1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy.

Save this PDF as:

Size: px
Start display at page:

Download "1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy."

Transcription

1 PHOTOSYNTHESIS A. INTRODUCTION 1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy. a. It takes energy input for synthesis. b. Light energy is funneled into the living world largely by the process of photosynthesis. 1) Two major sources of energy we as humans use are the results of photosynthesis past and present. a) Food fuels are bodily activities which comes from the results or products of recent photosynthesis. b) Fossil fuels (oil, gas, coal) provide energy for most of our needs and these are the results or products of photosynthesis that occurred millions of years ago. 2) And to have accomplished this the green plants only capture something less than 1% of the total solar energy reaching the earth and its atmosphere. 2. The process occurs in green tissue in plants and in algae and certain bacteria. a. Usually this is the leaf in higher plants although some stems also carry on photosynthesis. b. Chlorophyll, which give the green color to the plant, is located within chloroplasts in all plants in the kingdom Plantae. c. Within the chloroplast the pigment chlorophyll along with other pigments is embedded in the membranes of the thylakoid. 3. Raw materials used in the process are CO 2, H 2 O, and Energy (fig. 8.1, p. 146) a. CO 2 enters the leaf by way of the stomates. b. Water enters the plant by way of root hairs, moves into the xylem and is carried to the leaf. c. The mesophyll tissue consisting of the palisade cells and the spongy layer cells is where photosynthesis takes place. d. Light energy is trapped by a pi electron in the chlorophyll molecule. 1) A photon of light activates an electron in the molecule. 2) Only wave lengths of the proper energy can do this. 3) Figure 8.6, p. 149 shows the absorption spectrum for chlorophyll a.

2 4) Wave lengths are in the blue-violet and reds. 5) The fact that chlorophyll appears green indicates it does not absorb but instead reflects green light. 6) The electron absorbs so much energy that it leaves the chlorophyll molecule and can be accepted by another molecule (fig. 8.4, p. 148) 7) Fluorescence is the process in which an electron is excited, spins, and then returns to the chlorophyll molecule giving up the extra energy as light energy. -e- light energy photon --- -e- chlorophyll Figure 1. Diagrammatic representation of fluorescence 4. Photosynthesis results in light energy being transformed to chemical or bond energy. 5. Photosynthesis can be separated into two phases. a. Light phase, which occurs in the thylakoids. 1) Energy-rich molecules, ATP and NADPH + H +, are produced. 2) H 2 O is split by the process of photolysis. b. Dark phase that occurs in the stroma. 1) CO 2 is fixed. 2) CO 2 is reduced. O=C=O --- H-C-OH part of carbohydrate molecule B. LIGHT PHASE 1. The antenna complex consists of a closely connected web of chlorophyll molecules embedded in the thylakoid membrane (fig. 8.9, p. 151) a. Each photosystem includes an assembly of about 250 to 400 pigment molecules consisting of two closely linked components. 1) A reaction center protein-pigment complex. 2) An antenna protein complex. b. The antenna complex molecules can trap light photons of a particular wave length (energy) and pass the energy to a reaction center chlorophyll a molecule. c. When the reaction center chlorophyll molecule absorbs the energy from an antenna molecule, one of its electrons is activated, boosted to a higher energy level, and this activated electron is transferred to an acceptor molecule to initiate electron flow.

3 d. The chlorophyll a molecule is now oxidized and has an electron hole. 2. Cyclic photophosphorylation (fig. fig. 8.10, p. 152.) a. Photon hits electron in chlorophyll a 700. b. Electron is activated and is accepted by a primary acceptor. c. The electron is then passed along a chain of electron acceptors back to chlorophyll a 700. d. The energy from the electron is used to synthesize ATP. 3. Non-cyclic photophosphorylation (fig. 8.9, p. 151) a. 2 electrons from chlorophyll molecules end up in NADPH. b. Involves both photosystems II and I. c. Both ATP and NADPH are synthesized. d. Two electrons from H 2 O are passed to P 680 to P 700 to NADP + (fig. 8.9, p. 151) e. Takes 2 photons of light to raise electron from level in water to level in NADPH. 4. Remember that a reduced molecule contains more energy than an oxidized molecule; therefore, NADP + contains less energy than NADPH 5. Chemiosmosis is similar in the chloroplast and the mitochondrion (fig. 8.11, p. 153) a. In both H +, photons, are pumped through the membrane, thylakoid in the case of the chloroplast, creating a H + gradient. b. The thylakoid membrane is impermeable to protons. c. The protons must pass through the ATP synthase channel. d. This results in ADP being phosphorylated to ATP. Probably 1 ATP is synthesized for each 2 protons that pass through ATP synthase channel. ATPs formed in stroma. C. DARK PHASE OR LIGHT-INDEPENDENT PHASE. 1. Occurs in the stroma of the chloroplast. 2. Involves the Calvin cycle (fig. 8.13, p. 155)

4 a. C 5 molecule, ribulose 1,5 bisphosphate (RuBP) combines with CO 2 and H 2 O to form a C 6. Ribulose 1,5 bisphosphate carboxylase, (RuBisCo), is the enzyme that catalyzes this reaction; may the most abundant protein on earth. b. C 6 molecule is split into 2 C 3 molecules, 3-phosphoglycerate, PGA. c. Use ATP and NADPH to reduce PGA to PGAL. 1) ATP used to make 2 molecules of 1,3 bisphosphoglyerate. 2) NADPH used to convert these molecules to glyceraldehyde 3-phosphate, PGAL 3. For every 6 molecules of PGAL produced, 5 go back into the cycle. There is a net gain of 1 PGAL for each 6 produced. a. Some of the net PGAL molecules can be used for energy. b. Some can be converted to glucose and other sugars. 4. C 4 pathway (fig. 8.17, p. 158) a. Is a method of concentrating CO 2 in one type of cell utilizing ATP energy. b. The fixed CO 2 is then pumped into another cell where it is fixed in the Calvin cycle. c. C 4 plants are good for hot, dry areas. DISCUSSION QUESTIONS OVER PHOTOSYNTHESIS I 1. What are the raw materials required for photosynthesis and what is their source? 2. What is the role of chlorophyll in photosynthesis and how is this role accomplished? 3. Chlorophyll cannot absorb photons of which energies (wavelengths)? How do you know this? 4. Overall what type of chemical reaction occurs in converting CO 2 to its form in a carbohydrate H-C-OH? What type of energy exchange occurs? 5. What does the term photolysis mean? 6. How does what occurs in the dark phase of photosynthesis relate to what occurs in the light phase of photosynthesis? 7. Energy cannot be created or destroyed but only transferred or transformed. What occurs to energy during the process of photosynthesis?

5 CRITICAL THINKING QUESTIONS 1. Guard cells are the only cells in the plant's leaf epidermis that have chloroplasts. Explain the reason for this. (Not what is accomplished by this.) 2. The ribosomes in mitochondria are smaller than ribosomes in the cyotplasm of the cell. Attempt to explain the reason for this. OBJECTIVE QUESTIONS 1. Photosynthesis occurs in (A) plants (B) algae (C) some bacteria (D) some fungi (E) some of the preceding (F) three of the preceding (G) all the preceding. 2. Chloroplasts are located in the (A) thylakoids (B) stroma (C) both A and B. 3. Chlorophyll absorbs light in the (A) violet (B) yellow (C) red (D) two of the preceding (E) all the preceding. 4. Red light contains photons with (A) more (B) less (C) the same amount of energy as/than violet light. 5. In order for photosynthesis to occur (A) a pi electron must be activated in the chlorophyll molecule (B) an electron must escape from the chlorophyll molecule (C) an acceptor molecule must receive a high energy electron (D) two of the preceding (E) all the preceding. 6. The oxygen given off in the process of photosynthesis come from (A) CO 2 (B) H 2 O (C) both A and B (D) neither A or B. 7. The conversion of the carbon in CO 2 to its form in CH 2 O is (A) a reduction (B) an oxidation. 8. Photosynthesis is a process in which (A) organic molecules are converted into organic molecules (B) organic molecules are converted into inorganic molecules (C) inorganic molecules are converted into inorganic molecules (D) inorganic molecules are converted to organic molecules. 9. Chlorophyll serves the role of (A) trapping light energy (B) converting photon energy to electron energy (C) both A and B (D) neither A or B. 10. Fluorescence is the process in which (A) absorbed light is passed to an organic acceptor (B) light is reflected from the chlorophyll (C) absorbed light is reemitted (D) none of the preceding. DISCUSSION QUESTIONS OVER PHOTOSYNTHESIS II 1. ATP is produced during both cyclic and non-cyclic photophosphorylation. What is the necessity for non-cyclic? 2. In non-cyclic photophosphorylation it takes 2 photons to raise an electron from water to NADP+. Explain the reason it takes two?

6 3. What does the term chemiosmosis mean? 4. We often refer to glucose as being produced during photosynthesis. Is glucose the actual end product of photosynthesis? Explain. 5. The net gain of PGAL molecules is 1 for every 6 produced. What happens to the other 5? 6. Can the dark phase of photosynthesis occur in the light? Explain. 7. What is the reason(s) that C 4 plants grow better in arid regions than C 3 plants do? CRITICAL THINKING QUESTIONS 1. NADPH contains more energy per molecule than ATP. What in the non-cyclic photophosporylation would suggest this to you? 2. Explain the reason that reducing carbon dioxide to its form in a carbohydrate results in a more energy-rich molecule. OBJECTIVE QUESTIONS 1. ATP is produced during (A) cyclic photophosphorylation (B) non-cyclic photophosphorylation (C) both A and B (D) neither A or B. 2. NADPH is produced during (A) cyclic photophosphorylation (B) non-cyclic photophosphorylation (C) both A and B (D) neither A or B. 3. The light phase of photosynthesis occurs in the (A) thylakoids (B) stroma (C) both A and B (D) neither A or B. 4. The dark phase of photosynthesis occurs in the (A) thylakoids (B) stroma (C) both A and B (D) neither A or B. 5. It takes the energy of (A) one (B) two (C) three (D) four photons to raise an electron from its level in water to its level in NADPH. 6. In the light phase of photosynthesis, (A) energy rich molecules are produced (B) water is split (C) both A and B (D) neither A or B. 7. In the dark phase of photosynthesis, (A) carbon dioxide is fixed (B) carbon dioxide is oxidized (C) both A and B (D) neither A or B. 8. In order to change NADP+ to NADPH, (A) one (B) two (C) three (D) four electrons is/are required. 9. For every six molecules of PGAL produced (A) one (B) two (C) three (D) four (E) five (F) six go/goes back into the Calvin cycle. 10. Protons must pass through the ATP synthase channel from (A) stroma to disc (B) disc to stroma (C) either A or R.

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source

More information

Lecture 9: Photosynthesis

Lecture 9: Photosynthesis Lecture 9: Photosynthesis I. Characteristics of Light A. Light is composed of particles that travel as waves 1. Comprises a small part of the electromagnetic spectrum B. Radiation varies in wavelength

More information

Photosynthesis in Detail. 3/19/2014 Averett

Photosynthesis in Detail. 3/19/2014 Averett Photosynthesis in Detail 1 In photosynthesis many chemical reactions, enzymes and ions work together in a precise order. Enzymes Biological catalyst Substance that initiates or speeds up the rate of a

More information

Photosynthesis: Life from Light AP Biology

Photosynthesis: Life from Light AP Biology Photosynthesis: Life from Light Supporting a biosphere On global scale, photosynthesis is the most important process for the continuation of life on Earth u each year photosynthesis synthesizes 160 billion

More information

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to 1 The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to

More information

Metabolismo Biología de 12º

Metabolismo Biología de 12º DEPARTAMENTO DE CIENCIAS NATURALES Metabolismo Biología de 12º Nombre y Apellidos FOTOSÍNTESIS 1) Organisms that can exist with light as an energy source and an inorganic form of carbon and other raw materials

More information

Metabolism 2 Photosynthesis

Metabolism 2 Photosynthesis Metabolism 2 Photosynthesis Light energy is trapped in the form of high energy electrons. High energy electrons are used to synthesize ATP and reduce CO 2 to form carbohydrates. Oxygen is produced as a

More information

PHOTOSYNTHESIS. Light Reaction Calvin Cycle

PHOTOSYNTHESIS. Light Reaction Calvin Cycle PHOTOSYNTHESIS Light Reaction Calvin Cycle Photosynthesis Purpose: use energy from light to convert inorganic compounds into organic fuels that have stored potential energy in their carbon bonds Carbon

More information

AP Biology. Chloroplasts: sites of photosynthesis in plants

AP Biology. Chloroplasts: sites of photosynthesis in plants The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs self-feeders Capture free energy from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic

More information

Photosynthesis and Life

Photosynthesis and Life 7-1 Chapter 7 Photosynthesis and Life During photosynthesis Organisms use the energy of light to build highenergy organic molecules. Plants, algae, and some bacteria can do this. Can make their own food

More information

Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) get their energy from eating others eat food

More information

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs 8.2 Photosynthesis 8.2.1 - Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs double membrane starch grain grana thylakoid internal membrane - location of the

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Autotrophs and Heterotrophs Autotrophs are organisms that make their own food. They obtain everything they need by using CO 2 and inorganic compounds from the environment. Heterotrophs

More information

PHOTOSYNTHESIS Chapter 6

PHOTOSYNTHESIS Chapter 6 PHOTOSYNTHESIS Chapter 6 5.1 Matter and Energy Pathways in Living Systems Chapter 5 Photosynthesis & Cellular Respiration 1 2 5.1 Matter and Energy Pathways in Living Systems In this section you will:

More information

Photosynthesis Overview

Photosynthesis Overview Photosynthesis 1 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by Cyanobacteria

More information

Photosynthesis is the main route by which that energy enters the biosphere of the Earth.

Photosynthesis is the main route by which that energy enters the biosphere of the Earth. Chapter 5-Photosynthesis Photosynthesis is the main route by which that energy enters the biosphere of the Earth. To sustain and power life on Earth, the captured energy has to be released and used in

More information

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2 PHOTOSYNTHESIS Photosynthesis An anabolic, endergonic, carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules (glucose). photons SUN

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs Capture from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic molecules (occurs

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information

4.1. Photosynthesis Light-Dependent Reactions

4.1. Photosynthesis Light-Dependent Reactions 4.1 Photosynthesis Light-Dependent Reactions Photosynthesis Each year, Canada s boreal forest convert 12.5 million tonnes of carbon into energy-rich compounds for billions of organisms Photosynthesis

More information

Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Overview. Photosynthesis

Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Photosynthesis Photosynthesis Overview Chapter 8 Energy for all life on Earth ultimately comes from photosynthesis. 6CO2 + 12H2O C6H12O6 + 6H2O + 6O2 Oxygenic photosynthesis is carried out by: cyanobacteria,

More information

Just Like the Guy From Krypton Photosynthesis

Just Like the Guy From Krypton Photosynthesis Just Like the Guy From Krypton Photosynthesis An Overview of Photosynthesis Most of the energy used by almost all living cells ultimately comes from the sun plants, algae, and some bacteria capture the

More information

The conversion of usable sunlight energy into chemical energy is associated with the action of the green pigment chlorophyll.

The conversion of usable sunlight energy into chemical energy is associated with the action of the green pigment chlorophyll. Photosynthesis Photosynthesis is the process by which plants, some bacteria and some protistans use the energy from sunlight to produce glucose from carbon dioxide and water. This glucose can be converted

More information

LIGHT DEPENDENT & INDEPENDENT REACTIONS

LIGHT DEPENDENT & INDEPENDENT REACTIONS LIGHT DEPENDENT & INDEPENDENT REACTIONS Photosynthesis is a two stage process Light dependent reactions o requires DIRECT light energy omakes energy carrier molecules that are used in the dark reaction

More information

THE BASICS OF PHOTOSYNTHESIS

THE BASICS OF PHOTOSYNTHESIS THE BASICS OF PHOTOSYNTHESIS Almost all plants are photosynthetic autotrophs, as are some bacteria and protists Autotrophs generate their own organic matter through photosynthesis Sunlight energy is transformed

More information

PHOTOSYNTHESIS. The Details

PHOTOSYNTHESIS. The Details PHOTOSYNTHESIS The Details Photosynthesis is divided into 2 sequential processes: 1. The Light Dependent Reactions (stages 1 & 2) 2. The Light Independent Reactions (stage 3) a.k.a. the Calvin Cycle THE

More information

Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air http://www.youtube.com/watch?v=wi60tqa8jfe Photosynthesis: Life from Light and Air 2011-2012 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) obtain

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

Photosynthesis. Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars).

Photosynthesis. Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars). Photosynthesis Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars). Plants do photosynthesis to make their own food (sugars) and are called, photoautotrophs.

More information

PHOTOSYNTHESIS. Botany Department B.N.D. College

PHOTOSYNTHESIS. Botany Department B.N.D. College PHOTOSYNTHESIS Botany Department B.N.D. College Photosynthesis An anabolic, endergonic, carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules

More information

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain a review Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red-660 nm are most important).

More information

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg UNIT 2: Metabolic Processes Chapter 5: Photosynthesis: The Energy of Life pg. 210-240 5.2: Pathways of Photosynthesis pg. 220-228 Light Dependent Reactions Photosystem II and I are the two light capturing

More information

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere 1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and

More information

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere 1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and

More information

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll:

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll: Photosynthesis INTRODUCTION: metabolic process occurring in green plants, algae, some protists and cyanobacteria Photosynthesis is an PROCESS (building organic molecules which store radiant energy as chemical

More information

Chapter 10. Photosynthesis

Chapter 10. Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost

More information

1. What is the source of the oxygen released into the air as a product of photosynthesis? D. Both water and carbon dioxide (Total 1 mark)

1. What is the source of the oxygen released into the air as a product of photosynthesis? D. Both water and carbon dioxide (Total 1 mark) 2.9 Photosynthesis Paper 1 Possible Mult Choice Questions 1. What is the source of the oxygen released into the air as a product of photosynthesis? A. Chlorophyll B. Carbon dioxide only C. Water only D.

More information

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Photosynthesis (chapter 12):

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Photosynthesis (chapter 12): 1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Photosynthesis (chapter 12): Photosynthesis is the fixation of CO 2 and its subsequent reduction to carbohydrate, using hydrogen from water, taking

More information

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration AP Biology - Problem Drill 08: Photosynthesis No. 1 of 10 #01 1. What term does the statement below refer to? In a photosynthesis process, an electron is excited from P700 and delivered to its receptor,

More information

Harvesting energy: photosynthesis & cellular respiration part 1

Harvesting energy: photosynthesis & cellular respiration part 1 Harvesting energy: photosynthesis & cellular respiration part 1 Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular

More information

Lecture Series 13 Photosynthesis: Energy from the Sun

Lecture Series 13 Photosynthesis: Energy from the Sun Lecture Series 13 Photosynthesis: Energy from the Sun Photosynthesis: Energy from the Sun A. Identifying Photosynthetic Reactants and Products B. The Two Pathways of Photosynthesis: An Overview C. Properties

More information

Ch. 10- Photosynthesis: Life from Light and Air

Ch. 10- Photosynthesis: Life from Light and Air Ch. 10- Photosynthesis: Life from Light and Air 2007-2008 Ch. 10 Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers Heterotrophs

More information

6.3 Overview of Photosynthesis

6.3 Overview of Photosynthesis 6.3 Overview of Photosynthesis Chloroplast location of photosynthesis in plants and protists 3 membranes 2 make up the stroma Semifluid matrix Location of sugar production 1 makes up the thylakoid membrane

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) 3. Plant structures: organ, tissue, cells, sub-cellular organelle,

More information

Chapter 8 Photosynthesis

Chapter 8 Photosynthesis Chapter 8 Photosynthesis 8-1 NRG and Living Things n Where does the NRG we use come from. n Directly or indirectly from the sun n Plants get their NRG directly from the sun n How? n Plants use photosynthesis

More information

Photosynthesis. Plant Anatomy. Plant Anatomy. Plant Anatomy 1/14/2015. Stems. Leaves

Photosynthesis. Plant Anatomy. Plant Anatomy. Plant Anatomy 1/14/2015. Stems. Leaves //205 Plant Anatomy Photosynthesis Roots Anchor plant to the ground Absorb water minerals from soil (by osmosis) Store food for plant (glucose made in photosynthesis is stored as starch) Plant Anatomy

More information

Photosynthesis. Dr. Bertolotti

Photosynthesis. Dr. Bertolotti Photosynthesis Dr. Bertolotti Photosynthesis: Life from Light and Air How do plants and other organisms capture energy from the sun? What is ATP and why is it useful in cells? Plants are energy producers

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Photosynthesis occurs in plants, algae, certain other

More information

Sunday, August 25, 2013 PHOTOSYNTHESIS

Sunday, August 25, 2013 PHOTOSYNTHESIS PHOTOSYNTHESIS PREFACE The sun is the ultimate source of energy. The sun powers nearly all life forms. Photosynthesis converts solar energy into chemical energy. Photoautotrophs use solar energy to synthesize

More information

Where It Starts: Photosynthesis. Chapter 5

Where It Starts: Photosynthesis. Chapter 5 Where It Starts: Photosynthesis Chapter 5 Photosynthesis Metabolic Pathways Converts light energy to chemical energy. Photoautotrophs Organisms that can perform photosynthesis Cyanobacteria (prokaryotic-no

More information

6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2

6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2 6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2 Process Location Reactants (Starting) Products (Ending) Light Reactions Calvin Cycle Introduction to Photosynthesis Mrs. Meyer Target SWBAT describe the reactants

More information

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised:

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised: Photosynthesis (Chapter 7 Outline) Sun, Rain, and Survival A. For life based on organic compounds, two questions can be raised: 1. Where does the carbon come from? 2. Where does the energy come from to

More information

Where does most of our society s energy come from (think of fossil fuels), how does that energy become fixed for human use?

Where does most of our society s energy come from (think of fossil fuels), how does that energy become fixed for human use? Where does most of our society s energy come from (think of fossil fuels), how does that energy become fixed for human use? The Photosynthesis equation 6 CO 2 + 12 H 2 O + Light energy C 6 H 12 O 6 +

More information

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up:

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up: Warm-up Objective: Explain how photosynthesis converts light energy into chemical energy. Warm-up: In the light reactions, what is the electron donor? Where do the electrons end up? 2006-2007 Photosynthesis:

More information

AP Biology Day 22. Monday, October 10, 2016

AP Biology Day 22. Monday, October 10, 2016 AP Biology Day 22 Monday, October 10, 2016 Discuss: Do-Now Group Discussion What is the equation for photosynthesis, and why is it a redox reaction? What are the steps of photosynthesis, and where does

More information

Photosynthesis. Chapter 8

Photosynthesis. Chapter 8 Photosynthesis Chapter 8 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by

More information

Photosynthesis Review Packet

Photosynthesis Review Packet Photosynthesis Review Packet Model 1 Chloroplast 6CO2 + 12H2O + sunlight energy C6H12O6 + 6O2 + 6H2O 12 H2O 6 CO2 6 O2 C6H12O6 1. Consider the organelle illustrated in Model 1. a. What is the name of the

More information

Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules).

Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules). Photosynthesis Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules). Organisms obtain organic compounds by one

More information

Photosynthesis Thursday, July 7, 2011

Photosynthesis Thursday, July 7, 2011 Photosynthesis Photosynthesis in Overview Process by which plants and other autotrophs store the energy of sunlight into sugars. Requires sunlight, water, and carbon dioxide. Overall equation: 6 CO 2

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

AP Bio-Ms.Bell Unit#3 Cellular Energies Name

AP Bio-Ms.Bell Unit#3 Cellular Energies Name AP Bio-Ms.Bell Unit#3 Cellular Energies Name 1. Base your answer to the following question on the image below. 7. Base your answer to the following question on Which of the following choices correctly

More information

Endosymbiotic Theory. p

Endosymbiotic Theory. p Endosymbiotic Theory p. 427-428 The Endosymbiotic Theory Review: What is a theory? What is the difference between prokaryotic and eukaryotic cells? The endosymbiotic theory is the idea that a long time

More information

A. Structures of PS. Site of PS in plants: mostly in leaves in chloroplasts. Leaf cross section. Vein. Mesophyll CO 2 O 2. Stomata

A. Structures of PS. Site of PS in plants: mostly in leaves in chloroplasts. Leaf cross section. Vein. Mesophyll CO 2 O 2. Stomata PS Lecture Outline I. Introduction A. Structures B. Net Reaction II. Overview of PS A. Rxns in the chloroplast B. pigments III. Closer looks A. LD Rxns B. LI Rxns 1. non-cyclic e- flow 2. cyclic e- flow

More information

pigments AP BIOLOGY PHOTOSYNTHESIS Chapter 10 Light Reactions Visible light is part of electromagnetic spectrum

pigments AP BIOLOGY PHOTOSYNTHESIS Chapter 10 Light Reactions Visible light is part of electromagnetic spectrum AP BIOLOGY PHOTOSYNTHESIS Chapter 10 Light Reactions http://vilenski.org/science/safari/cellstructure/chloroplasts.html Sunlight is made up of many different wavelengths of light Your eyes see different

More information

Photosynthesis. Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis

Photosynthesis. Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis Photosynthesis Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis Photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6O 2 + 6H 2 O Pigments

More information

Photosynthesis. All Materials Cmassengale

Photosynthesis. All Materials Cmassengale Photosynthesis All Materials Cmassengale I. Capturing the Energy of Life A. All organisms require energy B. Some organisms (autotrophs) obtain energy directly from the sun and store it in organic compounds

More information

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work)

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work) PHOTOSYNTHESIS Energy can be transformed from one form to another FREE ENERGY (available for work) vs. HEAT (not available for work) THE SUN: MAIN SOURCE OF ENERGY FOR LIFE ON EARTH THE BASICS OF PHOTOSYNTHESIS

More information

Chapter 7 PHOTOSYNTHESIS

Chapter 7 PHOTOSYNTHESIS Chapter 7 PHOTOSYNTHESIS Photosynthesis Photosynthesis is the process of harnessing energy from sunlight to produce sugars. Photosynthesis equation: Energy + 6 CO 2 + 6 H 2 O C 6 H 12 O 6 + 6 O 2 C 6 H

More information

Photosynthesis Overview

Photosynthesis Overview Photosynthesis Chapter 8 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by:

More information

Energy Exchanges Exam: What to Study

Energy Exchanges Exam: What to Study Energy Exchanges Exam: What to Study Here s what you will need to make sure you understand in order to prepare for our exam: Free Energy Conceptual understanding of free energy as available energy in a

More information

Complete the notes on photosynthesis in the spaces below.

Complete the notes on photosynthesis in the spaces below. Section: 3.2 Name: Opening Activity: What type of energy is absorbed by pigment molecules in plant cells to start photosynthesis? Latin Root Word: Review of Old Information: ATP then provides the energy

More information

Photosynthesis

Photosynthesis Student Expectations: Cellular Energy Understand that cellular energy is temporarily stored in the nucleotide ATP (adenosine triphosphate) Describe how energy is released by ATP When the outer phosphate

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

PHOTOSYNTHESIS: converts light energy to the chemical energy of food 6CO 2 + 6H 2 O + light energy C 6 H 12 O 6 + 6O 2

PHOTOSYNTHESIS: converts light energy to the chemical energy of food 6CO 2 + 6H 2 O + light energy C 6 H 12 O 6 + 6O 2 Photosynthesis Life on Earth is solar powered Photosynthesis nourishes almost all the living world directly or indirectly All organisms use organic compounds for energy and for carbon skeletons. Organisms

More information

8.1 Photosynthesis and Energy

8.1 Photosynthesis and Energy BIOL 100 Ch. 8 1 8.1 Photosynthesis and Energy Photosynthesis and Energy Photosynthesis Making food from light energy Photoautotrophs Use CO2 and water to make sugars Made life possible as we know it Provides

More information

PHOTOSYNTHESIS CHAPTER 7. Where It Starts - Photosynthesis

PHOTOSYNTHESIS CHAPTER 7. Where It Starts - Photosynthesis PHOTOSYNTHESIS CHAPTER 7 Where It Starts - Photosynthesis IMPACTS, ISSUES: SUNLIGHT AND SURVIVAL Plants are autotrophs, or self-nourishing organisms The first autotrophs filled Earth s atmosphere with

More information

Chapter 10: PHOTOSYNTHESIS

Chapter 10: PHOTOSYNTHESIS Chapter 10: PHOTOSYNTHESIS 1. Overview of Photosynthesis 2. Light Absorption 3. The Light Reactions 4. The Calvin Cycle 1. Overview of Photosynthesis Chapter Reading pp. 185-190, 206-207 What is Photosynthesis?

More information

Chapter 7: Photosynthesis

Chapter 7: Photosynthesis Chapter 7: Photosynthesis Electromagnetic Spectrum Shortest wavelength Longest wavelength Gamma rays X-rays UV radiation Visible light Infrared radiation Microwaves Radio waves Photons Packets of light

More information

Photosynthesis in Higher Plants

Photosynthesis in Higher Plants Photosynthesis in Higher Plants Very Short Answers Questions: 1. Name the processes which take place in the grana and stroma regions of chloroplasts? A: Grana Light reactions. Trapping light energy, synthesizing

More information

Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy.

Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy. Chapter 7 Capturing Solar Energy: Photosynthesis Overview - the process that feeds the biosphere Photosynthesis: transformation of solar energy into chemical energy. Responsible for O 2 in our atmosphere

More information

Overview of Photosynthesis

Overview of Photosynthesis Photosynthesis Overview of Photosynthesis During photosynthesis, autotrophs/producers use the sun s energy to make carbohydrate molecules from water and carbon dioxide, releasing oxygen as a by-product

More information

CHAPTER 13 : PHOTOSYNTHESIS IN HIGHER PLANTS K C MEENA PGT BIOLOGY KV VIKASPURI II SHIFT

CHAPTER 13 : PHOTOSYNTHESIS IN HIGHER PLANTS K C MEENA PGT BIOLOGY KV VIKASPURI II SHIFT CHAPTER 13 : PHOTOSYNTHESIS IN HIGHER PLANTS K C MEENA PGT BIOLOGY KV VIKASPURI II SHIFT Photosynthesis is a Physic o chemical process, uses light energy to synthesis organic compounds (sugar). Importance

More information

Photosynthesis. Excitation of chlorophyll in a chloroplast

Photosynthesis. Excitation of chlorophyll in a chloroplast Photosynthesis The process of photosynthesis begins with light-absorbing pigments in plant cells. A pigment molecule is able to absorb the energy from light only within a narrow range of wavelengths. In

More information

WJEC UNIT 3. ATP & Photosynthesis. Tyrone. R.L. John

WJEC UNIT 3. ATP & Photosynthesis. Tyrone. R.L. John WJEC UNIT 3 ATP & Photosynthesis 1 Adenosine Triphosphate (ATP) Revision from unit 1 1. ATP is a nucleotide. Label the components of the ATP molecule below: In the space below draw a simplified diagram

More information

Chapter 7. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes

Chapter 7. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes Chapter 7 hotosynthesis: Using to Make Food oweroint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction lants,

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

Photosynthesis Summary By: Abdul Majid Hasani (01)

Photosynthesis Summary By: Abdul Majid Hasani (01) Photosynthesis Summary By: Abdul Majid Hasani (01) An Overview of Photosynthesis: Including the importance of plants, the raw materials used in photosynthesis, the products of photosynthesis, and how plants

More information

Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources

Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Unit 4.2: Photosynthesis - Sugar as Food

Unit 4.2: Photosynthesis - Sugar as Food Unit 4.2: Photosynthesis - Sugar as Food Lesson Objectives Outline the stages of photosynthesis. Describe the chloroplast and its role in photosynthesis. List the steps of the light reactions. Describe

More information

Metabolism Review. A. Top 10

Metabolism Review. A. Top 10 A. Top 10 Metabolism Review 1. Energy production through chemiosmosis a. pumping of H+ ions onto one side of a membrane through protein pumps in an Electron Transport Chain (ETC) b. flow of H+ ions across

More information

Bellringer 11/12/ CO H Light C 6 H 12 O 6 + 6O 2. Law of conservation. Recall: Photosynthesis Overview.

Bellringer 11/12/ CO H Light C 6 H 12 O 6 + 6O 2. Law of conservation. Recall: Photosynthesis Overview. Photosynthesis Bellringer A.1 Identify the following as: heterotroph, autotroph, photosynthesis reactant, or photosynthesis product State Biology Standards H.B.3A1-3 and H.B.2A.1 A.1 Plants take in carbon

More information

Chapter 7 Capturing Solar Energy: Photosynthesis. Chapter 7: Photosynthesis. What is Photosynthesis?

Chapter 7 Capturing Solar Energy: Photosynthesis. Chapter 7: Photosynthesis. What is Photosynthesis? Chapter 7 Capturing Solar Energy: Photosynthesis What is Photosynthesis? Answer: The capture of sunlight energy and the subsequent storage of that energy in the chemical bonds (e.g., glucose) Chemical

More information

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs Sample Questions: Chapter 7 1 Which of these types of organisms produce the biosphere's food supply? A autotrophs and heterotrophs B consumers and heterotrophs C heterotrophs D autotrophs E consumers 2

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) (Autotrophs: photo-autotrophs, chemo-autotrophs, electro-autotrophs,

More information

Photosynthesis. (in C 3 plants)

Photosynthesis. (in C 3 plants) Photosynthesis (in C 3 plants) WHAT DO I REMEMBER FROM GCSE ABOUT PHOTOSYNTHESIS? PS WS Photosynthesis uses sunlight energy to create complex organic compounds, initially glucose, from inorganic compounds.

More information

DAY 1 Photosynthesis. - Chemical reaction - Compared to respiration

DAY 1 Photosynthesis. - Chemical reaction - Compared to respiration DAY 1 Photosynthesis - Chemical reaction - Compared to respiration Photosynthesis Photosynthesis Song Brainpop Photosynthesis The Sun is the ultimate source of mostly all energy on Earth! Autotrophs: are

More information

Photosynthesis. I. Photosynthesis overview A. Purpose B. Location. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B.

Photosynthesis. I. Photosynthesis overview A. Purpose B. Location. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B. Photosynthesis I. Photosynthesis overview A. Purpose B. Location II. III. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B. Types IV. Light reactions A. Photosystems B. Photophosphorylation

More information

Overall, photosynthesis is the conversion of the Sun s energy to stored chemical energy. (glucose) The overall reaction for photosynthesis:

Overall, photosynthesis is the conversion of the Sun s energy to stored chemical energy. (glucose) The overall reaction for photosynthesis: A.P. Biology Chapter 10- Photosynthesis Scale: 0 - No understanding of the concept and chemical process of photosynthesis. 1- With help, a partial understanding of the reactants and products of the photosynthesis

More information