THE BASICS OF PHOTOSYNTHESIS
|
|
- Deborah Alexander
- 3 years ago
- Views:
Transcription
1 THE BASICS OF PHOTOSYNTHESIS Almost all plants are photosynthetic autotrophs, as are some bacteria and protists Autotrophs generate their own organic matter through photosynthesis Sunlight energy is transformed to energy stored in the form of chemical bonds (c) Euglena (d) Cyanobacteria (a) Mosses, ferns, and flowering plants (b) Kelp
2 Light Energy Harvested by Plants & Other Photosynthetic Autotrophs 6 CO H 2 O + light energy C 6 H 12 O O 2
3 WHY ARE PLANTS GREEN? Plant Cells have Green Chloroplasts The thylakoid membrane of the chloroplast is impregnated with photosynthetic pigments (i.e., chlorophylls, carotenoids).
4 THE COLOR OF LIGHT SEEN IS THE COLOR NOT ABSORBED Chloroplasts absorb light energy and convert it to chemical energy Light Reflected light Absorbed light Transmitted light Chloroplast
5 AN OVERVIEW OF PHOTOSYNTHESIS Photosynthesis is the process by which autotrophic organisms use light energy to make sugar and oxygen gas from carbon dioxide and water Carbon dioxide Water Glucose Oxygen gas PHOTOSYNTHESIS
6 AN OVERVIEW OF PHOTOSYNTHESIS The light reactions convert solar energy to chemical energy Produce ATP & NADPH The Calvin cycle makes sugar from carbon dioxide Light Light reactions Chloroplast NADP ADP + P Calvin cycle ATP generated by the light reactions provides the energy for sugar synthesis The NADPH produced by the light reactions provides the electrons for the reduction of carbon dioxide to glucose
7 PHOTOSYNTHESIS Sunlight provides ENERGY CO2 + H2O produces Glucose + Oxygen 6CO2 + 6H2O C6H12O6 + 6O2
8 Steps of Photosynthesis Light hits reaction centers of chlorophyll, found in chloroplasts Chlorophyll vibrates and causes water to break apart. Oxygen is released into air Hydrogen remains in chloroplast attached to NADPH THE LIGHT REACTION
9 Steps of Photosynthesis The DARK Reactions= Calvin Cycle CO2 from atmosphere is joined to H from water molecules (NADPH) to form glucose Glucose can be converted into other molecules with yummy flavors!
10 Photosynthesis occurs in chloroplasts In most plants, photosynthesis occurs primarily in the leaves, in the chloroplasts A chloroplast contains: stroma, a fluid grana, stacks of thylakoids The thylakoids contain chlorophyll Chlorophyll is the green pigment that captures light for photosynthesis
11 The location and structure of chloroplasts Chloroplast LEAF LEAF CROSS SECTION MESOPHYLL CELL Mesophyll CHLOROPLAST Intermembrane space Outer membrane Granum Inner membrane Grana Stroma Stroma Thylakoid Thylakoid compartment
12 Chloroplast Pigments Chloroplasts contain several pigments Chlorophyll a Chlorophyll b Carotenoids Xanthophyll Figure 7.7
13 Chlorophyll a & b Chl a has a methyl group Chl b has a carbonyl group Porphyrin ring delocalized e - Phytol tail
14 Different pigments absorb light differently
15 Cyclic Photophosphorylation Process for ATP generation associated with some Photosynthetic Bacteria Reaction Center => 700 nm
16 Two types of photosystems cooperate in the light reactions ATP mill Water-splitting photosystem NADPH-producing photosystem
17 Noncyclic Photophosphorylation Photosystem II regains electrons by splitting water, leaving O 2 gas as a by-product Primary electron acceptor Primary electron acceptor Photons Energy for synthesis of PHOTOSYSTEM I PHOTOSYSTEM II by chemiosmosis
18 Plants produce O 2 gas by splitting H 2 O The O 2 liberated by photosynthesis is made from the oxygen in water (H + and e - )
19 In the light reactions, electron transport chains generate ATP, NADPH, & O 2 Two connected photosystems collect photons of light and transfer the energy to chlorophyll electrons The excited electrons are passed from the primary electron acceptor to electron transport chains Their energy ends up in ATP and NADPH
20 Chemiosmosis powers ATP synthesis in the light reactions The electron transport chains are arranged with the photosystems in the thylakoid membranes and pump H + through that membrane The flow of H + back through the membrane is harnessed by ATP synthase to make ATP In the stroma, the H + ions combine with NADP + to form NADPH
21 How the Light Reactions Generate ATP and NADPH Primary electron acceptor NADP Primary electron acceptor 2 Energy to make 3 Light Light Primary electron acceptor 1 Reactioncenter chlorophyll NADPH-producing photosystem Water-splitting photosystem 2 H + 1 / 2
22
23 The production of ATP by chemiosmosis in photosynthesis Thylakoid compartment (high H + ) Light Light Thylakoid membrane Antenna molecules Stroma (low H + ) ELECTRON TRANSPORT CHAIN PHOTOSYSTEM II PHOTOSYSTEM I ATP SYNTHASE
24 Summary Light Dependent Reactions a. Overall input light energy, H 2 O. b. Overall output ATP, NADPH, O 2.
25
26 Animation is of the Calvin Cycle Note what happens to the carbon dioxide and what the end product is. Second animation of the Calvin Cycle is very clear and even does the molecular bookkeeping for you.
27 Light Independent Reactions Carbon from CO2 is converted to glucose aka Calvin Cycle (ATP and NADPH drive the reduction of CO2 to C6H12O6.)
28 Light Independent Reactions aka Calvin Cycle CO2 is added to the 5-C sugar RuBP by the enzyme rubisco. This unstable 6-C compound splits to two molecules of PGA or 3-phosphoglyceric acid. PGA is converted to Glyceraldehyde 3-phosphate (G3P), two of which bond to form glucose. G3P is the 3-C sugar formed by three turns of the cycle.
29 Summary Light Independent Reactions a. Overall input CO 2, ATP, NADPH. b. Overall output glucose.
30 Review: Photosynthesis uses light energy to make food molecules A summary of the chemical processes of photosynthesis Light Photosystem II Electron transport chains Photosystem I Chloroplast CALVIN CYCLE Stroma LIGHT REACTIONS CALVIN CYCLE Cellular respiration Cellulose Starch Other organic compounds
31 Types of Photosynthesis C3 C4 CAM Rubisco: the world s busiest enzyme!
32 Competing Reactions Rubisco grabs CO2, fixing it into a carbohydrate in the light independent reactions. O2 can also react with rubisco, inhibiting its active site not good for glucose output wastes time and energy (occupies Rubisco)
33 Photorespiration When Rubisco reacts with O 2 instead of CO 2 Occurs under the following conditions: Intense Light (high O 2 concentrations) High heat Photorespiration is estimated to reduce photosynthetic efficiency by 25%
34 Why high heat? When it is hot, plants close their stomata to conserve water They continue to do photosynthesis use up CO 2 and produce O 2 creates high O 2 concentrations inside the plant photorespiration occurs
35 C4 Photosynthesis Certain plants have developed ways to limit the amount of photorespiration C4 Pathway* CAM Pathway* * Both convert CO 2 into a 4 carbon intermediate C4 Photosynthesis
36 Leaf Anatomy In C3 plants (those that do C3 photosynthesis), all processes occur in the mesophyll cells. Mesophyll cells Bundle sheath cells Image taken without permission from
37 C4 Pathway In C4 plants photosynthesis occurs in both the mesophyll and the bundle sheath cells. Image taken without permission from
38 C4 Pathway CO 2 is fixed into a 4- carbon intermediate Has an extra enzyme PEP Carboxylase that initially traps CO 2 instead of Rubisco makes a 4 carbon intermediate
39 C4 Pathway The 4 carbon intermediate is smuggled into the bundle sheath cell The bundle sheath cell is not very permeable to CO 2 CO 2 is released from the 4C malate goes through the Calvin Cycle C3 Pathway
40 How does the C4 Pathway limit photorespiration? Bundle sheath cells are far from the surface less O 2 access PEP Carboxylase doesn t have an affinity for O 2 allows plant to collect a lot of CO 2 and concentrate it in the bundle sheath cells (where Rubisco is)
41 CAM Pathway Fix CO 2 at night and store as a 4 carbon molecule Keep stomates closed during day to prevent water loss Same general process as C4 Pathway
42 How does the CAM Pathway limit photorespiration? Collects CO 2 at night so that it can be more concentrated during the day Plant can still do the calvin cycle during the day without losing water
43 Summary of C4 Photosynthesis C4 Pathway Separates by space (different locations) CAM Pathway Separates reactions by time (night versus day)
Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work)
PHOTOSYNTHESIS Energy can be transformed from one form to another FREE ENERGY (available for work) vs. HEAT (not available for work) THE SUN: MAIN SOURCE OF ENERGY FOR LIFE ON EARTH THE BASICS OF PHOTOSYNTHESIS
light-dependent reactions (i.e., light reactions)
LEARNING OBJECTIVES By the end of this lecture you will be able to: 1. Understand that ENERGY can be transformed from one form to another. 2. Know that energy exist in two forms; free energy - available
Energy can be transformed from one form to another
LEARNING OBJECTIVES By the end of this lecture you will be able to: Photosynthesis 1. Understand that ENERGY can be transformed from one form to another. 2. Know that energy exist in two forms; free energy
Vital metabolism for survival of life in the earth. Prof Adinpunya Mitra Agricultural & Food Engineering Department
Vital metabolism for survival of life in the earth Prof Adinpunya Mitra Agricultural & Food Engineering Department THE SUN: MAIN SOURCE OF ENERGY FOR LIFE ON EARTH THE BASICS OF PHOTOSYNTHESIS Almost all
light-dependent reactions (i.e., light reactions)
LEARNING OBJECTIVES By the end of this lecture you will be able to: 1. Understand that ENERGY can be transformed from one form to another. 2. Know that energy exist in two forms; free energy - available
Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg
Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source
Lecture 9: Photosynthesis
Lecture 9: Photosynthesis I. Characteristics of Light A. Light is composed of particles that travel as waves 1. Comprises a small part of the electromagnetic spectrum B. Radiation varies in wavelength
Photosynthesis (Outline)
Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) 3. Plant structures: organ, tissue, cells, sub-cellular organelle,
Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Overview. Photosynthesis
Photosynthesis Photosynthesis Overview Chapter 8 Energy for all life on Earth ultimately comes from photosynthesis. 6CO2 + 12H2O C6H12O6 + 6H2O + 6O2 Oxygenic photosynthesis is carried out by: cyanobacteria,
The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to
1 The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to
How do cells obtain energy from food molecules? Unit 5: Cellular Respiration and Photosynthesis. It is an extremely simple cellular process.
Unit 5: Cellular Respiration and Photosynthesis How do cells obtain energy from food molecules? 1. Cellular respiration release energy from food molecules 2. Glycolysis begins the production of Energy
Chapter 10 Photosynthesis
Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Photosynthesis occurs in plants, algae, certain other
Chapter 10. Photosynthesis
Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost
A. Structures of PS. Site of PS in plants: mostly in leaves in chloroplasts. Leaf cross section. Vein. Mesophyll CO 2 O 2. Stomata
PS Lecture Outline I. Introduction A. Structures B. Net Reaction II. Overview of PS A. Rxns in the chloroplast B. pigments III. Closer looks A. LD Rxns B. LI Rxns 1. non-cyclic e- flow 2. cyclic e- flow
Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2
PHOTOSYNTHESIS Photosynthesis An anabolic, endergonic, carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules (glucose). photons SUN
Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy.
Chapter 7 Capturing Solar Energy: Photosynthesis Overview - the process that feeds the biosphere Photosynthesis: transformation of solar energy into chemical energy. Responsible for O 2 in our atmosphere
Endosymbiotic Theory. p
Endosymbiotic Theory p. 427-428 The Endosymbiotic Theory Review: What is a theory? What is the difference between prokaryotic and eukaryotic cells? The endosymbiotic theory is the idea that a long time
Photosynthesis. Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars).
Photosynthesis Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars). Plants do photosynthesis to make their own food (sugars) and are called, photoautotrophs.
Chapter 10: PHOTOSYNTHESIS
Chapter 10: PHOTOSYNTHESIS 1. Overview of Photosynthesis 2. Light Absorption 3. The Light Reactions 4. The Calvin Cycle 1. Overview of Photosynthesis Chapter Reading pp. 185-190, 206-207 What is Photosynthesis?
Bellringer 11/12/ CO H Light C 6 H 12 O 6 + 6O 2. Law of conservation. Recall: Photosynthesis Overview.
Photosynthesis Bellringer A.1 Identify the following as: heterotroph, autotroph, photosynthesis reactant, or photosynthesis product State Biology Standards H.B.3A1-3 and H.B.2A.1 A.1 Plants take in carbon
Photosynthesis (Outline)
Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) (Autotrophs: photo-autotrophs, chemo-autotrophs, electro-autotrophs,
Photosynthesis: Life from Light and Air
Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) get their energy from eating others eat food
Photosynthesis: Using Light to Make Food
Chapter 7 Photosynthesis: Using Light to Make Food Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and
CHAPTER 8 PHOTOSYNTHESIS
CHAPTER 8 PHOTOSYNTHESIS Con. 8.1 Photosynthesis process by which plants use light to make food molecules from carbon dioxide and water (chlorophyll) 6CO 2 + 12H 2 O + Light C 6 H 12 O 6 + 6O 2 + 6H 2
AP Biology. Chloroplasts: sites of photosynthesis in plants
The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to
Photosynthesis. From Sunlight to Sugar
Photosynthesis From Sunlight to Sugar What is Photosynthesis? Photosynthesis is a process that captures energy from sunlight to make sugars used as food for producers. The light energy is stored as chemical
PHOTOSYNTHESIS. Botany Department B.N.D. College
PHOTOSYNTHESIS Botany Department B.N.D. College Photosynthesis An anabolic, endergonic, carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules
Harvesting energy: photosynthesis & cellular respiration part 1
Harvesting energy: photosynthesis & cellular respiration part 1 Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular
Overall, photosynthesis is the conversion of the Sun s energy to stored chemical energy. (glucose) The overall reaction for photosynthesis:
A.P. Biology Chapter 10- Photosynthesis Scale: 0 - No understanding of the concept and chemical process of photosynthesis. 1- With help, a partial understanding of the reactants and products of the photosynthesis
Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko
Chapter 7 Photosynthesis: Using Light to Make Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean
Just Like the Guy From Krypton Photosynthesis
Just Like the Guy From Krypton Photosynthesis An Overview of Photosynthesis Most of the energy used by almost all living cells ultimately comes from the sun plants, algae, and some bacteria capture the
6.3 Overview of Photosynthesis
6.3 Overview of Photosynthesis Chloroplast location of photosynthesis in plants and protists 3 membranes 2 make up the stroma Semifluid matrix Location of sugar production 1 makes up the thylakoid membrane
Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised:
Photosynthesis (Chapter 7 Outline) Sun, Rain, and Survival A. For life based on organic compounds, two questions can be raised: 1. Where does the carbon come from? 2. Where does the energy come from to
Photosynthesis: Life from Light and Air
http://www.youtube.com/watch?v=wi60tqa8jfe Photosynthesis: Life from Light and Air 2011-2012 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) obtain
11/19/2013. How do cells obtain energy from food molecules? Unit 5: Cellular Respiration and Photosynthesis
Unit 5: Cellular Respiration and Photosynthesis How do cells obtain energy from food molecules? 1. Cellular respiration release energy from food molecules 2. Glycolysis begins the production of Energy
Photosynthesis is the main route by which that energy enters the biosphere of the Earth.
Chapter 5-Photosynthesis Photosynthesis is the main route by which that energy enters the biosphere of the Earth. To sustain and power life on Earth, the captured energy has to be released and used in
Photosynthesis
Student Expectations: Cellular Energy Understand that cellular energy is temporarily stored in the nucleotide ATP (adenosine triphosphate) Describe how energy is released by ATP When the outer phosphate
AP Biology. Photosynthesis
Photosynthesis Redox Reactions break bonds & move electrons from one molecule to another as electrons move they carry energy with them that energy is stored in another bond, released as heat or harvested
(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration
AP Biology - Problem Drill 08: Photosynthesis No. 1 of 10 #01 1. What term does the statement below refer to? In a photosynthesis process, an electron is excited from P700 and delivered to its receptor,
PHOTOSYNTHESIS. Chapter 10
PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs self-feeders Capture free energy from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic
Metabolism 2 Photosynthesis
Metabolism 2 Photosynthesis Light energy is trapped in the form of high energy electrons. High energy electrons are used to synthesize ATP and reduce CO 2 to form carbohydrates. Oxygen is produced as a
Chapter 8 PHOTOSYNTHESIS Chapter # Chapter Title PowerPoint Image Slideshow
COLLEGE BIOLOGY PHYSICS Chapter 8 PHOTOSYNTHESIS Chapter # Chapter Title PowerPoint Image Slideshow Figure 8.0 Photosynthesis Figure 8.1 Earth s distribution of photosynthesis as seen via chlorophyll a
Photosynthesis. Chapter 10. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece
Chapter 10 Photosynthesis PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero PREVIEW The Process That Feeds the Biosphere Photosynthesis Is the process
Ch. 10- Photosynthesis: Life from Light and Air
Ch. 10- Photosynthesis: Life from Light and Air 2007-2008 Ch. 10 Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers Heterotrophs
pigments AP BIOLOGY PHOTOSYNTHESIS Chapter 10 Light Reactions Visible light is part of electromagnetic spectrum
AP BIOLOGY PHOTOSYNTHESIS Chapter 10 Light Reactions http://vilenski.org/science/safari/cellstructure/chloroplasts.html Sunlight is made up of many different wavelengths of light Your eyes see different
Photosynthesis: Life from Light AP Biology
Photosynthesis: Life from Light Supporting a biosphere On global scale, photosynthesis is the most important process for the continuation of life on Earth u each year photosynthesis synthesizes 160 billion
Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for
Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:
Photosynthesis. Chapter 8
Photosynthesis Chapter 8 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by
Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for
Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright
8 Photosynthesis CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece
CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 8 Photosynthesis Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Objective: You will be able to contrast respiration
8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs
8.2 Photosynthesis 8.2.1 - Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs double membrane starch grain grana thylakoid internal membrane - location of the
PHOTOSYNTHESIS Chapter 6
PHOTOSYNTHESIS Chapter 6 5.1 Matter and Energy Pathways in Living Systems Chapter 5 Photosynthesis & Cellular Respiration 1 2 5.1 Matter and Energy Pathways in Living Systems In this section you will:
Photosynthesis and Cellular Respiration
Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:
Photosynthesis Overview
Photosynthesis Chapter 8 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by:
Photosynthesis. I. Photosynthesis overview A. Purpose B. Location. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B.
Photosynthesis I. Photosynthesis overview A. Purpose B. Location II. III. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B. Types IV. Light reactions A. Photosystems B. Photophosphorylation
Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules).
Photosynthesis Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules). Organisms obtain organic compounds by one
Chapter 10 Photosynthesis
Chapter 10 Photosynthesis Autotrophs and Heterotrophs Autotrophs are organisms that make their own food. They obtain everything they need by using CO 2 and inorganic compounds from the environment. Heterotrophs
Lecture Series 13 Photosynthesis: Energy from the Sun
Lecture Series 13 Photosynthesis: Energy from the Sun Photosynthesis: Energy from the Sun A. Identifying Photosynthetic Reactants and Products B. The Two Pathways of Photosynthesis: An Overview C. Properties
Chapter 7 Capturing Solar Energy: Photosynthesis. Chapter 7: Photosynthesis. What is Photosynthesis?
Chapter 7 Capturing Solar Energy: Photosynthesis What is Photosynthesis? Answer: The capture of sunlight energy and the subsequent storage of that energy in the chemical bonds (e.g., glucose) Chemical
Where does most of our society s energy come from (think of fossil fuels), how does that energy become fixed for human use?
Where does most of our society s energy come from (think of fossil fuels), how does that energy become fixed for human use? The Photosynthesis equation 6 CO 2 + 12 H 2 O + Light energy C 6 H 12 O 6 +
PHOTOSYNTHESIS CHAPTER 7. Where It Starts - Photosynthesis
PHOTOSYNTHESIS CHAPTER 7 Where It Starts - Photosynthesis IMPACTS, ISSUES: SUNLIGHT AND SURVIVAL Plants are autotrophs, or self-nourishing organisms The first autotrophs filled Earth s atmosphere with
Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain
a review Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red-660 nm are most important).
Chapter 7: Photosynthesis
Chapter 7: Photosynthesis Electromagnetic Spectrum Shortest wavelength Longest wavelength Gamma rays X-rays UV radiation Visible light Infrared radiation Microwaves Radio waves Photons Packets of light
Photosynthesis. Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis
Photosynthesis Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis Photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6O 2 + 6H 2 O Pigments
Where It Starts: Photosynthesis. Chapter 5
Where It Starts: Photosynthesis Chapter 5 Photosynthesis Metabolic Pathways Converts light energy to chemical energy. Photoautotrophs Organisms that can perform photosynthesis Cyanobacteria (prokaryotic-no
Outcome: Explain the process of photosynthesis.
Outcome: Explain the process of photosynthesis. Warm-up: 1. Compare the two types of cells. Give examples for each. 2. Using double bubble map, differentiate plants and animal cells. 3. What organelles
Photosynthesis: Using Light to Make Food
Chapter 7 Photosynthesis: Using Light to Make Food Lectures by Chris C. Romero, updated by Edward J. Zalisko 2010 Pearson Education, Inc. PowerPoint Lectures for Campbell Essential Biology, Fourth Edition
Photosynthesis and Life
7-1 Chapter 7 Photosynthesis and Life During photosynthesis Organisms use the energy of light to build highenergy organic molecules. Plants, algae, and some bacteria can do this. Can make their own food
Energy Transfer. Photosynthesis
Energy Transfer Photosynthesis Energy All living organisms use energy. Energy is needed for metabolism to function. When organisms use energy they use it in the chemical form, ATP (adenosine triphosphate)
Photosynthesis. All Materials Cmassengale
Photosynthesis All Materials Cmassengale I. Capturing the Energy of Life A. All organisms require energy B. Some organisms (autotrophs) obtain energy directly from the sun and store it in organic compounds
Chapter 7 PHOTOSYNTHESIS
Chapter 7 PHOTOSYNTHESIS Photosynthesis Photosynthesis is the process of harnessing energy from sunlight to produce sugars. Photosynthesis equation: Energy + 6 CO 2 + 6 H 2 O C 6 H 12 O 6 + 6 O 2 C 6 H
1. Plants and other autotrophs are the producers of the biosphere
1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and
1. Plants and other autotrophs are the producers of the biosphere
1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and
6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2
6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2 Process Location Reactants (Starting) Products (Ending) Light Reactions Calvin Cycle Introduction to Photosynthesis Mrs. Meyer Target SWBAT describe the reactants
PHOTOSYNTHESIS: THE LIGHT REACTIONS
PHOTOSYNTHESIS: THE LIGHT REACTIONS ECOSYSTEM Photosynthesis CO 2 +H 2 O Organic + O molecules 2 Cellular respiration in mitochondria 1 PHOTOAUTOTROPHS The producers of the biosphere AUTOTROPH means self
Biology: Life on Earth
Biology: Life on Earth Eighth Edition Lecture for Chapter 7 Capturing Solar Energy: Photosynthesis Chapter 7 Outline 7.1 What Is Photosynthesis? p. 118 7.2 Light-Dependent Reactions: How Is Light Energy
AP Biology
Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic
AP Biology
Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic
PHOTOSYNTHESIS. Light Reaction Calvin Cycle
PHOTOSYNTHESIS Light Reaction Calvin Cycle Photosynthesis Purpose: use energy from light to convert inorganic compounds into organic fuels that have stored potential energy in their carbon bonds Carbon
1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Photosynthesis (chapter 12):
1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Photosynthesis (chapter 12): Photosynthesis is the fixation of CO 2 and its subsequent reduction to carbohydrate, using hydrogen from water, taking
Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources
How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or
Chapter 7. Photosynthesis: Using Light to Make Food. Lecture by Richard L. Myers
Chapter 7 Photosynthesis: Using Light to Make Food PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers Introduction:
PHOTOSYNTHESIS. https://www.youtube.com/watch?v=pme blshpbsu
PHOTOSYNTHESIS https://www.youtube.com/watch?v=pme blshpbsu Energy needs of life All life needs a constant input of energy Heterotrophs (Animals) get their energy from eating others eat food = other organisms
PHOTOSYNTHESIS. Chapter 10
PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs Capture from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic molecules (occurs
AP Biology Day 22. Monday, October 10, 2016
AP Biology Day 22 Monday, October 10, 2016 Discuss: Do-Now Group Discussion What is the equation for photosynthesis, and why is it a redox reaction? What are the steps of photosynthesis, and where does
Photosynthesis Overview
Photosynthesis 1 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by Cyanobacteria
Photosynthesis. Chapter 10. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece
Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:
8.1 Photosynthesis and Energy
BIOL 100 Ch. 8 1 8.1 Photosynthesis and Energy Photosynthesis and Energy Photosynthesis Making food from light energy Photoautotrophs Use CO2 and water to make sugars Made life possible as we know it Provides
Photosynthesis Lecture 7 Fall Photosynthesis. Photosynthesis. The Chloroplast. Photosynthetic prokaryotes. The Chloroplast
Photosynthesis Lecture 7 Fall 2008 Photosynthesis Photosynthesis The process by which light energy from the sun is converted into chemical energy 1 Photosynthesis Inputs CO 2 Gas exchange occurs through
Unit 4.2: Photosynthesis - Sugar as Food
Unit 4.2: Photosynthesis - Sugar as Food Lesson Objectives Outline the stages of photosynthesis. Describe the chloroplast and its role in photosynthesis. List the steps of the light reactions. Describe
Photosynthesis in Detail. 3/19/2014 Averett
Photosynthesis in Detail 1 In photosynthesis many chemical reactions, enzymes and ions work together in a precise order. Enzymes Biological catalyst Substance that initiates or speeds up the rate of a
1 Which of the following organisms do NOT carry on photosynthesis?
1 Which of the following organisms do NOT carry on photosynthesis? plants algae some bacteria 2 3 animals The correct description of the relationship between photosynthesis and the living world is. herbivores,
AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up:
Warm-up Objective: Explain how photosynthesis converts light energy into chemical energy. Warm-up: In the light reactions, what is the electron donor? Where do the electrons end up? 2006-2007 Photosynthesis:
PHOTOSYNTHESIS: converts light energy to the chemical energy of food 6CO 2 + 6H 2 O + light energy C 6 H 12 O 6 + 6O 2
Photosynthesis Life on Earth is solar powered Photosynthesis nourishes almost all the living world directly or indirectly All organisms use organic compounds for energy and for carbon skeletons. Organisms
Section 2 The Calvin Cycle
Section 2 The Calvin Cycle Objectives Summarize the main events of the Calvin cycle. Describe what happens to the compounds that are made in the Calvin cycle. Distinguish between C 3, C 4, and CAM plants.
NOTES: CH 10, part 3 Calvin Cycle (10.3) & Alternative Mechanisms of C-Fixation (10.4)
NOTES: CH 10, part 3 Calvin Cycle (10.3) & Alternative Mechanisms of C-Fixation (10.4) 10.3 - The Calvin cycle uses ATP and NADPH to convert CO 2 to sugar The Calvin cycle, like the citric acid cycle,
Chapter 7. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes
Chapter 7 hotosynthesis: Using to Make Food oweroint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction lants,
Name 7 Photosynthesis: Using Light To Make Food Test Date Study Guide You must know: How photosystems convert solar energy to chemical energy.
Name _ 7 Photosynthesis: Using Light To Make Food Test Date Study Guide You must know: How photosystems convert solar energy to chemical energy. How linear electron flow in the light reactions results
Photosynthesis. light
Photosynthesis light 6CO + 6H 0 C 6 H 1 O 6 + 6O light Carbon dioxide + water sugar + oxygen Chlorophyll pigment that absorbs light energy Absorbs red and blue light Reflects green and yellow light Chlorophyll
1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy.
PHOTOSYNTHESIS A. INTRODUCTION 1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy. a. It takes energy input for synthesis.