 2 + C 3 F 3 + C 2 F 4 + C 3 F 4 + C 2 F 5 + C 3 F 5 + x10 6 Ar-PTFE Intensity C 3 H + 7 C 3 H + 3 C 5 H + 5 C 4 H + 9 C 6 H 5 + C 9 H m/z In addition to (C x F y ) + fragments, the Ar-PTFE spectrum shows an increase in peaks due to unsaturated hydrocarbon moities 29

30 30

31 31

32 Metals Analysis of the diffusion process of various elements into a polycrystalline metal oxide Mg + :a matrix component of a polycrystalline metal oxide composed of O 2.8 Mg 0.2 Ga 0.8 S 0.2 La 0.2. Y + and Fe + : the element which the surface was covered with for diffusion experiments Matrix component Diffused elements First row: Surface images. Second row: Images at a depth of 595 nm. Third row: Cross section along the green line (given in the top left image). 32

33 33

34 TOF-SIMS Instrument Sample mounting Ion-TofTOF-SIMS IV (Germany) 34

35 35

36 Case study Negative TOFSIMSspectra PMMA Composition in polymer blend Different m/z= 14 PEMA 36

37 Negative TOFSIMSspectra of a copolymer of PMMA and PEMA PEMA PMMA 37

38 Case study Study of micropatterningprocess Fabrication of patterned copper on PTFE via mcp PDMS TMS ink Master PDMS Printed pattern PDMS PTFE optical Achieved 200 µm lines with machined master 4 Metallisation Working on µm lines with Si / SiO 2 master 38 Copper pattern

39 TOFSIMS Images of Cu Patterned PTFE optical (500 x 500 µm 2 ) C CF CF 3 63 Cu 65 Cu Si SiCH 3 SiC 3 H 9 Si 2 C 5 H 15 O Pd 39

40 End of Chapter 40

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS)

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS) 5.16 Incident Ion Techniques for Surface Composition Analysis 5.16.1 Ion Scattering Spectroscopy (ISS) At moderate kinetic energies (few hundred ev to few kev) ion scattered from a surface in simple kinematic

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

IONTOF. Latest Developments in 2D and 3D TOF-SIMS Analysis. Surface Analysis Innovations and Solutions for Industry 2017 Coventry

IONTOF. Latest Developments in 2D and 3D TOF-SIMS Analysis. Surface Analysis Innovations and Solutions for Industry 2017 Coventry Latest Developments in 2D and 3D TOF-SIMS Analysis Surface Analysis Innovations and Solutions for Industry 2017 Coventry 12.10.2017 Matthias Kleine-Boymann Regional Sales Manager matthias.kleine-boymann@iontof.com

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

Introduction to SIMS Basic principles Components Techniques Drawbacks Figures of Merit Variations Resources

Introduction to SIMS Basic principles Components Techniques Drawbacks Figures of Merit Variations Resources Introduction to SIMS Basic principles Components Techniques Drawbacks Figures of Merit Variations Resources New technique for surface chemical analysis. SIMS examines the mass of ions, instead of energy

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) Lasse Vines 1 Secondary ion mass spectrometry O Zn 10000 O 2 Counts/sec 1000 100 Li Na K Cr ZnO 10 ZnO 2 1 0 20 40 60 80 100 Mass (AMU) 10 21 10 20 Si 07 Ge 0.3 Atomic

More information

IV. Surface analysis for chemical state, chemical composition

IV. Surface analysis for chemical state, chemical composition IV. Surface analysis for chemical state, chemical composition Probe beam Detect XPS Photon (X-ray) Photoelectron(core level electron) UPS Photon (UV) Photoelectron(valence level electron) AES electron

More information

Secondary-Ion Mass Spectrometry

Secondary-Ion Mass Spectrometry Principle of SIMS composition depth profiling with surface analysis techniques? Secondary-Ion Mass Spectrometry erosion of specimen surface by energetic particle bombardment sputtering two possibilities

More information

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky 1 Secondary Ion Mass Spectrometry (SIMS) Thomas Sky Depth (µm) 2 Characterization of solar cells 0,0 1E16 1E17 1E18 1E19 1E20 0,2 0,4 0,6 0,8 1,0 1,2 P Concentration (cm -3 ) Characterization Optimization

More information

Lecture 11 Surface Characterization of Biomaterials in Vacuum

Lecture 11 Surface Characterization of Biomaterials in Vacuum 1 Lecture 11 Surface Characterization of Biomaterials in Vacuum The structure and chemistry of a biomaterial surface greatly dictates the degree of biocompatibility of an implant. Surface characterization

More information

ToF-SIMS or XPS? Xinqi Chen Keck-II

ToF-SIMS or XPS? Xinqi Chen Keck-II ToF-SIMS or XPS? Xinqi Chen Keck-II 1 Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) Not ToF MS (laser, solution) X-ray Photoelectron Spectroscopy (XPS) 2 3 Modes of SIMS 4 Secondary Ion Sputtering

More information

Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis

Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis General overview of SIMS - principles, ionization, advantages & limitations SIMS as a surface analysis technique - operation modes, information

More information

Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis

Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis General overview of SIMS - principles, ionization, advantages & limitations SIMS as a surface analysis technique - operation modes, information

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

Application of Surface Analysis for Root Cause Failure Analysis

Application of Surface Analysis for Root Cause Failure Analysis Application of Surface Analysis for Root Cause Failure Analysis David A. Cole Evans Analytical Group East Windsor, NJ Specialists in Materials Characterization Outline Introduction X-Ray Photoelectron

More information

ION BEAM TECHNIQUES. Ion beam characterization techniques are illustrated in Fig

ION BEAM TECHNIQUES. Ion beam characterization techniques are illustrated in Fig ION BEAM TECHNIQUES Ion beam characterization techniques are illustrated in Fig. 11.21. 1 ION BEAM TECHNIQUES Incident ions are absorbed, emitted, scattered, or reflected leading to light, electron or

More information

Surface analysis techniques

Surface analysis techniques Experimental methods in physics Surface analysis techniques 3. Ion probes Elemental and molecular analysis Jean-Marc Bonard Academic year 10-11 3. Elemental and molecular analysis 3.1.!Secondary ion mass

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

Surface Characterization of Advanced Polymers

Surface Characterization of Advanced Polymers Surface Characterization of Advanced Polymers Edited by Luigia Sabbatini and Pier Giorgio Zambonin VCH Weinheim New York Basel Cambridge Tokyo 1 Spectroscopies for Surface Characterization 1 E. Desimoni

More information

Surface Analysis - The Principal Techniques

Surface Analysis - The Principal Techniques Surface Analysis - The Principal Techniques Edited by John C. Vickerman Surface Analysis Research Centre, Department of Chemistry UMIST, Manchester, UK JOHN WILEY & SONS Chichester New York Weinheim Brisbane

More information

Sputtering by Particle Bombardment

Sputtering by Particle Bombardment Rainer Behrisch, Wolfgang Eckstein (Eds.) Sputtering by Particle Bombardment Experiments and Computer Calculations from Threshold to MeV Energies With 201 Figures e1 Springer Contents Introduction and

More information

SNMS. SNMS Applications. Combined SIMS and SNMS

SNMS. SNMS Applications. Combined SIMS and SNMS Hiden SIMS SNMS Sputtered Neutral Mass Spectrometry is a quantitative technique using essentially the same instrumentation as SIMS. However, instead of detecting the secondary ions which are formed at

More information

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics Mass spectrometry (MS) is the technique for protein identification and analysis by production of charged molecular species in vacuum, and their separation by magnetic and electric fields based on mass

More information

Secondary Ion-Mass Spectroscopy (SIMS)

Secondary Ion-Mass Spectroscopy (SIMS) Secondary Ion-Mass Spectroscopy (SIMS) Prof. Bing-Yue Tsui ( 崔秉鉞 ) Department of Electronics Engineering and Institute of Electronics National Chiao-Tung University 1 Outline Introduction to SIMS Instruments

More information

Introduction to GC/MS

Introduction to GC/MS Why Mass Spectrometry? Introduction to GC/MS A powerful analytical technique used to: 1.Identify unknown compounds 2. Quantify known materials down to trace levels 3. Elucidate the structure of molecules

More information

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy Introduction Principles Instrumentation Qualitative analysis Quantitative analysis Depth profiling Mapping Examples The Auger

More information

In-situ Ar Plasma Cleaning of Samples Prior to Surface Analysis

In-situ Ar Plasma Cleaning of Samples Prior to Surface Analysis In-situ Ar Plasma Cleaning of Samples Prior to Surface Analysis GE Global Research Vincent S. Smentkowski, Cameron Moore and Hong Piao 04GRC955, October 04 Public (Class ) Technical Information Series

More information

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Chemistry Instrumental Analysis Lecture 34. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 34 From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene experiment CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can we get from MS spectrum?

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can be obtained from a MS spectrum?

More information

ECE Semiconductor Device and Material Characterization

ECE Semiconductor Device and Material Characterization ECE 4813 Semiconductor Device and Material Characterization Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology As with all of these lecture slides, I am indebted

More information

Harris: Quantitative Chemical Analysis, Eight Edition

Harris: Quantitative Chemical Analysis, Eight Edition Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 21: MASS SPECTROMETRY CHAPTER 21: Opener 21.0 Mass Spectrometry Mass Spectrometry provides information about 1) The elemental composition of

More information

S. Ichikawa*, R. Kuze, T. Shimizu and H. Shimaoka INTRODUCTION

S. Ichikawa*, R. Kuze, T. Shimizu and H. Shimaoka INTRODUCTION Journal of Surface Analysis,Vol.12 No.2 (2005); S.Ichikawa, et al., Coverage Estimation of Silane. Coverage Estimation of Silane Functionalized Perfluoropolyether Layer by using Time of Flight Secondary

More information

Qualitative Organic Analysis CH 351 Mass Spectrometry

Qualitative Organic Analysis CH 351 Mass Spectrometry Qualitative Organic Analysis CH 351 Mass Spectrometry Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA General Aspects Theoretical basis of mass spectrometry Basic Instrumentation

More information

Surface and Interface Characterization of Polymer Films

Surface and Interface Characterization of Polymer Films Surface and Interface Characterization of Polymer Films Jeff Shallenberger, Evans Analytical Group 104 Windsor Center Dr., East Windsor NJ Copyright 2013 Evans Analytical Group Outline Introduction to

More information

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis Tim Nunney The world leader in serving science 2 XPS Surface Analysis XPS +... UV Photoelectron Spectroscopy UPS He(I)

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) Secondary Ion Mass Spectrometry (SIMS) SIMS: a desorption/ionization technique 1960s - A. Benninghoven, University of Münster, Germany (Benninghoven A., Rudenauer F.G., Werner H.W., Secondary Ion Mass

More information

A DIVISION OF ULVAC-PHI. Time-of-Flight Secondary Ion Mass Spectrometer with Parallel Imaging MS/MS for Confident Molecular Identification

A DIVISION OF ULVAC-PHI. Time-of-Flight Secondary Ion Mass Spectrometer with Parallel Imaging MS/MS for Confident Molecular Identification A DIVISION OF ULVAC-PHI Time-of-Flight Secondary Ion Mass Spectrometer with Parallel Imaging MS/MS for Confident Molecular Identification Designed for Confident Molecular Identification and Superior Imaging

More information

Mass Spectrometry. What is Mass Spectrometry?

Mass Spectrometry. What is Mass Spectrometry? Mass Spectrometry What is Mass Spectrometry? Mass Spectrometry (MS): The generation of gaseous ions from a sample, separation of these ions by mass-to-charge ratio, and measurement of relative abundance

More information

Chemistry 311: Topic 3 - Mass Spectrometry

Chemistry 311: Topic 3 - Mass Spectrometry Mass Spectroscopy: A technique used to measure the mass-to-charge ratio of molecules and atoms. Often characteristic ions produced by an induced unimolecular dissociation of a molecule are measured. These

More information

Extrel Application Note

Extrel Application Note Extrel Application Note Real-Time Plasma Monitoring and Detection of Trace H 2 O and HF Species in an Argon Based Plasma Jian Wei, 575 Epsilon Drive, Pittsburgh, PA 15238. (Presented at the 191st Electrochemical

More information

Processing and Characterization of PMSSQ Based Materials for Nanoporous Low-K Dielectrics

Processing and Characterization of PMSSQ Based Materials for Nanoporous Low-K Dielectrics Processing and Characterization of PMSSQ Based Materials for Nanoporous Low-K Dielectrics P. Lazzeri 1, L. Vanzetti 1, M. Bersani 1, M. Anderle 1, J.J. Park 2, Z. Lin 2,, R.M. Briber 2, G.W. Rubloff 2,

More information

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68 Lecture 6 Plasmas Chapters 10 &16 Wolf and Tauber 1/68 Announcements Homework: Homework will be returned to you on Thursday (12 th October). Solutions will be also posted online on Thursday (12 th October)

More information

Applications of XPS, AES, and TOF-SIMS

Applications of XPS, AES, and TOF-SIMS Applications of XPS, AES, and TOF-SIMS Scott R. Bryan Physical Electronics 1 Materials Characterization Techniques Microscopy Optical Microscope SEM TEM STM SPM AFM Spectroscopy Energy Dispersive X-ray

More information

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS Mass Spectrometry Hyphenated Techniques GC-MS LC-MS and MS-MS Reasons for Using Chromatography with MS Mixture analysis by MS alone is difficult Fragmentation from ionization (EI or CI) Fragments from

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS

CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS Back to Basics Section D: Ion Optics CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS TABLE OF CONTENTS QuickGuide...413 Summary...415 Introduction...417 The physical basis of orthogonal TOF....... 419 Pulsedmainbeamsofions...421

More information

CHAPTER 6: Etching. Chapter 6 1

CHAPTER 6: Etching. Chapter 6 1 Chapter 6 1 CHAPTER 6: Etching Different etching processes are selected depending upon the particular material to be removed. As shown in Figure 6.1, wet chemical processes result in isotropic etching

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

ToF-SIMS analysis of glass fiber cloths for PCB manufacturing

ToF-SIMS analysis of glass fiber cloths for PCB manufacturing ToF-SIMS analysis of glass fiber cloths for PCB manufacturing Dylan Boday 1, Michael Haag 2, Joe Kuczynski 3, Markus Schmidt 2, Michael Wahl 4, Johannes Windeln 2 1 IBM Systems & Technology Group, 9000

More information

Analysis of Poly(dimethylsiloxane) on Solid Surfaces Using Silver Deposition/TOF-SIMS

Analysis of Poly(dimethylsiloxane) on Solid Surfaces Using Silver Deposition/TOF-SIMS Special Issue Surface and Micro-Analysis of Organic Materials 21 Research Report Analysis of Poly(dimethylsiloxane) on Solid Surfaces Using Silver Deposition/TOF-SIMS Masae Inoue, Atsushi Murase Abstract

More information

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur Nova 600 NanoLab Dual beam Focused Ion Beam system @ IITKanpur Dual Beam Nova 600 Nano Lab From FEI company (Dual Beam = SEM + FIB) SEM: The Electron Beam for SEM Field Emission Electron Gun Energy : 500

More information

RECOMMENDATIONS FOR NOMENCLATURE OF MASS SPECTROMETRY

RECOMMENDATIONS FOR NOMENCLATURE OF MASS SPECTROMETRY international UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION ON ANALYTICAL NOMENCLATURE RECOMMENDATIONS FOR NOMENCLATURE OF MASS SPECTROMETRY RULES APPROVED 1973 LONDON BUTTER

More information

Surface physics, Bravais lattice

Surface physics, Bravais lattice Surface physics, Bravais lattice 1. Structure of the solid surface characterized by the (Bravais) lattice + space + point group lattice describes also the symmetry of the solid material vector directions

More information

Chapter III: III: Sputtering and secondary electron emission

Chapter III: III: Sputtering and secondary electron emission References [1] Handbook of putter deposition technology, Kiyotaka Wasa, Noyes publications, NJ 1992. IN: 0-8155-1280-5 [2] old Plasma in Materials Fabrications,. Grill, IEEE Press, NY(1993). IN: 0-7803-1055-1.

More information

Characterization of individual free-standing nanoobjects by cluster SIMS in transmission

Characterization of individual free-standing nanoobjects by cluster SIMS in transmission Characterization of individual free-standing nanoobjects by cluster SIMS in transmission Running title: Characterization of individual free-standing nano-objects by cluster SIMS in transmission Running

More information

Observations Regarding Automated SEM and SIMS Analysis of Minerals. Kristofor Ingeneri. April 22, 2009

Observations Regarding Automated SEM and SIMS Analysis of Minerals. Kristofor Ingeneri. April 22, 2009 Observations Regarding Automated SEM and SIMS Analysis of Minerals Kristofor Ingeneri April 22, 2009 Forensic Geoscience A field of inquiry that utilizes techniques developed in the geosciences (geology,

More information

Mass Spectrometry. General Principles

Mass Spectrometry. General Principles General Principles Mass Spectrometer: Converts molecules to ions Separates ions (usually positively charged) on the basis of their mass/charge (m/z) ratio Quantifies how many units of each ion are formed

More information

TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON SECONDARY ION MASS SPECTROMETRY (SIMS)

TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON SECONDARY ION MASS SPECTROMETRY (SIMS) NUCLE A R FORENSIC S INTERN ATION A L TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON SECONDARY ION MASS SPECTROMETRY (SIMS) EXECUTIVE SUMMARY Secondary Ion Mass Spectrometry (SIMS) is used for elemental

More information

Molecular depth profiling with reactive ions, or why chemistry matters in sputtering.

Molecular depth profiling with reactive ions, or why chemistry matters in sputtering. Molecular depth profiling with reactive ions, or why chemistry matters in sputtering. L. Houssiau, N. Mine, N. Wehbe Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP),

More information

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity Etching Issues - Anisotropy Dry Etching Dr. Bruce K. Gale Fundamentals of Micromachining BIOEN 6421 EL EN 5221 and 6221 ME EN 5960 and 6960 Isotropic etchants etch at the same rate in every direction mask

More information

FIB - SIMS. Focussed Ion Beam Secondary Ion Mass Spectrometry.

FIB - SIMS. Focussed Ion Beam Secondary Ion Mass Spectrometry. FIB - SIMS Focussed Ion Beam Secondary Ion Mass Spectrometry Outline Introduction to Hiden Analytical Introduction to SIMS FIB-SIMS - Introduction and key features FIB-SIMS - Applications data Hiden SIMS

More information

TANDEM MASS SPECTROSCOPY

TANDEM MASS SPECTROSCOPY TANDEM MASS SPECTROSCOPY 1 MASS SPECTROMETER TYPES OF MASS SPECTROMETER PRINCIPLE TANDEM MASS SPECTROMETER INSTRUMENTATION QUADRAPOLE MASS ANALYZER TRIPLE QUADRAPOLE MASS ANALYZER TIME OF FLIGHT MASS ANALYSER

More information

Interaction of ion beams with matter

Interaction of ion beams with matter Interaction of ion beams with matter Introduction Nuclear and electronic energy loss Radiation damage process Displacements by nuclear stopping Defects by electronic energy loss Defect-free irradiation

More information

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington EE 527 MICROFABRICATION Lecture 5 Tai-Chang Chen University of Washington MICROSCOPY AND VISUALIZATION Electron microscope, transmission electron microscope Resolution: atomic imaging Use: lattice spacing.

More information

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis Dr. E. A. Leone BACKGRUND ne trend in the electronic packaging industry

More information

X- ray Photoelectron Spectroscopy and its application in phase- switching device study

X- ray Photoelectron Spectroscopy and its application in phase- switching device study X- ray Photoelectron Spectroscopy and its application in phase- switching device study Xinyuan Wang A53073806 I. Background X- ray photoelectron spectroscopy is of great importance in modern chemical and

More information

Plasma Chemistry Study in an Inductively Coupled Dielectric Etcher

Plasma Chemistry Study in an Inductively Coupled Dielectric Etcher Plasma Chemistry Study in an Inductively Coupled Dielectric Etcher Chunshi Cui, John Trow, Ken Collins, Betty Tang, Luke Zhang, Steve Shannon, and Yan Ye Applied Materials, Inc. October 26, 2000 10/28/2008

More information

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry Mass spectrometry Electron impact Mass spectrometry 70 ev = 1614 kcal/mol - contrast with energy from IR (1-10 kcal/mol) or NMR (0.2 cal/mol) - typical C-C bond = 100 kcal/mol Point: lots of energy in

More information

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced I. Mass spectrometry: capable of providing both quantitative and qualitative information about samples as small as 100 pg (!) and with molar masses in the 10 4-10 5 kdalton range A. The mass spectrometer

More information

Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University

Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University matthias.trost@ncl.ac.uk Previously: Resolution and other basics MALDI Electrospray 40 Lecture 2 Mass analysers Detectors

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

Propose a structure for an alcohol, C4H10O, that has the following

Propose a structure for an alcohol, C4H10O, that has the following Propose a structure for an alcohol, C4H10O, that has the following 13CNMR spectral data: Broadband _ decoupled 13CNMR: 19.0, 31.7, 69.5 б DEPT _90: 31.7 б DEPT _ 135: positive peak at 19.0 & 31.7 б, negative

More information

Auger Electron Spectroscopy

Auger Electron Spectroscopy Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection

More information

High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry

High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry Yoko Tada Kunihiro Suzuki Yuji Kataoka (Manuscript received December 28, 2009) As complementary metal oxide

More information

Quadrupole Mass Spectrometry Concepts. Mass spectrometers for residual gas analysis: Intermediate Level Users Guide

Quadrupole Mass Spectrometry Concepts. Mass spectrometers for residual gas analysis: Intermediate Level Users Guide Quadrupole Mass Spectrometry Concepts Mass spectrometers for residual gas analysis: Intermediate Level Users Guide What does Residual Gas Analysis allow us to do? RGA is the examination of the molecular

More information

Plasma polymers can be used to modify the surface chemistries of materials in a controlled fashion (without effecting bulk chemistry).

Plasma polymers can be used to modify the surface chemistries of materials in a controlled fashion (without effecting bulk chemistry). Plasma polymers can be used to modify the surface chemistries of materials in a controlled fashion (without effecting bulk chemistry). An example used here is the modification of the alumina surface of

More information

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i Gel Permeation Chromatography (GPC) : Size Exclusion Chromatography GPC : 1. Chromatogram (V R vs H) H i Detector response Baseline N i M i 130 135 140 145 150 155 160 165 Elution volume (V R ) (counts)

More information

Characterization of low energy ionization signals from Compton scattering in a CCD Dark Matter detector

Characterization of low energy ionization signals from Compton scattering in a CCD Dark Matter detector Characterization of low energy ionization signals from Compton scattering in a CCD Dark Matter detector Karthik Ramanathan University of Chicago arxiv:1706.06053 (Accepted PRD) TeVPA 2017/08/07 1 Motivation

More information

Reduced preferential sputtering of TiO 2 (and Ta 2 O 5 ) thin films through argon cluster ion bombardment.

Reduced preferential sputtering of TiO 2 (and Ta 2 O 5 ) thin films through argon cluster ion bombardment. NATIOMEM Reduced preferential sputtering of TiO 2 (and Ta 2 O 5 ) thin films through argon cluster ion bombardment. R. Grilli *, P. Mack, M.A. Baker * * University of Surrey, UK ThermoFisher Scientific

More information

1 Introduction COPYRIGHTED MATERIAL. 1.1 HowdoweDefinetheSurface?

1 Introduction COPYRIGHTED MATERIAL. 1.1 HowdoweDefinetheSurface? 1 Introduction JOHN C. VICKERMAN Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK The surface behaviour of materials

More information

Fig 1: Auger Electron Generation (a) Step 1 and (b) Step 2

Fig 1: Auger Electron Generation (a) Step 1 and (b) Step 2 Auger Electron Spectroscopy (AES) Physics of AES: Auger Electrons were discovered in 1925 but were used in surface analysis technique in 1968. Auger Electron Spectroscopy (AES) is a very effective method

More information

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai 303351 Instrumental Analysis Mass Spectrometry Lecturer:! Somsak Sirichai Mass Spectrometry What is Mass spectrometry (MS)? An analytic method that employs ionization and mass analysis of compounds in

More information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

The Controlled Evolution of a Polymer Single Crystal

The Controlled Evolution of a Polymer Single Crystal Supporting Online Material The Controlled Evolution of a Polymer Single Crystal Xiaogang Liu, 1 Yi Zhang, 1 Dipak K. Goswami, 2 John S. Okasinski, 2 Khalid Salaita, 1 Peng Sun, 1 Michael J. Bedzyk, 2 Chad

More information

Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory

Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory Steven L. Mullen, Ph.D. Associate Director SCS Mass Spectrometry Laboratory Contact Information 31 oyes Laboratory (8:00-5:00

More information

MODERN TECHNIQUES OF SURFACE SCIENCE

MODERN TECHNIQUES OF SURFACE SCIENCE MODERN TECHNIQUES OF SURFACE SCIENCE Second edition D. P. WOODRUFF & T. A. DELCHAR Department ofphysics, University of Warwick CAMBRIDGE UNIVERSITY PRESS Contents Preface to first edition Preface to second

More information

Characterization of Secondary Emission Materials for Micro-Channel Plates. S. Jokela, I. Veryovkin, A. Zinovev

Characterization of Secondary Emission Materials for Micro-Channel Plates. S. Jokela, I. Veryovkin, A. Zinovev Characterization of Secondary Emission Materials for Micro-Channel Plates S. Jokela, I. Veryovkin, A. Zinovev Secondary Electron Yield Testing Technique We have incorporated XPS, UPS, Ar-ion sputtering,

More information

LECTURE 5 SUMMARY OF KEY IDEAS

LECTURE 5 SUMMARY OF KEY IDEAS LECTURE 5 SUMMARY OF KEY IDEAS Etching is a processing step following lithography: it transfers a circuit image from the photoresist to materials form which devices are made or to hard masking or sacrificial

More information

Improvement of depth resolution of VEPAS by a sputtering technique

Improvement of depth resolution of VEPAS by a sputtering technique Martin Luther University Halle Improvement of depth resolution of VEPAS by a sputtering technique R. Krause Rehberg, M. John, R. Böttger, W. Anwand and A. Wagner Martin Luther University Halle & HZDR Dresden

More information

Evaluation of Cleaning Methods for Multilayer Diffraction Gratings

Evaluation of Cleaning Methods for Multilayer Diffraction Gratings Evaluation of Cleaning Methods for Multilayer Diffraction Gratings Introduction Multilayer dielectric (MLD) diffraction gratings are essential components for the OMEGA EP short-pulse, high-energy laser

More information

Mass Spectrometry: Introduction

Mass Spectrometry: Introduction Mass Spectrometry: Introduction Chem 8361/4361: Interpretation of Organic Spectra 2009 Andrew Harned & Regents of the University of Minnesota Varying More Mass Spectrometry NOT part of electromagnetic

More information

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein.

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein. Mass Analyzers After the production of ions in ion sources, the next critical step in mass spectrometry is to separate these gas phase ions according to their mass-to-charge ratio (m/z). Ions are extracted

More information

(Refer Slide Time 00:09) (Refer Slide Time 00:13)

(Refer Slide Time 00:09) (Refer Slide Time 00:13) (Refer Slide Time 00:09) Mass Spectrometry Based Proteomics Professor Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay Mod 02 Lecture Number 09 (Refer

More information

Mass Spectroscopy. Base peak. Molecular Ion peak. The positively charged fragments produced are separated, based on their mass/charge (m/z) ratio. M+.

Mass Spectroscopy. Base peak. Molecular Ion peak. The positively charged fragments produced are separated, based on their mass/charge (m/z) ratio. M+. Mass spectrometry is the study of systems causing the formation of gaseous ions, with or without fragmentation, which are then characteried by their mass to charge ratios (m/) and relative abundances.

More information