SEU RADIATION EFFECTS ON GAA-CNTFET BASED DIGITAL LOGIC CIRCUIT

Size: px
Start display at page:

Download "SEU RADIATION EFFECTS ON GAA-CNTFET BASED DIGITAL LOGIC CIRCUIT"

Transcription

1 International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 7, July 2018, pp , Article ID: IJMET_09_07_039 Available online at ISSN Print: and ISSN Online: IAEME Publication Scopus Indexed SEU RADIATION EFFECTS ON GAA-CNTFET BASED DIGITAL LOGIC CIRCUIT Singh Rohitkumar Shailendra Student (M.Tech. by Research), Department of Micro and Nanoelectronics, SENSE, VIT, Vellore, Tamilnadu, India V N Ramakrishnan Associate Professor, Department of Micro and Nanoelectronics, SENSE, VIT, Vellore, Tamilnadu, India ABSTRACT Gate-All-Around Carbon Nanotube Field Effect Transistors (GAA-CNTFETs) based digital logic circuits are studied in this paper for their soft error performance using Cadence simulations. Four different topologies Single Chirality Single Channel (SCSC), Single Chirality Dual Channel (SCDC), Dual Chirality Single Channel (DCSC) and Dual Chirality Dual Channel (DCDC) based digital logic circuits are studied to find out their minimum radiation dose required to flip the digital circuits output. A double-exponential current pulse is induced at respective sensitive node of the digital circuits. The digital gates retain its original state after radiation dose is removed. The simulation result shows SCDC and DCDC based topology for inverter is more reliable because its highest threshold current value is 5.4 µa and 5.8 µa respectively where as SCSC and DCSC topology for inverter is less reliable with lowest threshold current value 2.95 µa and 2.80 µa respectively. In NAND and NOR gate circuits similar result is given in this paper. Key words: Gate-All-Around Carbon Nanotube Field Effect Transistors (GAA- CNTFETs), Single Event Upset (SEU), Radiation, Digital gates, Threshold current. Cite this Article: Singh Rohitkumar Shailendra and V N Ramakrishnan, SEU Radiation Effects on GAA-CNTFET Based Digital Logic Circuit, International Journal of Mechanical Engineering and Technology 9(7), 2018, pp INTRODUCTION The scaling down of the devices was the driving force towards technological progress. The size of the individual devices in an integrated circuit followed by Moore's law [1]. Today Silicon based MOSFETs have a technological dimension less than 45 nm are common in the semiconductor world industry. Since the size becomes very small, the scaling of traditional silicon MOSFETs turns out to be progressively harder. Any scaling has featured serious limits involving fabrication technology and device performance. These limits incorporate the quantum mechanical tunneling of carrier through the thin layer of gate oxide, quantum editor@iaeme.com

2 Singh Rohitkumar Shailendra and V N Ramakrishnan mechanical tunneling of carrier from source to drain terminal and from drain terminal to body, control of the thickness and area of doping atoms in the MOSFET channel and source-drain region to give high on-off current ratio and finite sub-threshold slope. The Researcher proposed many solutions to overcome these limitations. Some solutions include modification of the traditional existing structures and technologies with an expectation of extending their scalability. Different solutions involve the use of new materials and technologies to replace the traditional silicon MOSFETs. Researchers are currently concentrated on distinguishing the alternatives that could enable continued improvement in the performance of device are high dielectric material (High-K), metal gate electrode and double gate FET. High-K dielectric materials are very useful for gate insulators as they will give efficient charge injection into channel of the device and decrease direct tunneling leakage currents. The Very Large Scale Integration (VLSI) systems depend on traditional Si-MOS technology has expected that in the nano regimes the expected high density can encounter substantial difficulties in terms of physical phenomena and technology limitations, possibly preventing the continued improvements in figures of merit such as low power and high performance. They have focused alternative devices such as bulk silicon transistors and ultrathin body devices such as FinFETs. These limits may be overcome to some extent and modifying the channel material with a single-walled carbon nanotube instead of Si in the traditional MOSFET structure. Despite all the challenges related with scaling of transistor, they have focused towards improving carrier transport in the transistor channel region [2]. One potential possibility is to use Carbon Nanotube (CNT) to realize high channel mobility in the device [3] Carbon Nanotube (CNT) Figure 1 Structure of (a) Graphene (b) SWCNTs (C) MWCNTs Carbon Nanotubes are rolled sheet of graphene having cylindrical shapes. Planar structure of graphite is organized in a hexagonal structure due to its Sp 2 hybridization. Carbon nanotubes also have this honeycomb structure on a molecular level. S.Ijima observed first Carbon nanotube in 1991 which have unique mechanical, thermal and electrical properties [4]. Fig.1 shows the structure of single-walled carbon nanotube. Carbon nanotubes offer alternative uses in various applications such as electron source in field emission devices, interconnects and FETs [5]. The Carbon Nanotube in Fig.1 (b) shows that one layer of carbon atoms this is often known as Single-Walled Carbon Nanotubes (SWCNT). There are Multi-Walled Carbon Nanotubes (MWCNT) having different layer of SWCNTs of different diameters. The diameter of Single walled Carbon Nanotube changes between 0.7 nm to 3 nm [6]. The editor@iaeme.com

3 SEU Radiation Effects on GAA-CNTFET Based Digital Logic Circuit importance of CNT diameter is that determine the threshold voltage and bandgap of the tube. The following relation is given to threshold voltage and bandgap of the tube as shown in Eq.1 and Eq.2. V Th =. (1) E gap =. (2) Where q is electronic charge, a=2.49 Å is the lattice constant, bond energy and is the diameter of Carbon Nanotube. =3.033eV, is the carbon 1.2. Gate-All around CNTFET (GAA-CNTFET) Carbon Nanotube Field Effect Transistors (CNTFETs) uses semiconducting behaviour CNT as a channel material instead of Silicon. The behaviour of SWCNT can be either metallic or semiconducting; it depends on the arrangement of the atom in the tube. The arrangement of the atom is referred as the chirality vector and it is represented by the integer pair (n, m). A simple method to find SWCNT is metallic if n=m and n-m = 3K, where K is an integer otherwise the behaviour of SWCNT is semiconducting [7]. The diameter of CNT is calculated as shown in Eq.3. D CNT = (3) Where (n, m) is the chirality indexes of Carbon Nanotube and a = nm inter atomic distance between each carbon atom and its neighbor carbon atom. Similar to the traditional Si-MOSFET, the GAA-CNTFET also has four terminals as shown in Fig. 2(a). Side and top view of GAA-CNTFET is as shown in Fig. 2(b) and Fig. 2(c) respectively. The GAA-CNTFET provides unique property to control the threshold voltage by changing the diameter or changing the chirality of CNT. Quantum Capacitance plays major role in GAA-CNTFET device [8]. The I-V Characteristics of the GAA-CNTFET for different diameter are shown in Fig. 4. The threshold voltage of the device is defined as the minimum voltage required to turn-on the transistor. The threshold voltage of the GAA-CNTFET is an inverse of the diameter of CNT. Figure 2 (a) Structure of GAA-CNTFET (b) side view of GAA-CNTFET (c) Top view of GAA- CNTFET editor@iaeme.com

4 Singh Rohitkumar Shailendra and V N Ramakrishnan 2. GAA-CARBON NANOTUBE FIELD EFFECT TRANSISTORS (CNTFETS) BASED LOGIC GATES The GAA-CNTFET is promising candidate to replace the traditional silicon transistor because of low power and high performance. GAA-CNTFET based device can be used as different application such as memories and all digital circuits [9]. In this paper, we have designed an inverter circuit, NAND circuit and NOR circuit as shown in Fig. 3. The Pull-up network (PUN) is implemented using p-type GAA-CNTFET and the pull-down network (PDN) is implemented using n-type GAA-CNTFET. The current pulse as shown in Fig. 5. is applied to the output node of all digital gates. In this paper, we have analysed the SEU Effect of GAA- CNTFET in digital gates. This digital circuit is investigated and analysed as follows: 1. Single Chirality Single Channel (SCSC) 2. Single Chirality Dual Channel (SCDC) 3. Dual Chirality Single Channel (DCSC) 4. Dual Chirality Dual Channel (DCDC) Figure 3 Structure of (a) NOT Gate (b) NAND Gate (c) NOR Gate Figure 4 I-V Characteristic of GAA-CNTFET for different diameter editor@iaeme.com

5 SEU Radiation Effects on GAA-CNTFET Based Digital Logic Circuit Figure 5 Double exponential current pulse with rise time start=20 ns, rise time constant=1 ns, fall time start=21 ns and fall time constant=1 ns 3. SIMULATION RESULT OF SEU EFFECT ON GAA-CARBON NANOTUBE FIELD EFFECT TRANSISTORS (CNTFETS) BASED DIGITAL GATES The Simulation results of inverter with current pulse are shown in Fig. 6 and Fig. 7 respectively. The simulation result shows that Single Chirality Dual Channel (SCDC) and Dual Chirality Dual Channel (DCDC) based topology for inverter is more reliable because its highest threshold current value is 5.4 µa and 5.8 µa respectively where as Single chirality Single Channel (SCSC) and Dual Chirality Single Channel (DCSC) topology for inverter is less reliable with lowest threshold current value 2.95 µa and 2.80 µa respectively. The flow of electron at output node is very less in single channel due to that threshold current value is very less for SCSC and DCSC topology. The Simulation result of NAND gate with current pulse are shown in Fig. 8 and Fig. 9 and result of NOR gate with current pulse are shown in Fig. 10 and Fig. 11. The threshold current value is more for SCDC and DCDC topology whereas threshold current Value is less for SCSC and DCSC topology for NAND and NOR gate as shown in Fig. 8, 9, 10 and 11. The simulation result of different dielectric material (K) for gate oxide is shown in Fig. 12 and different oxide thickness (t ox ) is shown in Fig. 13. From the simulation result, we can say that threshold current value is more for high dielectric material and greater oxide thickness. Figure 6 Simulation result of inverter for Single Chirality editor@iaeme.com

6 Singh Rohitkumar Shailendra and V N Ramakrishnan Figure 7 Simulation result of inverter for Dual Chirality Figure 8 Simulation result of NAND for Single Chirality Figure 9 Simulation result of NAND for Dual Chirality editor@iaeme.com

7 SEU Radiation Effects on GAA-CNTFET Based Digital Logic Circuit Figure 10 Simulation result of NOR for Single Chirality Figure 11 Simulation result of NOR for Dual Chirality Figure 12 Simulation result of inverter for different dielectric material

8 Singh Rohitkumar Shailendra and V N Ramakrishnan Figure 13 Simulation result of inverter for different oxide thickness 4. CONCLUSIONS The effect of radiation on digital gates based on GAA-CNTFET is investigated. Double exponential studies of different digital gates with different topologies are done to compute the threshold current value and perturbation rate. From the Simulation result we observed that Single Chirality Dual Channel (SCDC) and Dual Chirality Dual Channel (DCDC) based topology for all digital gate is more reliable because its highest threshold current value where as Single chirality Single Channel (SCSC) and Dual Chirality Single Channel (DCSC) topology for all digital gate is less reliable with lowest threshold current value. REFERENCES [1] Moore, G. E. "OTHERS. Progress in digital integrated electronics." IEDM Tech. Digest 11 (1975). [2] Datta S., T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes et al. "85nm gate length enhancement and depletion mode InSb quantum well transistors for ultra high speed and very low power digital logic applications." In Electron Devices Meeting, IEDM Technical Digest. IEEE International, pp IEEE, (2005). [3] Dürkop, T., T. Brintlinger, and M. S. Fuhrer. "Nanotubes are high mobility semiconductors." In AIP Conference Proceedings, vol. 633, no. 1, pp AIP,(2002). [4] S. Iijima "Helical microtubules of graphitic carbon." nature 354, no (1991): 56. [5] R.Martel, H-SP. Wong, Kevin Chan, and Phaedon Avouris. "Carbon nanotube field effect transistors for logic applications." In Electron Devices Meeting, IEDM'01. Technical Digest. International, pp IEEE, (2001). [6] Dresselhaus Mildred S., and Phaedon Avouris. "Introduction to carbon materials research." In Carbon nanotubes, pp Springer, Berlin, Heidelberg, (2001). [7] Deng, Jie, and H-S. Philip Wong. "A compact SPICE model for carbon-nanotube fieldeffect transistors including nonidealities and its application Part II: Full device model and circuit performance benchmarking." IEEE Transactions on Electron Devices 54, no. 12 (2007): [8] Singh Rohitkumar Shailendra and V. N. Ramakrishnan. "Analysis of quantum capacitance on different dielectrics and its dependence on threshold voltage of CNTFET." In Nextgen editor@iaeme.com

9 SEU Radiation Effects on GAA-CNTFET Based Digital Logic Circuit Electronic Technologies: Silicon to Software (ICNETS2), 2017 International Conference, pp IEEE, [9] Satyanarayana V V and Sridevi Sriadibhatla. "Efficient CAM cell design for low power and low delay." In Microelectronic Devices, Circuits and Systems (ICMDCS), 2017 International conference, pp IEEE, [10] Radha Krishna Gopidesi and Premkartikkumar SR Application of emulsion as an alternate fuel for Bi-fuel engines- Review International journal of Pure and applied mathematics, vol. 118(18), pp [11] Datta Sai K, Radha Krishna Gopidesi and Premkartikkumar SR Effects of Water Diesel Emulsion on Diesel Engine International journal of Mechanical and Production Engineering Research and Development, Vol.8 no 1, [12] Vijaya Kumar Reddy, Premkartikkumar SR, Radha Krishna Gopidesi and Nitin Uttamrao Kautkar A Review on Nano Coatings for Ic Engine Applications, International Journal of Mechanical Engineering and Technology 8(9), 2017, pp [13] Gopidesi Radha Krishna, K Mohan Kumar, N Madhu Venkatesh and Gouse Basha Mohammed. Development of Polymer Matrix Composites Reinforcing with Al2CuMg. International Journal of Mechanical Engineering and Technology, 8(6), 2017, pp [14] Rakesh Trivedi and Usha S Mehta. A Survey of Radiation Hardening by Design (RHBD) Techniques for Electronic Systems for Space Application. International Journal of Electronics and Communication Engineering & Technology, 7 (1), 2016, pp editor@iaeme.com

I-V characteristics model for Carbon Nanotube Field Effect Transistors

I-V characteristics model for Carbon Nanotube Field Effect Transistors International Journal of Engineering & Technology IJET-IJENS Vol:14 No:04 33 I-V characteristics model for Carbon Nanotube Field Effect Transistors Rebiha Marki, Chérifa Azizi and Mourad Zaabat. Abstract--

More information

Design Of Ternary Logic Gates Using CNTFET

Design Of Ternary Logic Gates Using CNTFET International Journal of Research in Computer and Communication Technology, Vol 4, Issue 3, March -2015 ISSN (Online) 2278-5841 ISSN (Print) 2320-5156 Design Of Ternary Logic Gates Using CNTFET Aashish

More information

A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube

A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube Journal of Optoelectronical Nanostructures Islamic Azad University Winter 2017 / Vol. 2, No. 4 A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube Mahdieh Nayeri 1, Peiman Keshavarzian*,1,

More information

Application of High-κ Gate Dielectrics and Metal Gate Electrodes to enable Silicon and Non-Silicon Logic Nanotechnology

Application of High-κ Gate Dielectrics and Metal Gate Electrodes to enable Silicon and Non-Silicon Logic Nanotechnology Application of High-κ Gate Dielectrics and Metal Gate Electrodes to enable Silicon and Non-Silicon Logic Nanotechnology Robert Chau, Justin Brask, Suman Datta, Gilbert Dewey, Mark Doczy, Brian Doyle, Jack

More information

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost!

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost! Two motivations to scale down CMOS Scaling Faster transistors, both digital and analog To pack more functionality per area. Lower the cost! (which makes (some) physical sense) Scale all dimensions and

More information

Beyond Si: Opportunities and Challenges for CMOS Technology Based on High-Mobility Channel Materials T.P. Ma Yale University

Beyond Si: Opportunities and Challenges for CMOS Technology Based on High-Mobility Channel Materials T.P. Ma Yale University Beyond Si: Opportunities and Challenges for CMOS Technology Based on High-Mobility Channel Materials T.P. Ma Yale University Acknowledgments: Abigail Lubow, Xiao Sun, Shufeng Ren Switching Speed of CMOS

More information

NOVEL STRUCTURES FOR CARBON NANOTUBE FIELD EFFECT TRANSISTORS

NOVEL STRUCTURES FOR CARBON NANOTUBE FIELD EFFECT TRANSISTORS International Journal of Modern Physics B Vol. 23, No. 19 (2009) 3871 3880 c World Scientific Publishing Company NOVEL STRUCTURES FOR CARBON NANOTUBE FIELD EFFECT TRANSISTORS RAHIM FAEZ Electrical Engineering

More information

6545(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2 Properties of CNT d = 2.46 n 2 2 1 + n1n2 + n2 2π Metallic: 2n 1 +n 2 =3q Armchair structure always metallic a) Graphite Valence(π) and Conduction(π*) states touch at six points(fermi points) Carbon Nanotube:

More information

Carbon Nanotube Electronics

Carbon Nanotube Electronics Carbon Nanotube Electronics Jeorg Appenzeller, Phaedon Avouris, Vincent Derycke, Stefan Heinz, Richard Martel, Marko Radosavljevic, Jerry Tersoff, Shalom Wind H.-S. Philip Wong hspwong@us.ibm.com IBM T.J.

More information

GRAPHENE NANORIBBONS Nahid Shayesteh,

GRAPHENE NANORIBBONS Nahid Shayesteh, USC Department of Physics Graduate Seminar 1 GRAPHENE NANORIBBONS Nahid Shayesteh, Outlines 2 Carbon based material Discovery and innovation of graphen Graphene nanoribbons structure Application of Graphene

More information

A 2D Analytical Investigation of Surface Potential and Electric Field for InSb based Triple Material Gate QWFET

A 2D Analytical Investigation of Surface Potential and Electric Field for InSb based Triple Material Gate QWFET A 2D Analytical Investigation of Surface Potential and Electric Field for InSb based Triple Material Gate QWFET C.Divya *1 N.Arumugam 2 B.Selva Karthick 3 J.Jagannathan 4 N.Krishnan 5 1Assistant Professor,

More information

III-V field-effect transistors for low power digital logic applications

III-V field-effect transistors for low power digital logic applications Microelectronic Engineering 84 (2007) 2133 2137 www.elsevier.com/locate/mee III-V field-effect transistors for low power digital logic applications Suman Datta * Components Research, Technology Manufacturing

More information

Stretching the Barriers An analysis of MOSFET Scaling. Presenters (in order) Zeinab Mousavi Stephanie Teich-McGoldrick Aseem Jain Jaspreet Wadhwa

Stretching the Barriers An analysis of MOSFET Scaling. Presenters (in order) Zeinab Mousavi Stephanie Teich-McGoldrick Aseem Jain Jaspreet Wadhwa Stretching the Barriers An analysis of MOSFET Scaling Presenters (in order) Zeinab Mousavi Stephanie Teich-McGoldrick Aseem Jain Jaspreet Wadhwa Why Small? Higher Current Lower Gate Capacitance Higher

More information

P.Geetha, Dr.R.S.D.Wahida Banu.

P.Geetha, Dr.R.S.D.Wahida Banu. International Journal of Scientific & Engineering Research, Volume 5, Issue 5, MAY-2014 62 Performance Characterization of Capacitance Modeling for Carbon Nanotube MOSFET P.Geetha, Dr.R.S.D.Wahida Banu.

More information

Modeling and Simulation of Carbon Nanotubes based FET for Cervical Cancer Detection

Modeling and Simulation of Carbon Nanotubes based FET for Cervical Cancer Detection Modeling and Simulation of Carbon Nanotubes based FET for Cervical Cancer Detection Gopinath.P.G. 1, S. Aruna Mastani 2, V.R. Anitha 3 Research Scholar, Department of ECE, JNTUA, Anantapuramu, Andhra Pradesh,

More information

Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M.

Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M. Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M. Mominuzzaman Department of Electrical and Electronic Engineering, Bangladesh

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

Part 5: Quantum Effects in MOS Devices

Part 5: Quantum Effects in MOS Devices Quantum Effects Lead to Phenomena such as: Ultra Thin Oxides Observe: High Leakage Currents Through the Oxide - Tunneling Depletion in Poly-Si metal gate capacitance effect Thickness of Inversion Layer

More information

Electrostatics of Nanowire Transistors

Electrostatics of Nanowire Transistors Electrostatics of Nanowire Transistors Jing Guo, Jing Wang, Eric Polizzi, Supriyo Datta and Mark Lundstrom School of Electrical and Computer Engineering Purdue University, West Lafayette, IN, 47907 ABSTRACTS

More information

Lecture 6: 2D FET Electrostatics

Lecture 6: 2D FET Electrostatics Lecture 6: 2D FET Electrostatics 2016-02-01 Lecture 6, High Speed Devices 2014 1 Lecture 6: III-V FET DC I - MESFETs Reading Guide: Liu: 323-337 (he mainly focuses on the single heterostructure FET) Jena:

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

Electrostatic Single-walled Carbon Nanotube (CNT) Field Effect Transistor Device Modeling

Electrostatic Single-walled Carbon Nanotube (CNT) Field Effect Transistor Device Modeling Electrostatic Single-walled Carbon Nanotube (CNT) Field Effect Transistor Device Modeling Henok Abebe The Service USC Viterbi School of Engineering Information Sciences Institute Collaborator Ellis Cumberbatch

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Scaling Issues in Planar FET: Dual Gate FET and FinFETs Scaling Issues in Planar FET: Dual Gate FET and FinFETs Lecture 12 Dr. Amr Bayoumi Fall 2014 Advanced Devices (EC760) Arab Academy for Science and Technology - Cairo 1 Outline Scaling Issues for Planar

More information

Emerging Research Devices: A Study of CNTFET and SET as a replacement for SiMOSFET

Emerging Research Devices: A Study of CNTFET and SET as a replacement for SiMOSFET 1 Emerging Research Devices: A Study of CNTFET and SET as a replacement for SiMOSFET Mahmoud Lababidi, Krishna Natarajan, Guangyu Sun Abstract Since the development of the Silicon MOSFET, it has been the

More information

GRAPHENE NANORIBBONS Nahid Shayesteh,

GRAPHENE NANORIBBONS Nahid Shayesteh, USC Department of Physics Graduate Seminar GRAPHENE NANORIBBONS Nahid Shayesteh, Outlines 2 Carbon based material Discovery and innovation of graphen Graphene nanoribbons structure and... FUNCTIONS 3 Carbon-based

More information

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel Bhadrinarayana L V 17 th July 2008 Microelectronics Lab, Indian

More information

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ] DrainCurrent-Id in linearscale(a/um) Id in logscale Journal of Electron Devices, Vol. 18, 2013, pp. 1582-1586 JED [ISSN: 1682-3427 ] SUITABILITY OF HIGH-k GATE DIELECTRICS ON THE DEVICE PERFORMANCE AND

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

Capacitance-Voltage characteristics of nanowire trigate MOSFET considering wave functionpenetration

Capacitance-Voltage characteristics of nanowire trigate MOSFET considering wave functionpenetration Global Journal of researches in engineering Electrical and electronics engineering Volume 12 Issue 2 Version 1.0 February 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher:

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Computational Model of Edge Effects in Graphene Nanoribbon Transistors

Computational Model of Edge Effects in Graphene Nanoribbon Transistors Nano Res (2008) 1: 395 402 DOI 10.1007/s12274-008-8039-y Research Article 00395 Computational Model of Edge Effects in Graphene Nanoribbon Transistors Pei Zhao 1, Mihir Choudhury 2, Kartik Mohanram 2,

More information

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages) EE241 - Spring 2013 Advanced Digital Integrated Circuits Lecture 12: SRAM Design ECC Timing Announcements Homework 2 due on Wednesday Quiz #2 on Wednesday Midterm project report due next Week (4 pages)

More information

Available online at ScienceDirect. Procedia Materials Science 11 (2015 )

Available online at   ScienceDirect. Procedia Materials Science 11 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 11 (2015 ) 287 292 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15 Tunneling

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon

Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon www.nmletters.org Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon Jingqi Li 1,, Weisheng Yue 1, Zaibing Guo 1, Yang Yang 1, Xianbin Wang 1, Ahad A. Syed 1, Yafei

More information

EE410 vs. Advanced CMOS Structures

EE410 vs. Advanced CMOS Structures EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + poly-si N + poly-si Al/Si alloy LPCVD PSG P + P + N + N + PMOS N-substrate NMOS P-well

More information

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices Zhiping Yu and Jinyu Zhang Institute of Microelectronics Tsinghua University, Beijing, China yuzhip@tsinghua.edu.cn

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

Top Gate Planner Carbon Nanotube Field Effect Transistor using Nanohub

Top Gate Planner Carbon Nanotube Field Effect Transistor using Nanohub Top Gate Planner Carbon Nanotube Field Effect Transistor using Nanohub G. K. Pandey 1, U.N. Tripathi 2, Manish Mishra 3 1,3 Department of Electronics, DDU Gorakhpur University, Gorakhpur -273009, India.

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

Designing a Carbon Nanotube Field-Effect Transistor with High Transition Frequency for Ultra-Wideband Application

Designing a Carbon Nanotube Field-Effect Transistor with High Transition Frequency for Ultra-Wideband Application Engineering, 2017, 9, 22-35 http://www.scirp.org/journal/eng ISSN Online: 1947-394X ISSN Print: 1947-3931 Designing a Carbon Nanotube Field-Effect Transistor with High Transition Frequency for Ultra-Wideband

More information

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon Review of Semiconductor Physics Lecture 3 4 Dr. Tayab Din Memon 1 Electronic Materials The goal of electronic materials is to generate and control the flow of an electrical current. Electronic materials

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

Minimization of CNTFET Ternary Combinational Circuits Using Negation of Literals Technique

Minimization of CNTFET Ternary Combinational Circuits Using Negation of Literals Technique DOI 10.1007/s13369-014-1147-y RESEARCH ARTICLE - ELECTRICAL ENGINEERING Minimization of CNTFET Ternary Combinational Circuits Using Negation of Literals Technique V. Sridevi T. Jayanthy Received: 24 August

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

Lecture 5: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory Lecture 5: CMOS Transistor Theory Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline q q q q q q q Introduction MOS Capacitor nmos I-V Characteristics

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at

More information

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors Shih-Ching Lo 1, Yiming Li 2,3, and Jyun-Hwei Tsai 1 1 National Center for High-Performance

More information

Lecture 9. Strained-Si Technology I: Device Physics

Lecture 9. Strained-Si Technology I: Device Physics Strain Analysis in Daily Life Lecture 9 Strained-Si Technology I: Device Physics Background Planar MOSFETs FinFETs Reading: Y. Sun, S. Thompson, T. Nishida, Strain Effects in Semiconductors, Springer,

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Prof. Dr. Esko I. Kauppinen Helsinki University of Technology (TKK) Espoo, Finland Forecast Seminar February 13, 2009

More information

Device Performance Analysis of Graphene Nanoribbon Field-Effect Transistor with Rare- Earth Oxide (La 2 O 3 ) Based High-k Gate Dielectric

Device Performance Analysis of Graphene Nanoribbon Field-Effect Transistor with Rare- Earth Oxide (La 2 O 3 ) Based High-k Gate Dielectric Device Performance Analysis of Graphene Nanoribbon Field-Effect Transistor with Rare- Earth Oxide (La 2 O 3 ) Based High-k Gate Dielectric M. K. Bera 1, S. P. Pandey 2, A. K. Sharma 3, D. K. Tyagi 4, R.

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

Components Research, TMG Intel Corporation *QinetiQ. Contact:

Components Research, TMG Intel Corporation *QinetiQ. Contact: 1 High-Performance 4nm Gate Length InSb P-Channel Compressively Strained Quantum Well Field Effect Transistors for Low-Power (V CC =.5V) Logic Applications M. Radosavljevic,, T. Ashley*, A. Andreev*, S.

More information

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? 1 st Workshop on Data Abundant Systems Technology Stanford, April 2014 Debdeep Jena (djena@nd.edu) Electrical Engineering,

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

COMPARATIVE ANALYSIS OF CARBON NANOTUBES AS VLSI INTERCONNECTS

COMPARATIVE ANALYSIS OF CARBON NANOTUBES AS VLSI INTERCONNECTS International Journal of Science, Engineering and Technology Research (IJSETR), Volume 4, Issue 8, August 15 COMPARATIVE ANALYSIS OF CARBON NANOTUBES AS VLSI INTERCONNECTS Priya Srivastav, Asst. Prof.

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Vulnerabilities in Analog and Digital Electronics. Microelectronics and Computer Group University of Maryland & Boise State University

Vulnerabilities in Analog and Digital Electronics. Microelectronics and Computer Group University of Maryland & Boise State University Vulnerabilities in Analog and Digital Electronics Microelectronics and Computer Group University of Maryland & Boise State University Vulnerabilities in Analog and Digital Electronics Overview The Fundamental

More information

ECE 340 Lecture 39 : MOS Capacitor II

ECE 340 Lecture 39 : MOS Capacitor II ECE 340 Lecture 39 : MOS Capacitor II Class Outline: Effects of Real Surfaces Threshold Voltage MOS Capacitance-Voltage Analysis Things you should know when you leave Key Questions What are the effects

More information

Nanocarbon Technology for Development of Innovative Devices

Nanocarbon Technology for Development of Innovative Devices Nanocarbon Technology for Development of Innovative Devices Shintaro Sato Daiyu Kondo Shinichi Hirose Junichi Yamaguchi Graphene, a one-atom-thick honeycomb lattice made of carbon, and a carbon nanotube,

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon Nanotubes Yung-Fu Chen and M. S. Fuhrer Department of Physics and Center for Superconductivity Research, University of Maryland,

More information

EE130: Integrated Circuit Devices

EE130: Integrated Circuit Devices EE130: Integrated Circuit Devices (online at http://webcast.berkeley.edu) Instructor: Prof. Tsu-Jae King (tking@eecs.berkeley.edu) TA s: Marie Eyoum (meyoum@eecs.berkeley.edu) Alvaro Padilla (apadilla@eecs.berkeley.edu)

More information

Lecture 2 Thin Film Transistors

Lecture 2 Thin Film Transistors Lecture 2 Thin Film Transistors 1/60 Announcements Homework 1/4: Will be online after the Lecture on Tuesday October 2 nd. Total of 25 marks. Each homework contributes an equal weight. All homework contributes

More information

A Computational Model of NBTI and Hot Carrier Injection Time-Exponents for MOSFET Reliability

A Computational Model of NBTI and Hot Carrier Injection Time-Exponents for MOSFET Reliability Journal of Computational Electronics 3: 165 169, 2004 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. A Computational Model of NBTI and Hot Carrier Injection Time-Exponents

More information

Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures

Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures 1 Milad Abtin, 2 Ali Naderi 1 Department of electrical engineering, Masjed

More information

CHAPTER 3 CAPACITANCE MODELLING OF GATE WRAP AROUND DOUBLE-WALLED ARRAY CARBON NANOTUBE FIELD EFFECT TRANSISTOR

CHAPTER 3 CAPACITANCE MODELLING OF GATE WRAP AROUND DOUBLE-WALLED ARRAY CARBON NANOTUBE FIELD EFFECT TRANSISTOR 52 CHAPTER 3 CAPACITANCE MODELLING OF GATE WRAP AROUND DOUBLE-WALLED ARRAY CARBON NANOTUBE FIELD EFFECT TRANSISTOR 3.1 INTRODUCTION Carbon nanotube is most the expected potential challenger that will replace

More information

Characteristics Optimization of Sub-10 nm Double Gate Transistors

Characteristics Optimization of Sub-10 nm Double Gate Transistors Characteristics Optimization of Sub-10 nm Double Gate Transistors YIMING LI 1,,*, JAM-WEM Lee 1, and HONG-MU CHOU 3 1 Departmenet of Nano Device Technology, National Nano Device Laboratories Microelectronics

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

Modeling and Performance analysis of Metallic CNT Interconnects for VLSI Applications

Modeling and Performance analysis of Metallic CNT Interconnects for VLSI Applications IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834, p- ISSN: 2278-8735. Volume 4, Issue 6 (Jan. - Feb. 2013), PP 32-36 Modeling and Performance analysis of Metallic

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Proposed Thermal Circuit Model for the Cost Effective Design of Fin FET

Proposed Thermal Circuit Model for the Cost Effective Design of Fin FET Proposed Thermal Circuit Model for the Cost Effective Design of Fin FET Abstract A K M Kamrul Hasan, MD. Nizamul Islam, Dewan Siam Shafiullah Islamic University of Technology (IUT) Gazipur, Bangladesh.

More information

ln R Kuldeep Niranjan, Sanjay Srivastava, Jaikaran Singh, Mukesh Tiwari

ln R Kuldeep Niranjan, Sanjay Srivastava, Jaikaran Singh, Mukesh Tiwari Carbon Nanotube Field Effect Transistor: Fabrication of Thin Film of SiO -Based Micro Cantilevers Dielectric Layer between the Channel and Substrate by Anisotropic Chemical Etching of (100) Single Crystal

More information

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling L13 04202017 ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling Scaling laws: Generalized scaling (GS) p. 610 Design steps p.613 Nanotransistor issues (page 626) Degradation

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) 1 Introduction to Transistor-Level Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed

More information

Performance Comparison of Graphene Nanoribbon FETs. with Schottky Contacts and Doped Reservoirs

Performance Comparison of Graphene Nanoribbon FETs. with Schottky Contacts and Doped Reservoirs Performance Comparison of Graphene Nanoribbon FETs with Schottky Contacts and Doped Reservoirs Youngki Yoon 1,a, Gianluca Fiori 2,b, Seokmin Hong 1, Giuseppe Iannaccone 2, and Jing Guo 1 1 Department of

More information

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

! Previously: simple models (0 and 1 st order)  Comfortable with basic functions and circuits. ! This week and next (4 lectures) ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 9: September 26, 2011 MOS Model Today MOS Structure Basic Idea Semiconductor Physics Metals, insulators Silicon lattice

More information

MOS Capacitors ECE 2204

MOS Capacitors ECE 2204 MOS apacitors EE 2204 Some lasses of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor MOSFET, which will be the type that we will study in this course. Metal-Semiconductor Field

More information

ANALYTICAL COMPUTATION OF BAND STRUCTURE AND DENSITY OF STATES OF ZIGZAG SINGLE-WALL CARBON NANOTUBE FOR DIFFERENT STRUCTURAL PARAMETERS

ANALYTICAL COMPUTATION OF BAND STRUCTURE AND DENSITY OF STATES OF ZIGZAG SINGLE-WALL CARBON NANOTUBE FOR DIFFERENT STRUCTURAL PARAMETERS Journal of Electron Devices, Vol. 9, 4, pp. 686-694 JED [ISSN: 68-347 ] ANALYTICAL COMPUTATION OF BAND STRUCTURE AND DENSITY OF STATES OF ZIGZAG SINGLE-WALL CARBON NANOTUBE FOR DIFFERENT STRUCTURAL PARAMETERS

More information

Performance Analysis of Multilayer Graphene Nano Ribbon as on chip Interconnect.

Performance Analysis of Multilayer Graphene Nano Ribbon as on chip Interconnect. Performance Analysis of Multilayer Graphene Nano Ribbon as on chip Interconnect. G.Chitra 1, P.Murugeswari 2 1 (Post Graduate Student, VLSI Design, Theni Kammavar Sangam College of Technology, Theni, India)

More information

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs

High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs Prof. (Dr.) Tejas Krishnamohan Department of Electrical Engineering Stanford University, CA & Intel Corporation

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor Triode Working FET Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor The characteristics of energy bands as a function of applied voltage. Surface inversion. The expression for the

More information

What s the driving force behind the scaling?

What s the driving force behind the scaling? To talk about nano, the electrical engineer almost always starts from transistor scaling, Moore s law... Let s follow this somewhat traditional (boring) path for now. This course is about nanoelectronics

More information

A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors

A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors Jing Guo, Supriyo Datta and Mark Lundstrom School of Electrical and Computer Engineering, Purdue University, West Lafayette,

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

DocumentToPDF trial version, to remove this mark, please register this software.

DocumentToPDF trial version, to remove this mark, please register this software. PAPER PRESENTATION ON Carbon Nanotube - Based Nonvolatile Random Access Memory AUTHORS M SIVARAM PRASAD Sivaram.443@gmail.com B N V PAVAN KUMAR pavankumar.bnv@gmail.com 1 Carbon Nanotube- Based Nonvolatile

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Presenter: Tulika Mitra Swarup Bhunia, Massood Tabib-Azar, and Daniel Saab Electrical Eng. And

More information

Modeling of MOSFET with Different Materials

Modeling of MOSFET with Different Materials Modeling of MOSFET with Different Materials Apurva Choubey, Rajesh Nema Abstract This paper provides the designing of mosfet with different materials and compare which material is better for the designing.

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

VLSI Design The MOS Transistor

VLSI Design The MOS Transistor VLSI Design The MOS Transistor Frank Sill Torres Universidade Federal de Minas Gerais (UFMG), Brazil VLSI Design: CMOS Technology 1 Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V

More information

Analytical Modeling of Threshold Voltage for a. Biaxial Strained-Si-MOSFET

Analytical Modeling of Threshold Voltage for a. Biaxial Strained-Si-MOSFET Contemporary Engineering Sciences, Vol. 4, 2011, no. 6, 249 258 Analytical Modeling of Threshold Voltage for a Biaxial Strained-Si-MOSFET Amit Chaudhry Faculty of University Institute of Engineering and

More information