1. Plants and other autotrophs are the producers of the biosphere

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "1. Plants and other autotrophs are the producers of the biosphere"

Transcription

1 1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and to make organic molecules from their carbon skeletons. Autotrophs produce organic molecules from CO 2 and other inorganic raw materials obtained from the environment. Heterotrophs (like us) can t do this. Autotrophs are the producers of the biosphere.

2

3 Chloroplasts split water molecules and produce oxygen in photosynthesis Using glucose as our target product, the equation describing the net process of photosynthesis is: 6CO 2 + 6H 2 O + light energy -> C 6 H 12 O 6 + 6O 2 How is this similar to the general equation of respiration?

4 Introduction Living is work. To perform their many tasks, cells must bring in energy from outside sources. In most ecosystems, energy enters as sunlight. Light energy trapped in organic molecules is available to both photosynthetic organisms and others that eat them. Fig. 9.1

5 2. Chloroplasts are the sites of photosynthesis in plants Any green part of a plant has chloroplasts. However, the leaves are the major site of photosynthesis for most plants. There are about half a million chloroplasts per square millimeter of leaf surface. The color of a leaf comes from chlorophyll, the green pigment in the chloroplasts.

6 Each chloroplast has two membranes around a central fluid space, the stroma. In the stroma are membranous sacs, the thylakoids. Thylakoids may be stacked into columns called grana. Fig. 10.2

7 Photosynthesis consists of two processes The light dependent reactions convert solar energy to chemical energy. The light independent reactions, a.k.a. Calvin cycle incorporates CO 2 from the atmosphere into an organic molecule and uses energy from the light reactions to fix the new carbon piece into sugars. This process is therefore called carbon fixation. Both processes happen inside the chloroplast.

8 Fig. 10.4

9 When light meets matter, it may be reflected, transmitted, or absorbed. Different pigments absorb photons of different wavelengths. A leaf looks green because chlorophyll, the dominant pigment, absorbs red and blue light, while transmitting and reflecting green light. Fig. 10.6

10 The light reaction can perform work only with those wavelengths of light that are absorbed. In the thylakoid are several pigments that differ in which colors of light they absorb best. Chlorophyll a, the dominant pigment, absorbs best in the red and blue wavelengths, and least in the green. Fig. 10.8a

11 Collectively, these photosynthetic pigments determine an overall action spectrum for photosynthesis. Similar to the last graph? An action spectrum measures changes in some measure of photosynthetic activity (for example, O 2 release) as the wavelength is varied. Fig. 10.8b

12 Only chlorophyll a participates directly in the light reactions, but antenna pigments absorb light and transfer energy to chlorophyll a. Chlorophyll b, carotenoids and xanthophylls can funnel the energy from other wavelengths to chlorophyll a

13 Fig. 10.9

14 In the thylakoid membrane, chlorophyll is organized along with proteins and smaller organic molecules into photosystems. A photosystem acts like a light-gathering antenna complex consisting of a few hundred chlorophyll a, chlorophyll b, and other accessory pigments Fig

15 When any antenna molecule absorbs a photon, it is transmitted from molecule to molecule until it reaches a particular chlorophyll a, called the reaction center, right in the middle of the photsystem. The reaction center chlorophyll a becomes so energized by the light that it loses 2 electrons to a nearby molecule. This starts the light dependent reactions.

16 There are two types of photosystems. Photosystem I Photosystem II These two photosystems work together to use light energy to generate ATP and NADPH. The folding of the innermost membrane into thylakoids allows for many photosystems to exist here, enhancing the amount of light dependent reactions that can happen. Does this sound familiar? What theme is this an example of?

17 Let s watch the light dependent reactions 1. When photosystem II absorbs light, an excited electron is captured by the primary electron acceptor, leaving the reaction center chlorophyll a with an electron gap. 2. An enzyme extracts electrons from water and passes them to the chlorophyll a to fill the gap. This reaction (photolysis) splits water into two hydrogen ions and an oxygen atom, which combines with another to form O 2. This is where the oxygen that all aerobically respiring organisms (like you and I) depend on comes from.

18 3. Excited electrons from photosystem II pass along an electron transport chain of cytochrome molecules before ending up at a photosystem I reaction center. 4. As these electrons pass along the transport chain, their energy is harnessed to produce ATP, again by a chemiosmotic process.

19 Fig

20 5. At the bottom of this electron transport chain, the electrons fill an electron gap in the PS I chlorophyll a reaction center. 6. This gap was created when photons excite electrons on the photosystem I complex. The excited electrons are captured by a second primary electron acceptor which transmits them to a second, shorter electron transport chain. Ultimately, these electrons don t participate in chemiosmosis, but instead are passed from the transport chain to NADP +, creating NADPH. NADPH will carry these high-energy electrons to the Calvin cycle.

21 4. The Calvin cycle uses ATP and NADPH to convert CO 2 to sugar: a closer look The Calvin cycle regenerates its starting material after molecules enter and leave the cycle, just like in the Krebs Cycle. Let s watch CO 2 enters the cycle and leaves as sugar. The cycle spends the energy of ATP and NADPH to make the sugar. The actual sugar product of the Calvin cycle is not glucose, but a three-carbon sugar, glyceraldehyde-3- phosphate (G3P or PGAL)

22 Each turn of the Calvin cycle fixes one carbon. For the net synthesis of one G3P molecule, the cycle must take place three times, fixing three molecules of CO 2. To make one glucose molecules would require six cycles and the fixation of six CO 2 molecules. Since these reactions do not directly require light, they are also called the light independent reactions.

23 The Calvin cycle has three phases. In the carbon fixation phase, each CO 2 molecule is attached to a five-carbon sugar, ribulose biphosphate (RuBP). This is catalyzed by RuBP carboxylase or rubisco, the most abundant protein in the world. The six-carbon intermediate splits in half to form two molecules of 3-phosphoglycerate (PGA) per CO 2.

24 Fig

25 Fig

26 If our goal was to produce one glucose net, we would start with 6 CO 2 (6C) and 6 RuBP (30C). After fixation and reduction we would have 12 molecules of G3P (36C). Two of these 12 G3P (6C) combine to make 1 glucose. (Remember in glycolysis this was reversed?) This molecule can exit the cycle to be used by the plant cell. In the last phase, regeneration of the CO 2 acceptor (RuBP), the other 10 G3P molecules (30C) are rearranged to form the 6 RuBP molecules (30C) we started with. In actuality, there are millions of CO 2 molecules involved.

27 Fig

28 6. Photosynthesis is the biosphere s metabolic foundation: a review In photosynthesis, the energy that enters the chloroplasts as sunlight becomes stored as chemical energy in organic compounds. Good summary 7:30 Fig

29 Sugar made in the chloroplasts supplies the entire plant with chemical energy and carbon skeletons to synthesize all the major organic molecules of cells. About 50% of the organic material is consumed as fuel for cellular respiration in plant mitochondria. Carbohydrate in the form of the disaccharide sucrose travels via the veins to nonphotosynthetic cells. There, it provides fuel for respiration and the raw materials for anabolic pathways including synthesis of proteins and lipids and building the extracellular polysaccharide cellulose.

30 Plants also store excess sugar by synthesizing starch. Some is stored as starch in chloroplasts or in storage cells in roots, tubers, seeds, and fruits. Heterotrophs, including humans, may completely or partially consume plants for fuel and raw materials. On a global scale, photosynthesis is the most important process to the welfare of life on Earth. Each year photosynthesis synthesizes 160 billion metric tons of carbohydrate per year.

31 Without Photosynthesis to grow plants: Cows everywhere would be forced to starve or jump.

32 Benchmark Clarifications Students will explain how the products of photosynthesis are used as reactants for cellular respiration and vice versa. Students will explain how photosynthesis stores energy and cellular respiration releases energy. Students will identify the reactants, products and/or the basic function of photosynthesis. Students will identify the reactants, products and/or the basic functions of aerobic & anaerobic cellular respiration. Students will connect the role of ATP to energy transfers within the cell.

33 Content Limits Items will not require memorization of the stages, specific events or intermediate molecules produced during these processes. Items do not require the balancing of equations. Items will not assess plant structures. Scenarios may include chemical equations. Scenarios referring to adenosine triphosphate should use the abbreviation ATP rather than the words adenosine triphosphate.

34 Study the equation below. What product is missing from the equation for photosynthesis? Name the reactants and the products in the equation. sunlight 6CO 2 + 6H 2 O + 6O 2

35 Autotrophs, such as plants, use light to make their own food. What happens to light absorbed by a plant during photosynthesis? A. It is converted to kinetic energy B. It powers a reaction that produces carbon dioxide and water C. It is converted to chemical energy, which the plant stores. D. It powers a reaction that produces oxygen and carbon dioxide.

36 Of the following factors, which will not have an effect on the photosynthetic process? a. Light intensity b. Water availability c. Nitrogen concentration d. Temperature fluctuation

37 Gasses are a part of the photosynthesis process, different phases. Which gas is removed from the atmosphere during photosynthesis? a. Hydrogen b. Oxygen c. Nitrogen d. Carbon dioxide

38

39 A. Use few plants B. Reduce the amount of water C. Use a larger container D. Move the light closer to the beaker

40 What are the reactants for photosynthesis and how do they enter the plant?

41 There are reactants and products in the photosynthesis process. What is the one component in photosynthesis that is NOT recycled and must be available to the plant?

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere 1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and

More information

Photosynthesis: Life from Light AP Biology

Photosynthesis: Life from Light AP Biology Photosynthesis: Life from Light Supporting a biosphere On global scale, photosynthesis is the most important process for the continuation of life on Earth u each year photosynthesis synthesizes 160 billion

More information

Photosynthesis and Life

Photosynthesis and Life 7-1 Chapter 7 Photosynthesis and Life During photosynthesis Organisms use the energy of light to build highenergy organic molecules. Plants, algae, and some bacteria can do this. Can make their own food

More information

Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) get their energy from eating others eat food

More information

Harvesting energy: photosynthesis & cellular respiration part 1

Harvesting energy: photosynthesis & cellular respiration part 1 Harvesting energy: photosynthesis & cellular respiration part 1 Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular

More information

Section A2: The Pathways of Photosynthesis

Section A2: The Pathways of Photosynthesis CHAPTER 10 PHOTOSYNTHESIS Section A2: The Pathways of Photosynthesis 4. The Calvin cycle uses ATP and NADPH to convert CO2 to sugar: a closer look 5. Alternative mechanisms of carbon fixation have evolved

More information

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source

More information

PHOTOSYNTHESIS Chapter 6

PHOTOSYNTHESIS Chapter 6 PHOTOSYNTHESIS Chapter 6 5.1 Matter and Energy Pathways in Living Systems Chapter 5 Photosynthesis & Cellular Respiration 1 2 5.1 Matter and Energy Pathways in Living Systems In this section you will:

More information

Chapter 10. Photosynthesis

Chapter 10. Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost

More information

Photosynthesis

Photosynthesis Student Expectations: Cellular Energy Understand that cellular energy is temporarily stored in the nucleotide ATP (adenosine triphosphate) Describe how energy is released by ATP When the outer phosphate

More information

Sunday, August 25, 2013 PHOTOSYNTHESIS

Sunday, August 25, 2013 PHOTOSYNTHESIS PHOTOSYNTHESIS PREFACE The sun is the ultimate source of energy. The sun powers nearly all life forms. Photosynthesis converts solar energy into chemical energy. Photoautotrophs use solar energy to synthesize

More information

Photosynthesis. Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars).

Photosynthesis. Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars). Photosynthesis Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars). Plants do photosynthesis to make their own food (sugars) and are called, photoautotrophs.

More information

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars 4.2 8.2 Overview Photosynthesis: of Photosynthesis An Overview Photosynthesis process by which plants make food using energy from the sun Plants are autotrophs that make their own source of chemical energy.

More information

Chapter 8 Photosynthesis

Chapter 8 Photosynthesis Chapter 8 Photosynthesis 8-1 NRG and Living Things n Where does the NRG we use come from. n Directly or indirectly from the sun n Plants get their NRG directly from the sun n How? n Plants use photosynthesis

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Photosynthesis occurs in plants, algae, certain other

More information

Photosynthesis. All Materials Cmassengale

Photosynthesis. All Materials Cmassengale Photosynthesis All Materials Cmassengale I. Capturing the Energy of Life A. All organisms require energy B. Some organisms (autotrophs) obtain energy directly from the sun and store it in organic compounds

More information

Photosynthesis. Dr. Bertolotti

Photosynthesis. Dr. Bertolotti Photosynthesis Dr. Bertolotti Photosynthesis: Life from Light and Air How do plants and other organisms capture energy from the sun? What is ATP and why is it useful in cells? Plants are energy producers

More information

1 Which of the following organisms do NOT carry on photosynthesis?

1 Which of the following organisms do NOT carry on photosynthesis? 1 Which of the following organisms do NOT carry on photosynthesis? plants algae some bacteria 2 3 animals The correct description of the relationship between photosynthesis and the living world is. herbivores,

More information

Photosynthesis in Detail. 3/19/2014 Averett

Photosynthesis in Detail. 3/19/2014 Averett Photosynthesis in Detail 1 In photosynthesis many chemical reactions, enzymes and ions work together in a precise order. Enzymes Biological catalyst Substance that initiates or speeds up the rate of a

More information

PHOTOSYNTHESIS: converts light energy to the chemical energy of food 6CO 2 + 6H 2 O + light energy C 6 H 12 O 6 + 6O 2

PHOTOSYNTHESIS: converts light energy to the chemical energy of food 6CO 2 + 6H 2 O + light energy C 6 H 12 O 6 + 6O 2 Photosynthesis Life on Earth is solar powered Photosynthesis nourishes almost all the living world directly or indirectly All organisms use organic compounds for energy and for carbon skeletons. Organisms

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

Photosynthesis in Nature

Photosynthesis in Nature PHOTOSYNTHESIS Photosynthesis in Nature 1. Plants and other autotrophs are the producers of the biosphere 2. Chloroplasts are the site of photosynthesis in plants Introduction Life on Earth is solar powered.

More information

AP Biology. Chloroplasts: sites of photosynthesis in plants

AP Biology. Chloroplasts: sites of photosynthesis in plants The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to 1 The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs self-feeders Capture free energy from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic

More information

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg UNIT 2: Metabolic Processes Chapter 5: Photosynthesis: The Energy of Life pg. 210-240 5.2: Pathways of Photosynthesis pg. 220-228 Light Dependent Reactions Photosystem II and I are the two light capturing

More information

Lecture 9: Photosynthesis

Lecture 9: Photosynthesis Lecture 9: Photosynthesis I. Characteristics of Light A. Light is composed of particles that travel as waves 1. Comprises a small part of the electromagnetic spectrum B. Radiation varies in wavelength

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) 3. Plant structures: organ, tissue, cells, sub-cellular organelle,

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information

THE BASICS OF PHOTOSYNTHESIS

THE BASICS OF PHOTOSYNTHESIS THE BASICS OF PHOTOSYNTHESIS Almost all plants are photosynthetic autotrophs, as are some bacteria and protists Autotrophs generate their own organic matter through photosynthesis Sunlight energy is transformed

More information

Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules).

Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules). Photosynthesis Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules). Organisms obtain organic compounds by one

More information

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised:

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised: Photosynthesis (Chapter 7 Outline) Sun, Rain, and Survival A. For life based on organic compounds, two questions can be raised: 1. Where does the carbon come from? 2. Where does the energy come from to

More information

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain a review Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red-660 nm are most important).

More information

Photosynthesis is the main route by which that energy enters the biosphere of the Earth.

Photosynthesis is the main route by which that energy enters the biosphere of the Earth. Chapter 5-Photosynthesis Photosynthesis is the main route by which that energy enters the biosphere of the Earth. To sustain and power life on Earth, the captured energy has to be released and used in

More information

The Life of a Cell. The Chemistry of Life. A View of the Cell. Cellular Transport and the Cell Cycle. Energy in a Cell

The Life of a Cell. The Chemistry of Life. A View of the Cell. Cellular Transport and the Cell Cycle. Energy in a Cell The Life of a Cell The Chemistry of Life A View of the Cell Cellular Transport and the Cell Cycle Energy in a Cell Chapter 9 Energy in a Cell 9.1: The Need for Energy 9.1: Section Check 9.2: Photosynthesis:

More information

Photosynthesis Lecture 7 Fall Photosynthesis. Photosynthesis. The Chloroplast. Photosynthetic prokaryotes. The Chloroplast

Photosynthesis Lecture 7 Fall Photosynthesis. Photosynthesis. The Chloroplast. Photosynthetic prokaryotes. The Chloroplast Photosynthesis Lecture 7 Fall 2008 Photosynthesis Photosynthesis The process by which light energy from the sun is converted into chemical energy 1 Photosynthesis Inputs CO 2 Gas exchange occurs through

More information

ATP. Pentose Sugar (ribose) 3 phosphate groups. adenine. Does this structure look familiar?

ATP. Pentose Sugar (ribose) 3 phosphate groups. adenine. Does this structure look familiar? Photosynthesis The Big Picture Photosynthesis and Respiration work together in plants to make energy for the plant they are autotrophs Animals only use cellular respiration why? They are heterotrophs!

More information

photosynthesis notes Biology Junction Everything you need in Biology Photosynthesis All Materials Cmassengale I. Capturing the Energy of Life

photosynthesis notes Biology Junction Everything you need in Biology Photosynthesis All Materials Cmassengale I. Capturing the Energy of Life Biology Junction Everything you need in Biology photosynthesis notes Photosynthesis All Materials Cmassengale I. Capturing the Energy of Life 1. All organisms require energy 2. Some organisms (autotrophs)

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Autotrophs and Heterotrophs Autotrophs are organisms that make their own food. They obtain everything they need by using CO 2 and inorganic compounds from the environment. Heterotrophs

More information

PHOTOSYNTHESIS. Light Reaction Calvin Cycle

PHOTOSYNTHESIS. Light Reaction Calvin Cycle PHOTOSYNTHESIS Light Reaction Calvin Cycle Photosynthesis Purpose: use energy from light to convert inorganic compounds into organic fuels that have stored potential energy in their carbon bonds Carbon

More information

Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy.

Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy. Chapter 7 Capturing Solar Energy: Photosynthesis Overview - the process that feeds the biosphere Photosynthesis: transformation of solar energy into chemical energy. Responsible for O 2 in our atmosphere

More information

NOTES: CH 10, part 3 Calvin Cycle (10.3) & Alternative Mechanisms of C-Fixation (10.4)

NOTES: CH 10, part 3 Calvin Cycle (10.3) & Alternative Mechanisms of C-Fixation (10.4) NOTES: CH 10, part 3 Calvin Cycle (10.3) & Alternative Mechanisms of C-Fixation (10.4) 10.3 - The Calvin cycle uses ATP and NADPH to convert CO 2 to sugar The Calvin cycle, like the citric acid cycle,

More information

Photosynthesis. Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis

Photosynthesis. Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis Photosynthesis Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis Photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6O 2 + 6H 2 O Pigments

More information

Bellringer 11/12/ CO H Light C 6 H 12 O 6 + 6O 2. Law of conservation. Recall: Photosynthesis Overview.

Bellringer 11/12/ CO H Light C 6 H 12 O 6 + 6O 2. Law of conservation. Recall: Photosynthesis Overview. Photosynthesis Bellringer A.1 Identify the following as: heterotroph, autotroph, photosynthesis reactant, or photosynthesis product State Biology Standards H.B.3A1-3 and H.B.2A.1 A.1 Plants take in carbon

More information

Chapter 8: Cellular Energy

Chapter 8: Cellular Energy Chapter 8: Cellular Energy Section 1: How Organisms Obtain Energy Transformation of Energy All cellular activities require Energy!! ( The ability to do work). The study of flow and the transformation of

More information

Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources

Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Photosynthesis: The Calvin Cycle

Photosynthesis: The Calvin Cycle Whoops! Wrong Calvin 1950s 1961 Photosynthesis: The Calvin Cycle Remember what it means to be a plant Need to produce all organic molecules necessary for growth carbohydrates, lipids, proteins, nucleic

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 10 Photosynthesis Lectures by Erin

More information

Chapter 10. Photosynthesis

Chapter 10. Photosynthesis Chapter 10 Photosynthesis Lecture Outline Overview Life on Earth is solar powered. The chloroplasts of plants use a process called photosynthesis to capture light energy from the sun and convert it to

More information

1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy.

1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy. PHOTOSYNTHESIS A. INTRODUCTION 1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy. a. It takes energy input for synthesis.

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs Capture from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic molecules (occurs

More information

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs 8.2 Photosynthesis 8.2.1 - Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs double membrane starch grain grana thylakoid internal membrane - location of the

More information

Ch. 10 Photosynthesis: The Calvin Cycle Life from Air

Ch. 10 Photosynthesis: The Calvin Cycle Life from Air Ch. 10 Photosynthesis: The Calvin Cycle Life from Air 2007-2008 Whoops! Wrong Calvin The Calvin Cycle 1950s 1961 Remember what it means to be a plant Need to produce all organic molecules necessary for

More information

Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air http://www.youtube.com/watch?v=wi60tqa8jfe Photosynthesis: Life from Light and Air 2011-2012 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) obtain

More information

CHAPTER 8 PHOTOSYNTHESIS

CHAPTER 8 PHOTOSYNTHESIS CHAPTER 8 PHOTOSYNTHESIS Con. 8.1 Photosynthesis process by which plants use light to make food molecules from carbon dioxide and water (chlorophyll) 6CO 2 + 12H 2 O + Light C 6 H 12 O 6 + 6O 2 + 6H 2

More information

Energy in the World of Life

Energy in the World of Life Cellular Energy Energy in the World of Life Sustaining life s organization requires ongoing energy inputs Assembly of the molecules of life starts with energy input into living cells Energy Conversion

More information

Chapter 8.1. How Organisms Obtain Energy

Chapter 8.1. How Organisms Obtain Energy Chapter 8.1 How Organisms Obtain Energy Main Idea All living organisms use energy to carry out all biological processes. Energy Energy is the ability to do work. Quick Review: Heterotrophs are organisms

More information

Heat. Sunlight. Electron Transport System O 2. Photosystem ATP H 2 O. ADP+P i NADP+ NADPH NAD + NADH. Calvin Cycle CO 2. Krebs Cycle. ADP+Pi.

Heat. Sunlight. Electron Transport System O 2. Photosystem ATP H 2 O. ADP+P i NADP+ NADPH NAD + NADH. Calvin Cycle CO 2. Krebs Cycle. ADP+Pi. Module 2F - Photosynthesis Photosynthesis As we saw in the previous module, all cells can break down organic molecules and use the energy that is released to make. In addition, some cells can manufacture

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) (Autotrophs: photo-autotrophs, chemo-autotrophs, electro-autotrophs,

More information

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll:

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll: Photosynthesis INTRODUCTION: metabolic process occurring in green plants, algae, some protists and cyanobacteria Photosynthesis is an PROCESS (building organic molecules which store radiant energy as chemical

More information

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration AP Biology - Problem Drill 08: Photosynthesis No. 1 of 10 #01 1. What term does the statement below refer to? In a photosynthesis process, an electron is excited from P700 and delivered to its receptor,

More information

Overall, photosynthesis is the conversion of the Sun s energy to stored chemical energy. (glucose) The overall reaction for photosynthesis:

Overall, photosynthesis is the conversion of the Sun s energy to stored chemical energy. (glucose) The overall reaction for photosynthesis: A.P. Biology Chapter 10- Photosynthesis Scale: 0 - No understanding of the concept and chemical process of photosynthesis. 1- With help, a partial understanding of the reactants and products of the photosynthesis

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration CLEP Biology - Problem Drill 07: Photosynthesis No. 1 of 10 1. What term does the statement below refer to? In a photosynthesis process, an electron is excited from P700 and delivered to its receptor,

More information

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select.

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select. Section 1: How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration Click on a lesson name to select. Section 1 How Organisms Obtain Energy Transformation of Energy Energy

More information

A + B = C C + D = E E + F = A

A + B = C C + D = E E + F = A Photosynthesis - Plants obtain energy directly from the sun - Organisms that do this are autotrophs (make their own food from inorganic forms) - Photosynthesis is a series of chemical reactions where the

More information

Ch. 10- Photosynthesis: Life from Light and Air

Ch. 10- Photosynthesis: Life from Light and Air Ch. 10- Photosynthesis: Life from Light and Air 2007-2008 Ch. 10 Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers Heterotrophs

More information

Photosynthesis. From Sunlight to Sugar

Photosynthesis. From Sunlight to Sugar Photosynthesis From Sunlight to Sugar What is Photosynthesis? Photosynthesis is a process that captures energy from sunlight to make sugars used as food for producers. The light energy is stored as chemical

More information

How do cells obtain energy from food molecules? Unit 5: Cellular Respiration and Photosynthesis. It is an extremely simple cellular process.

How do cells obtain energy from food molecules? Unit 5: Cellular Respiration and Photosynthesis. It is an extremely simple cellular process. Unit 5: Cellular Respiration and Photosynthesis How do cells obtain energy from food molecules? 1. Cellular respiration release energy from food molecules 2. Glycolysis begins the production of Energy

More information

SBI4U Biology. Chapter 10. Photosynthesis: Life from Light. Energy needs of life. Energy needs of life

SBI4U Biology. Chapter 10. Photosynthesis: Life from Light. Energy needs of life. Energy needs of life Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

Chapter 5. Table of Contents. Section 1 Energy and Living Things. Section 2 Photosynthesis. Section 3 Cellular Respiration

Chapter 5. Table of Contents. Section 1 Energy and Living Things. Section 2 Photosynthesis. Section 3 Cellular Respiration Photosynthesis and Cellular Respiration Table of Contents Section 1 Energy and Living Things Section 2 Photosynthesis Section 3 Cellular Respiration Section 1 Energy and Living Things Objectives Analyze

More information

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs Sample Questions: Chapter 7 1 Which of these types of organisms produce the biosphere's food supply? A autotrophs and heterotrophs B consumers and heterotrophs C heterotrophs D autotrophs E consumers 2

More information

Chapter 8 Photosynthesis: Life from Light

Chapter 8 Photosynthesis: Life from Light Chapter 8 Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others: other feeders consumers of other organisms consume

More information

Where It Starts - Photosynthesis

Where It Starts - Photosynthesis Where It Starts - Photosynthesis What Is Photosynthesis? The Rainbow Catchers Making ATP and NADPH Making Sugars Alternate Pathways What is Photosynthesis? Energy flow through ecosystems begins when photosynthesizers

More information

Photosynthesis Overview

Photosynthesis Overview Photosynthesis 1 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by Cyanobacteria

More information

Energy Transfer. Photosynthesis

Energy Transfer. Photosynthesis Energy Transfer Photosynthesis Energy All living organisms use energy. Energy is needed for metabolism to function. When organisms use energy they use it in the chemical form, ATP (adenosine triphosphate)

More information

Chapter 7 PHOTOSYNTHESIS

Chapter 7 PHOTOSYNTHESIS Chapter 7 PHOTOSYNTHESIS Photosynthesis Photosynthesis is the process of harnessing energy from sunlight to produce sugars. Photosynthesis equation: Energy + 6 CO 2 + 6 H 2 O C 6 H 12 O 6 + 6 O 2 C 6 H

More information

Ch. 6 & 7 Photosynthesis & Cellular Respiration

Ch. 6 & 7 Photosynthesis & Cellular Respiration Ch. 6 & 7 Photosynthesis & Cellular Respiration 6.1 Energy Reactions The Cycle of Energy Sun CO 2 H 2 O Photosynthesis (energy stored) Cellular Respiration (energy released) O 2 Glucose Obtaining Energy

More information

Chapter 10: PHOTOSYNTHESIS

Chapter 10: PHOTOSYNTHESIS Chapter 10: PHOTOSYNTHESIS 1. Overview of Photosynthesis 2. Light Absorption 3. The Light Reactions 4. The Calvin Cycle 1. Overview of Photosynthesis Chapter Reading pp. 185-190, 206-207 What is Photosynthesis?

More information

Chapter 5. The Chloroplast. 5.1 Matter and Energy Pathways in Living Systems. Photosynthesis & Cellular Respiration

Chapter 5. The Chloroplast. 5.1 Matter and Energy Pathways in Living Systems. Photosynthesis & Cellular Respiration Chapter 5 Photosynthesis & Cellular Respiration 5.1 Matter and Energy Pathways in Living Systems Both cellular respiration and photosynthesis are examples of biological processes that involve matter &

More information

PHOTOSYNTHESIS. https://www.youtube.com/watch?v=pme blshpbsu

PHOTOSYNTHESIS. https://www.youtube.com/watch?v=pme blshpbsu PHOTOSYNTHESIS https://www.youtube.com/watch?v=pme blshpbsu Energy needs of life All life needs a constant input of energy Heterotrophs (Animals) get their energy from eating others eat food = other organisms

More information

Photosynthesis and Cellular Respiration: Photosynthesis

Photosynthesis and Cellular Respiration: Photosynthesis Photosynthesis and Cellular Respiration: Photosynthesis Unit Objective I can compare the processes of photosynthesis and cellular respiration in terms of energy flow, reactants, and products. During this

More information

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP The chemical energy used for most cell processes is carried by ATP. Molecules in food store chemical

More information

Question Answer Mark Guidance 1 (a) (i) 2 max

Question Answer Mark Guidance 1 (a) (i) 2 max Question Answer Mark Guidance 1 (a) (i) Mark the first answer on each prompt line. If the answer is correct and an additional answer is given that is incorrect or contradicts the A inner membrane (of,

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Lecture Outline Overview: The Process That Feeds the Biosphere Life on Earth is solar powered. The chloroplasts of plants use a process called photosynthesis to capture light

More information

Sunlight as an Energy Source

Sunlight as an Energy Source Photosynthesis Sunlight as an Energy Source Photosynthetic organisms use pigments to capture the energy of sunlight Photosynthesis The synthesis of organic molecules from inorganic molecules using the

More information

Chapter 6. Capturing Solar Energy: Photosynthesis. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Chapter 6. Capturing Solar Energy: Photosynthesis. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc. Chapter 6 Capturing Solar Energy: Photosynthesis Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 6.1 What Is Photosynthesis? Life on earth depends on photosynthesis.

More information

Outline - Photosynthesis

Outline - Photosynthesis Outlin Photosynthesis Photosynthesis 1. An Overview of Photosynthesis & Respiration 2. Autotrophs and producers 3. Electromagnetic Spectrum & light energy 4. Chloroplasts: Structure and Function 5. Photosynthetic

More information

Photosynthesis Overview

Photosynthesis Overview Photosynthesis Chapter 8 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by:

More information

The conversion of usable sunlight energy into chemical energy is associated with the action of the green pigment chlorophyll.

The conversion of usable sunlight energy into chemical energy is associated with the action of the green pigment chlorophyll. Photosynthesis Photosynthesis is the process by which plants, some bacteria and some protistans use the energy from sunlight to produce glucose from carbon dioxide and water. This glucose can be converted

More information

6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2

6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2 6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2 Process Location Reactants (Starting) Products (Ending) Light Reactions Calvin Cycle Introduction to Photosynthesis Mrs. Meyer Target SWBAT describe the reactants

More information

CH 8: Photosynthesis Overview Photosynthesis is the process that converts solar energy into chemical energy

CH 8: Photosynthesis Overview Photosynthesis is the process that converts solar energy into chemical energy CH 8: Photosynthesis Overview Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost the entire living world Autotrophs sustain

More information

6.3 Overview of Photosynthesis

6.3 Overview of Photosynthesis 6.3 Overview of Photosynthesis Chloroplast location of photosynthesis in plants and protists 3 membranes 2 make up the stroma Semifluid matrix Location of sugar production 1 makes up the thylakoid membrane

More information