Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Size: px
Start display at page:

Download "Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631"

Transcription

1 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12

2 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include: Diffraction Single-crystal Powder Spectrometry Absorbance Fluorescence

3 Fundamental Principles X-rays are part of the electromagnetic spectrum produced by transitions of electrons in the inner orbitals of atoms. Wavelength range from 10-5 to 100 Å.

4 Theory A source X-ray (or electron) strikes an inner shell electron. If at high enough energy (above absorption edge of element), it is ejected from the atom. Higher energy electrons cascade to fill vacancy, giving off characteristic X-rays. For elemental analysis of Na - U. (Lighter elements are possible with some instruments)

5 Fundamental Principles X-rays are produced by: bombardment of a metal target with a beam of energy electrons exposure of a substance to a primary beam of x-rays to produce a secondary beam of x- ray fluorescence use of a radioactive source with an x-ray decay process from a synchrotron radiation source

6 Fundamental Principles X-ray spectrum composed of a line spectrum of intense single wavelengths superimposed on a continuous background.

7

8 Fundamental Principles Continuous X-ray spectrum Plot of the x-ray intensity at several wavelengths. The wavelength limits and intensity distribution is dependent on applied voltage but independent of the target material.

9

10 Fundamental Principles Line Spectra Result from electronic transitions that involve the innermost atomic orbitals. A few intense emission lines are produced that correspond to K and L level transitions.

11

12 Electron transitions in an atom, which produce the Kα, Kβ and Lα characteristic x-rays.

13 Energy-level diagram showing all the allowed electron transitions in a molybdenum atom.

14 Fundamental Principles Line Spectra Bragg discovered the characteristic lines. H. G. Moseley systemized the lines Moseley's law - the wavelength of any particular line decreases as the atomic number of the emitter increases. Linear relationship between the square root of the line frequency, v, and the atomic number, Z. v 1/2 = C(Z - s) C and s are constants

15 Moseley's relation between ν and Ζ for two characteristic lines

16 Diffraction When x-rays are scattered by a crystal, constructive and destructive interference takes place causing diffraction.

17

18 Diffraction This diffraction can be described by Bragg s Law: nl = 2dsinq n integer d interplanar distance in the crystal l wavelength of x-ray radiation q angle of reflection

19 Source l selector Sample holder Transducer Signal processor

20 Sources Tubes Radioisotopes Secondary fluorescent sources

21 X-ray Tubes (Filament tubes) Invented by Coolidge in Hot-Cathode tube - tube is evacuated (in a vacuum). Electrons are supplied by a heated filament (W), called the cathode. Filament requires i = 1.5 to 5 A and 4 to 12 V to incandescence. Filament temperature ranges from 1800 to 2600 o C. The cathode is held at a high negative potential.

22 X-ray Tubes The electrons produced at the cathode are accelerated toward the anode, which is held at ground. Electrons strike the target (anode) at a high velocity. X-rays are produced and radiate in all directions. (~1% of the electron beam is converted to x-rays).

23 X-ray Tubes

24 Optics Includes a variety of slits, filters, monochromaters Purpose: to reduce stray radiation, produce x- ray spectra which display diffraction from a single wavelength. (each unique d-spacing will diffract different wavelengths at different angles).

25 Optics For Cu radiation, the basic emission contains the a 1, a 2 doublet and the b 1, b 3 transition. Usually the b radiation can be reduced to a few % of the a radiation by using filters, monochromater, or energy resolving detector. Most diffraction work uses the Cu Ka 1, Ka 2 doublet, which can be inconvenient at some angles.

26 Filters b - Filter A bandpass device used mainly to improve the ratio of Cu Ka to Cu Kb. If a polychromatic beam of radiation is passed through a filter, then preferential transmission of certain l's will occur. So need to find materials that has an absorption edge between the Ka doublet and the Kb doublet, to increase the a/b transmission ratio.

27 b - Filter For copper radiation, nickel is used since the nickel absorption edge (1.488 Å) lies between the Cu Ka (1.542 Å) and Cu Kb (1.392 Å) radiation.

28 Optics Various Slits The x-ray radiation passes through a series of slits on both the source side and the detector side. These slit width can be varied depending on the sample and x- ray scan parameters.

29

30 Optics Monochromators Remove unwanted radiation. The crystals used for monochromators need to be mechanically strong, not affected by exposure to x-rays, and stable in air. Plane crystal monochromators are used in camera work, while curve (bent) crystal monochromators are used in powder diffractometers and fluorescence.

31 Monochromators Curved crystal monochromaters provide monochromatic radiation with low background, and furnish high intensity (compared to plane) and high resolving power. Materials used as crystals are: mica, gypsum, quartz, graphite Diffracted beam monochromator is made up of: a receiving slit, with a single crystal behind that, the detector is set at an angle to collect the l of interest diffracted by the crystal. The surface of the crystal, receiving slit, and detector slit all lie on the focusing circle of the monochromator.

32 Monochromators

33 Goniometer Goniometer circle - centered at the sample, with the x-ray source and detector on the circumference of the circle.

34 Detectors Majority of detectors depend on x-rays to ionize atoms (either as a gas or on a solid) Types of detectors: Proportional Geiger Scintillation Solid State (Semiconductor)

35 Proportional Detector Common detector A metal tube (cathode) filled with a gas (i.e. Ar, Xe, or Kr) and contains a thin metal wire (anode) running down the center. There is a constant potential difference between the cathode and anode.

36 Proportional Detector

37 Proportional Detector X-rays enter the tube through a transparent window and are absorbed by a gas The gas ejects a photoelectron and becomes ionize (an ion/electron pair is produced) - Ionized gas (+) moves toward the cathode (-) Electrons (-) move toward the anode (+) A small current is measured and related to the x-ray intensity. The ionization energy of the noble gas is ~30eV For one Cu x-ray photon, the energy is 8.04 KeV So ~270 electron-ion pairs are produced with CuKa

38 Scintillation Detector Incident x-ray hits a crystal causing it to fluoresce.

39 Scintillation Detector The crystal is NaI doped with 1%Tl (NaI/Tl). X-rays are absorbed by the crystal and raises electrons from the valence band to the conduction band in NaI. These electrons transfer energy to the Tl + ion. The excited Tl + returns to ground state and emits light (fluoresce at l = 420nm). A flash of light (scintillation) purple in color is produced in the crystal and is passed into a photomultiplier tube.

40 Scintillation Detector The photomultiplier tube is made up of a series (dynodes) of photocathodes.

41 Scintillation Detector The photocathodes are a photosensitive material made up of cesium-antimony intermetallic compound. Light strikes the 1st photocathode and electrons are ejected. These electrons are accelerated toward the next dynode by a potential difference (DV) Each dynode is 100V more positive than the proceeding one. As electrons hit the next dynode, more electrons are produced (multiplication). Last dynode is connected to a circuit.

42 Scintillation Detector This whole process takes less than a msec. So detector can handle rates of 10 5 counts/sec without loss. Advantage - efficient detector ~100% Disadvantage - energy resolution is not as good as the proportional detector or a solid state detector.

43 Solid-State Detector (Semiconductor detector) Made up of a single crystal consisting of a sandwich of intrinsic (pure) Si between a p-type layer (holes are carriers) and n-type layer (electrons are carriers). Forms a p-i-n diode.

44 Solid-State Detector The solid-state detector is made by taking Si (3-5 mm thick and 5-15 mm in diameter) that is lightly doped with boron (p-type). Li is applied to one face of the silicon and allowed to diffuse into the crystal at an elevated temperature. A gradient occurs, with one side higher in Li+ concentration than the other.

45 Solid-State Detector A bias is applied to create the p-i-n diode. When an x-ray photon hits the detector, electron-hole pairs are produced in the Si. These pairs are created when an energy of 3.8 ev (indirect gap of silicon) is exceeded. Number of electron-hole pairs, n equals: n = energy of the photon/energy required to create one pair For a CuKa photon, n = 8040/3.8 = 2116 pairs

46 Solid-State Detector The electron-hole pairs are swept to opposite poles by a bias, and the current is directed into a counting circuit. Advantage- excellent energy resolution, can resolve Ka and Kb Disadvantage must use bulky dewar to keep detector cool, long dead time, easy to overwhelm the detector.

47 Assignment HW Chapter 18 Due Today HW Chapter 8 and 9 Due 3/19/18 Read Chapter 12 Homework Chapter 12: 1-3, 9, 11 Homework Chapter 12 Due 03/21/18 Test III Friday Covers Lectures 14-19

48

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 2b: X-ray Fluorescence Spectrometry Text: Chapter 12 Rouessac (1 week) 4.0 X-ray Fluorescence Download, read and understand EPA method 6010C ICP-OES Winter 2009 Page 1 Atomic X-ray Spectrometry Fundamental

More information

Diffractometer. Geometry Optics Detectors

Diffractometer. Geometry Optics Detectors Diffractometer Geometry Optics Detectors Diffractometers Debye Scherrer Camera V.K. Pecharsky and P.Y. Zavalij Fundamentals of Powder Diffraction and Structural Characterization of Materials. Diffractometers

More information

Diffraction: spreading of waves around obstacles (EM waves, matter, or sound) Interference: the interaction of waves

Diffraction: spreading of waves around obstacles (EM waves, matter, or sound) Interference: the interaction of waves Diffraction & Interference Diffraction: spreading of waves around obstacles (EM waves, matter, or sound) Interference: the interaction of waves Diffraction in Nature What is Interference? The resultant

More information

XRF books: Analytical Chemistry, Kellner/Mermet/Otto/etc. 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures:

XRF books: Analytical Chemistry, Kellner/Mermet/Otto/etc. 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures: 1 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures: XRF spectroscopy 1 exam question. Notes on: www.nuigalway.ie/nanoscale/3rdspectroscopy.html XRF books: Analytical Chemistry,

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters ) September 17, 2018 Reference literature (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters 13-14 ) Reference.: https://slideplayer.com/slide/8354408/ Spectroscopy Usual Wavelength Type of Quantum

More information

X-ray Absorption and Emission Prepared By Jose Hodak for BSAC program 2008

X-ray Absorption and Emission Prepared By Jose Hodak for BSAC program 2008 X-ray Absorption and Emission Prepared By Jose Hodak for BSAC program 2008 1- A bit of History: Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honored by the Noble prize for physics. In

More information

X-RAY SPECTRA. Theory:

X-RAY SPECTRA. Theory: 12 Oct 18 X-ray.1 X-RAY SPECTRA In this experiment, a number of measurements involving x-rays will be made. The spectrum of x-rays emitted from a molybdenum target will be measured, and the experimental

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

CHEM*3440. X-Ray Energies. Bremsstrahlung Radiation. X-ray Line Spectra. Chemical Instrumentation. X-Ray Spectroscopy. Topic 13

CHEM*3440. X-Ray Energies. Bremsstrahlung Radiation. X-ray Line Spectra. Chemical Instrumentation. X-Ray Spectroscopy. Topic 13 X-Ray Energies very short wavelength radiation 0.1Å to 10 nm (100 Å) CHEM*3440 Chemical Instrumentation Topic 13 X-Ray Spectroscopy Visible - Ultraviolet (UV) - Vacuum UV (VUV) - Extreme UV (XUV) - Soft

More information

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry X-rays Wilhelm K. Roentgen (1845-1923) NP in Physics 1901 X-ray Radiography - absorption is a function of Z and density X-ray crystallography X-ray spectrometry X-rays Cu K α E = 8.05 kev λ = 1.541 Å Interaction

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1])

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1]) Röntgenpraktikum M. Oehzelt (based on the diploma thesis of T. Haber [1]) October 21, 2004 Contents 1 Fundamentals 2 1.1 X-Ray Radiation......................... 2 1.1.1 Bremsstrahlung......................

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Radioactivity. Lecture 6 Detectors and Instrumentation

Radioactivity. Lecture 6 Detectors and Instrumentation Radioactivity Lecture 6 Detectors and Instrumentation The human organs Neither humans nor animals have an organ for detecting radiation from radioactive decay! We can not hear it, smell it, feel it or

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

Radionuclide Imaging MII Detection of Nuclear Emission

Radionuclide Imaging MII Detection of Nuclear Emission Radionuclide Imaging MII 3073 Detection of Nuclear Emission Nuclear radiation detectors Detectors that are commonly used in nuclear medicine: 1. Gas-filled detectors 2. Scintillation detectors 3. Semiconductor

More information

Generation of X-Rays in the SEM specimen

Generation of X-Rays in the SEM specimen Generation of X-Rays in the SEM specimen The electron beam generates X-ray photons in the beam-specimen interaction volume beneath the specimen surface. Some X-ray photons emerging from the specimen have

More information

LAB 01 X-RAY EMISSION & ABSORPTION

LAB 01 X-RAY EMISSION & ABSORPTION LAB 0 X-RAY EMISSION & ABSORPTION REPORT BY: TEAM MEMBER NAME: Ashley Tsai LAB SECTION No. 05 GROUP 2 EXPERIMENT DATE: Feb., 204 SUBMISSION DATE: Feb. 8, 204 Page of 3 ABSTRACT The goal of this experiment

More information

Laboratory Manual 1.0.6

Laboratory Manual 1.0.6 Laboratory Manual 1.0.6 Background What is X-ray Diffraction? X-rays scatter off of electrons, in a process of absorption and re-admission. Diffraction is the accumulative result of the x-ray scattering

More information

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx 1 Candidates should be able to : HISTORY Describe the nature of X-rays. Describe in simple terms how X-rays are produced. X-rays were discovered by Wilhelm Röntgen in 1865, when he found that a fluorescent

More information

RED. BLUE Light. Light-Matter

RED. BLUE Light.   Light-Matter 1 Light-Matter This experiment demonstrated that light behaves as a wave. Essentially Thomas Young passed a light of a single frequency ( colour) through a pair of closely spaced narrow slits and on the

More information

X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy X-ray Absorption Spectroscopy Nikki Truss November 26, 2012 Abstract In these experiments, some aspects of x-ray absorption spectroscopy were investigated. The x-ray spectrum of molybdenum was recorded

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect was enunciated

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages )

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages ) Spectroscopy: Introduction Required reading Chapter 18 (pages 378-397) Chapter 20 (pages 424-449) Spectrophotometry is any procedure that uses light to measure chemical concentrations Properties of Light

More information

Chapter Six: X-Rays. 6.1 Discovery of X-rays

Chapter Six: X-Rays. 6.1 Discovery of X-rays Chapter Six: X-Rays 6.1 Discovery of X-rays In late 1895, a German physicist, W. C. Roentgen was working with a cathode ray tube in his laboratory. He was working with tubes similar to our fluorescent

More information

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? EPMA - what is it? Precise and accurate quantitative chemical analyses of micron-size

More information

25 Instruments for Optical Spectrometry

25 Instruments for Optical Spectrometry 25 Instruments for Optical Spectrometry 25A INSTRUMENT COMPONENTS (1) source of radiant energy (2) wavelength selector (3) sample container (4) detector (5) signal processor and readout (a) (b) (c) Fig.

More information

X-Ray Emission and Absorption

X-Ray Emission and Absorption X-Ray Emission and Absorption Author: Mike Nill Alex Bryant February 6, 20 Abstract X-rays were produced by two bench-top diffractometers using a copper target. Various nickel filters were placed in front

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Scintillators General Characteristics

Scintillators General Characteristics Scintillators General Characteristics Principle: de/dx converted into visible light Detection via photosensor [e.g. photomultiplier, human eye ] Main Features: Sensitivity to energy Fast time response

More information

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination Uppsala University Department of Physics and Astronomy Laboratory exercise X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

More information

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level)

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) 1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) Electromagnetic induction (Chapter 23): For a straight wire, the induced current or e.m.f. depends on: The magnitude of the magnetic

More information

PHYS 3446 Lecture #12

PHYS 3446 Lecture #12 PHYS 3446 Lecture #12 Wednesday, Oct. 18, 2006 Dr. 1. Particle Detection Ionization Detectors MWPC Scintillation Counters Time of Flight 1 Announcements Next LPCC Workshop Preparation work Each group to

More information

Chem 481 Lecture Material 3/20/09

Chem 481 Lecture Material 3/20/09 Chem 481 Lecture Material 3/20/09 Radiation Detection and Measurement Semiconductor Detectors The electrons in a sample of silicon are each bound to specific silicon atoms (occupy the valence band). If

More information

Radiation Detector 2016/17 (SPA6309)

Radiation Detector 2016/17 (SPA6309) Radiation Detector 2016/17 (SPA6309) Semiconductor detectors (Leo, Chapter 10) 2017 Teppei Katori Semiconductor detectors are used in many situations, mostly for some kind of high precision measurement.

More information

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2

Photoelectron spectroscopy Instrumentation. Nanomaterials characterization 2 Photoelectron spectroscopy Instrumentation Nanomaterials characterization 2 RNDr. Věra V Vodičkov ková,, PhD. Photoelectron Spectroscopy general scheme Impact of X-ray emitted from source to the sample

More information

Activities at the Laboratory of the Nuclear Engineering Department of the Polytechnic University of Valencia

Activities at the Laboratory of the Nuclear Engineering Department of the Polytechnic University of Valencia 7 th Workshop on European Collaboration for Higher Education and Research in Nuclear Engineering & Radiological Protection Bruxelles, Belgique 30 May - 1 June 2011 Activities at the Laboratory of the Nuclear

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

X-RAY SCATTERING AND MOSELEY S LAW. OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering.

X-RAY SCATTERING AND MOSELEY S LAW. OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering. X-RAY SCATTERING AND MOSELEY S LAW OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering. READING: Krane, Section 8.5. BACKGROUND: In 1913, Henry Moseley measured

More information

X-RAY PRODUCTION. Prepared by:- EN KAMARUL AMIN BIN ABDULLAH

X-RAY PRODUCTION. Prepared by:- EN KAMARUL AMIN BIN ABDULLAH X-RAY PRODUCTION Prepared by:- EN KAMARUL AMIN BIN ABDULLAH OBJECTIVES Discuss the process of x-ray being produced (conditions) Explain the principles of energy conversion in x-ray production (how energy

More information

Chemistry Instrumental Analysis Lecture 17. Chem 4631

Chemistry Instrumental Analysis Lecture 17. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 17 Introduction to Optical Atomic Spectrometry From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry

More information

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist 12.141 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary

More information

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist 12.141 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary

More information

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 More Quantum Physics We know now how to detect light (or photons) One possibility to detect

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

1.4 The Tools of the Trade!

1.4 The Tools of the Trade! 1.4 The Tools of the Trade! Two things are required for material analysis: excitation mechanism for originating characteristic signature (radiation) radiation detection and identification system (spectroscopy)

More information

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5 Chemical Analysis in TEM: XEDS, EELS and EFTEM HRTEM PhD course Lecture 5 1 Part IV Subject Chapter Prio x-ray spectrometry 32 1 Spectra and mapping 33 2 Qualitative XEDS 34 1 Quantitative XEDS 35.1-35.4

More information

Chapter Seven (Nuclear Detectors)

Chapter Seven (Nuclear Detectors) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Seven (Nuclear Detectors) Ionizing radiation is rarely detected directly. Instead,

More information

Understanding X-rays: The electromagnetic spectrum

Understanding X-rays: The electromagnetic spectrum Understanding X-rays: The electromagnetic spectrum 1 ULa 13.61 kev 0.09 nm BeKa 0.11 kev 11.27 nm E = hn = h c l where, E : energy, h : Planck's constant, n : frequency c : speed of light in vacuum, l

More information

Exercise 1 Atomic line spectra 1/9

Exercise 1 Atomic line spectra 1/9 Exercise 1 Atomic line spectra 1/9 The energy-level scheme for the hypothetical one-electron element Juliettium is shown in the figure on the left. The potential energy is taken to be zero for an electron

More information

6. Analytical Electron Microscopy

6. Analytical Electron Microscopy Physical Principles of Electron Microscopy 6. Analytical Electron Microscopy Ray Egerton University of Alberta and National Institute of Nanotechnology Edmonton, Canada www.tem-eels.ca regerton@ualberta.ca

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 2 Radioisotopes Techniques Lecture - 3 GM Counting and

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Photoemission Spectroscopy

Photoemission Spectroscopy FY13 Experimental Physics - Auger Electron Spectroscopy Photoemission Spectroscopy Supervisor: Per Morgen SDU, Institute of Physics Campusvej 55 DK - 5250 Odense S Ulrik Robenhagen,

More information

Analysis of γ spectrum

Analysis of γ spectrum IFM The Department of Physics, Chemistry and Biology LAB 26 Analysis of γ spectrum NAME PERSONAL NUMBER DATE APPROVED I. OBJECTIVES - To understand features of gamma spectrum and recall basic knowledge

More information

Advances in Field-Portable XRF

Advances in Field-Portable XRF Advances in Field-Portable XRF Volker Thomsen and Debbie Schatzlein Field-portable x-ray fluorescence (XRF) allows us to take the laboratory to the sample. The latest generation of such handheld x-ray

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

Course Details. Analytical Techniques Based on Optical Spectroscopy. Course Details. Textbook. SCCH 211: Analytical Chemistry I

Course Details. Analytical Techniques Based on Optical Spectroscopy. Course Details. Textbook. SCCH 211: Analytical Chemistry I SCCH 211: Analytical Chemistry I Analytical Techniques Based on Optical Spectroscopy Course Details September 22 October 10 September 22 November 7 November 17 December 1 Topic Period Introduction to Spectrometric

More information

Outline of Recombinant DNA technology. Application of UV spectroscopy in recombinant DNA technology

Outline of Recombinant DNA technology. Application of UV spectroscopy in recombinant DNA technology NIKHIL.K.POTDUKHE Outline of UV spectrophotometer Outline of Recombinant DNA technology Application of UV spectroscopy in recombinant DNA technology References Lambert law: When a beam of light is allowed

More information

Chapter 2 INSTRUMENTAL TECHNIQUES AND EXPERIMENTAL METHODS

Chapter 2 INSTRUMENTAL TECHNIQUES AND EXPERIMENTAL METHODS Chapter 2 INSTRUMENTAL TECHNIQUES AND EXPERIMENTAL METHODS 2.1. Introduction 2.2. X-Ray Fluorescence Spectrometry 2.3. Interaction of X-Rays with Matter 2.3.1. Photoelectric absorption 2.3.2. Scattering

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

Absorption of X-rays

Absorption of X-rays Absorption of X-rays TEP Related topics Bremsstrahlung, characteristic X-radiation, Bragg scattering, law of absorption, mass absorption coefficient, absorption edges, half-value thickness, photoelectric

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

Exam 2 Development of Quantum Mechanics

Exam 2 Development of Quantum Mechanics PHYS40 (Spring 00) Riq Parra Exam # (Friday, April 1 th, 00) Exam Development of Quantum Mechanics Do NOT write your name on this exam. Write your class ID number on the top right hand corner of each problem

More information

CLASS 12th. Modern Physics-I

CLASS 12th. Modern Physics-I CLASS 12th Modern Physics-I Modern Physics-I 01. Dual Nature of Radiation The phenomena such as interference, diffraction and polarization were success-fully explained on the basis of were nature of On

More information

Proportional Counters

Proportional Counters Proportional Counters 3 1 Introduction 3 2 Before we can look at individual radiation processes, we need to understand how the radiation is detected: Non-imaging detectors Detectors capable of detecting

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 6 Production & Properties of X-rays Suggested Reading Chapter 1 in Waseda et al. Section 2.1 in Leng Other Reference B.D. Cullity and S.R. Stock, Elements of X-ray

More information

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy Introduction Principles Instrumentation Qualitative analysis Quantitative analysis Depth profiling Mapping Examples The Auger

More information

Bragg reflection :determining the lattice constants of monocrystals

Bragg reflection :determining the lattice constants of monocrystals Bragg reflection :determining the lattice constants of monocrystals Objectives: 1-Investagating Bragg reflection at Nacl monocrystal -determinig the lattice constant a 0 of NaCl. Theory: Bragg's law of

More information

X-ray practical: Crystallography

X-ray practical: Crystallography X-ray practical: Crystallography Aim: To familiarise oneself with the operation of Tex-X-Ometer spectrometer and to use it to determine the lattice spacing in NaCl and LiF single crystals. Background:

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

Interaction X-rays - Matter

Interaction X-rays - Matter Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

More information

Radiation (Particle) Detection and Measurement

Radiation (Particle) Detection and Measurement Radiation (Particle) Detection and Measurement Radiation detection implies that the radiation interacts (e.g. leaves at least part of its energy) in the material. A specific material is chosen, because

More information

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chemistry Instrumental Analysis Lecture 18. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 18 Instrumentation Radiation sources Hollow cathode lamp Most common source Consist of W anode and a cathode sealed in a glass tube filled with Ne or Ar. Hollow

More information

Appearance Potential Spectroscopy

Appearance Potential Spectroscopy Appearance Potential Spectroscopy Submitted by Sajanlal P. R CY06D009 Sreeprasad T. S CY06D008 Dept. of Chemistry IIT MADRAS February 2006 1 Contents Page number 1. Introduction 3 2. Theory of APS 3 3.

More information

X-ray Energy Spectroscopy (XES).

X-ray Energy Spectroscopy (XES). X-ray Energy Spectroscopy (XES). X-ray fluorescence as an analytical tool for element analysis is based on 3 fundamental parameters: A. Specificity: In determining an x-ray emission energy E certainty

More information

Introduction to Radiation Monitoring

Introduction to Radiation Monitoring Introduction to Radiation Monitoring Iain Darby Honorary Research Fellow, University of Glasgow iain.darby@glasgow.ac.uk https://at.linkedin.com/in/idarby https://www.facebook.com/iain.darby.662 Outline

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7 Advanced Lab Course X-Ray Photoelectron Spectroscopy M210 As of: 2015-04-01 Aim: Chemical analysis of surfaces. Content 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT 3 3.1 Qualitative analysis 6 3.2 Chemical

More information

Absorption spectrometry summary

Absorption spectrometry summary Absorption spectrometry summary Rehearsal: Properties of light (electromagnetic radiation), dual nature light matter interactions (reflection, transmission, absorption, scattering) Absorption phenomena,

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

Understanding X-rays: The electromagnetic spectrum

Understanding X-rays: The electromagnetic spectrum Understanding X-rays: The electromagnetic spectrum 1 ULa 13.61 kev 0.09 nm BeKa 0.11 kev 11.27 nm E = hn = h c l where, E : energy, h : Planck's constant, n : frequency c : speed of light in vacuum, l

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 1: Atomic Spectroscopy Text: Chapter 12,13 & 14 Rouessac (~2 weeks) 1.0 Review basic concepts in Spectroscopy 2.0 Atomic Absorption and Graphite Furnace Instruments 3.0 Inductively Coupled Plasmas

More information

Radioactivity and Ionizing Radiation

Radioactivity and Ionizing Radiation Radioactivity and Ionizing Radiation QuarkNet summer workshop June 24-28, 2013 1 Recent History Most natural phenomena can be explained by a small number of simple rules. You can determine what these rules

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

The Electromagnetic Properties of Materials

The Electromagnetic Properties of Materials The Electromagnetic Properties of Materials Electrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)

More information