Structured Electronic Design. ET ECTS credits

Size: px
Start display at page:

Download "Structured Electronic Design. ET ECTS credits"

Transcription

1 Structured Electronic Design ET ECTS credits

2 Some keywords: Structured Electronic Design Design methodology Analysis and Synthesis Applied network theory Fundamental research Free-swinging intellect 2

3 An amplifier 0kΩ. What type of amplifier is this? 2. When the gain is 0, what is the value of? 3

4 Another amplifier 0kΩ 2 3. When the gain is 00, what is the value of 2? 4

5 And another amplifier 0kΩ 3 4. When the gain is 2, what is the value of 3? 5

6 And another 0kΩ 4 5. When the gain is 20, what is the value of 4? 6

7 6. How do you get the crab out? 7

8 8

9 Fundamental research How to design an amplifier? (techniques) Why do it this way? (philosophy) 9

10 0

11 r b c μ rπ cπ r o 7. What is this?

12 8. Will the lamp light up? 2

13 9. Will the lamp light up? 3

14 YES NO 4

15 Platonic solids Tetrahedron Hexahedron Octahedron Edges Edges and and angles angles are are all all congruent Dodecahedron Icosahedron 5

16 6

17 0.Is this a good model? It correctly predicts the orbit of all planets you can see with the naked eye. 7

18 Modeling A correct model gives a correct prediction 8

19 Platonic solids The The Tetrahedron five five Pythagorean regular Hexahedron polyhedra dictate the the structure Octahedron of of the the universe and and reflect God's plan plan through geometry ; June9, 595, Johannes Kepler Dodecahedron Icosahedron 9

20 Modeling A correct model gives a correct prediction Never confuse models with the truth 20

21 Back to the amplifier 0kΩ 0kΩ V kω Kirchoffs first law is is not obeyed! 6. What is the current through the load? 2

22 Design problems arise from bad formulations udwig Wittgenstein(889-95) anguage is is a labyrinth of of paths 22

23 Amplifier design 23

24 An amplifier with a nullor 0kΩ

25 Nullor i in =0 i out v in =0 v out Input Input current current and and input input voltage voltage of of the the nullor nullor are are made made zero zeroby by the the output output signals signals of of the the nullor nullor 25

26 Inside the Nullor i = 0 i = 0? v = 0? i = 0! v = 0! v = 0 Nullator Norrator Nullator Norrator Input Input current current and and input input voltage voltage of of the the nullor nullor are are made made zero zeroby by the the output output signals signals of of the the nullor nullor 26

27 What is is the transfer T of this amplifier? 2 27

28 The transfer T of this amplifier 2 T = 2 v out 28

29 Another transfer T of this amplifier 2 Tanother = 2 i in v out 29

30 Joseph Henry The seeds of great discovery are constantly floating around us, but they only take root in minds well prepared to receive them 30

31 The chain matrix of this amplifier T 2 2 = Tanother = 2 T again another =? 0 v v in 2 out = i i in 0 out 2?? 3

32 The two-port and its chain matrix i in + + i out v in v out v i in in = A C B D v i out out 32

33 The two-port and its chain matrix i in i out v in + + v out v i in in = A C B D v i out out v A = in v = out i out 0 v B = in i = out v out 0 i C = in v = out i out i D = in i 0 out v = 0 out 33

34 Nullor i in =0 + _ i out v in =0 v out _ + Input current and input voltage of the nullor are made zero via the output signals of the nullor v A0 0B v in out = i C0 0D i in out 34

35 Accurate amplification Information from source to load Signal power is enlarged Information stays unaltered A C B D A,B,C,D constant A,B,C,D accurately known 35

36 A voltage-to-voltage amplifier v in v out A v = 2 36

37 2 s v in v out A v = + 2 s Amplification factor becomes inaccurate. 37

38 2 s v in Optimization v out v n 2 Av = + s S = 4 kt + // v n ( ) s 2 Information is disturbed Amplification factor still inaccurate. 38

39 Change topology 2 Orthogonalization vin s + 2 Av = S = 4 kt( + // ) v n s 2 v out 39

40 2 v out v in s A v 2 S = 4 kt( + // ) i v fb n = = + vout + 2 s 2 40

41 Orthogonalization 2 v out v in s Optimization 2 s v in v out 4

42 n v out v in s A S i v v fb n = n = = 0 4kT s A v 2 S = 4 kt( + // ) i v fb n = = + vout + 2 s 2 42

43 ight choice Orthogonalization Optimization 43

44 The right choice: Start? (as usual?) Analyze? Optimize? Orthogonality? Specifications? Criteria? 44

45 The criteria C = B 2 log S + N N. Noise 2. Signal power (distortion) 3. Bandwidth And what about supply voltage, current, power consumption, technology etc.? 45

46 Correlated properties Optimization.. Noise Signal power (distortion) Bandwidth Orthogonalization 46

47 Orthogonal properties (2) Properties are generally not orthogonal But designas if Make it right 47

48 As if When optimizing bandwidth: Small-signal models (no non-linearity) No noise When optimizing noise behavior: Small-signal models (no non-linearity) No bandwidth details When optimizing non-linear behavior (distortion): No dynamic effects No noise 48

49 The most orthogonal sequence? bandwidth noise distortion bandwidth distortion - noise noise - bandwidth distortion noise distortion - bandwidth distortion - noise bandwidth distortion bandwidth - noise 49

50 Know which problem to solve first Is it a cow? Is it green? Is it an animal? 50

51 See the structure: Create Hierarchy! Global Detail V hoog imiter Memory Σ V c imiter V laag 5

52 Efficient design The right design step at the right time A design step occurs only once Orthogonality, hierarchy, classification 52

53 Efficient design (2) educe the search space as fast as possible. ook for fast criteria: Necessary but not sufficient (e.g. P -product) Extensive calculations only when it makes sense Simplest model that suffices 53

54 Attitude Know exactly what you want Use second best, if you can t have it Know the penalty 54

55 Voltage amplifier, what s in the nullor? Nullor Source oad 55

56 Inside the Nullor Nullator Norrator 56

57 Nullator? Norrator? i = 0 Current sensor Current source v = 0 Nullator Norrator Voltage sensor Voltage source 57

58 practical nullor implementations v A v B i C i D 58

59 Choose Nullor Source oad v A v B i C i D 59

60 The experts with practical experience v 60

61 6 oopgain with B-type block oopgain with B-type block Source v oad 2 C 2 B j C j C ω ω + = + + +

62 62 oopgain with A-type block oopgain with A-type block 2 v Source oad C 2 A = + 2 B j C j C ω ω + = + + +

63 Which transistor stage? v Source 2 oad C CE-stage CB-stage CC-stage Differential CE-stage Differential CB-stage Differential CC-stage 63

64 Voltage amplifier with A-type block Source v 2 oad C = < A + 2 Source 2 oad C 64

65 65 Back to the B-type solution (told you so.) Back to the B-type solution (told you so.) 2 Source oad C 2 2 E C j C j B C ω ω = >

66 The expert solution 2r o = ACEACC + 2 Source r o should be be low??? low??? ( + 2) + jωc jωc + ( + 2) + jωc 2roD CC jωc 2 lim = r o Miller effect Distortion oad C + jωc 2BCE D CC jωc A CE = B CE r o 2 66

67 Expert versus logic 2r o Source = ACEACC oad miller effect first first stage distortion and and clipping first first stage oopgain not(less) load load dependent C ( + 2) + jωc jωc + ( + 2) + jωc 2roD CC jωc Source = 2B D CE CC 2 + oad + jωc + + jω C 2 C no no miller effect less less distortion oad dependent loopgain 67

68 Which solution when? 2r o Source 2 oad C Source 2 oad C miller effect first first stage distortion and and clipping first first stage oopgain not(less) load load dependent no no miller effect less less distortion oad dependent loopgain 68

69 Alternatives 69

70 Know ideal case Conclusions Know the penalty for choosing second best Beware of experts! Always remember the ideal case! The seeds of great discovery are constantly floating around us, but they only take root in minds well prepared to receive them 70

Structured Electronic Design. Building the nullor: Distortion

Structured Electronic Design. Building the nullor: Distortion Structured Electronic Design Building the nullor: Distortion 1 Specs 1 N verification Topology Best nullor implementation Voltage and current swing Power consumption FINAL Noise level All stages maximal

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

Bipolar junction transistors

Bipolar junction transistors Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Electronics II. Midterm #1

Electronics II. Midterm #1 The University of Toledo EECS:3400 Electronics I su3ms_elct7.fm Section Electronics II Midterm # Problems Points. 5. 6 3. 9 Total 0 Was the exam fair? yes no The University of Toledo su3ms_elct7.fm Problem

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

I. Frequency Response of Voltage Amplifiers

I. Frequency Response of Voltage Amplifiers I. Frequency Response of Voltage Amplifiers A. Common-Emitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o --->, r oc --->, R L ---> Find V BIAS such that I C

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

The current source. The Active Current Source

The current source. The Active Current Source V ref + - The current source Minimum noise euals: Thevenin Norton = V ref DC current through resistor gives an increase of /f noise (granular structure) Accuracy of source also determined by the accuracy

More information

Lecture 4: Feedback and Op-Amps

Lecture 4: Feedback and Op-Amps Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,

More information

CE/CS Amplifier Response at High Frequencies

CE/CS Amplifier Response at High Frequencies .. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3

More information

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen Lecture 5 Followers (1/11/4) Page 51 LECTURE 5 FOLLOWERS (READING: GHLM 344362, AH 221226) Objective The objective of this presentation is: Show how to design stages that 1.) Provide sufficient output

More information

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller EECS 105 Spring 2017, Module 4 Frequency Response Prof. Ali M. Niknejad Department of EECS Announcements l HW9 due on Friday 2 Review: CD with Current Mirror 3 Review: CD with Current Mirror 4 Review:

More information

Refinements to Incremental Transistor Model

Refinements to Incremental Transistor Model Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for non-ideal transistor behavior Incremental output port resistance Incremental changes

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f6fs_elct7.fm - Electronics II Final Examination Problems Points. 5. 0 3. 5 Total 40 Was the exam fair? yes no The University of Toledo f6fs_elct7.fm - Problem 5 points Given is

More information

CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers

CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers 6.00 CIRCUITS AN ELECTRONICS ependent Sources and Amplifiers Review Nonlinear circuits can use the node method Small signal trick resulted in linear response Today ependent sources Amplifiers Reading:

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

Types of Symmetry. We will be concerned with two types of symmetry.

Types of Symmetry. We will be concerned with two types of symmetry. Chapter 7: Symmetry Types of Symmetry We will be concerned with two types of symmetry. Types of Symmetry We will be concerned with two types of symmetry. Reflective symmetry Types of Symmetry We will be

More information

EECS 105: FALL 06 FINAL

EECS 105: FALL 06 FINAL University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 2-3:30 Wednesday December 13, 12:30-3:30pm EECS 105: FALL 06 FINAL NAME Last

More information

The Miller Approximation

The Miller Approximation The Miller Approximation The exact analysis is not particularly helpful for gaining insight into the frequency response... consider the effect of C µ on the input only I t C µ V t g m V t R'out = r o r

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

ON THE PUZZLES WITH POLYHEDRA AND NUMBERS

ON THE PUZZLES WITH POLYHEDRA AND NUMBERS ON THE PUZZLES WITH POLYHEDRA AND NUMBERS JORGE REZENDE. Introduction The Portuguese Mathematical Society (SPM) published, in 00, a set of didactical puzzles called Puzzles com poliedros e números (Puzzles

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier Common Emitter BJT Amplifier 1 Adding a signal source to the single power supply bias amplifier R C R 1 R C V CC V CC V B R E R 2 R E Desired effect addition of bias and signal sources Starting point -

More information

Amplifiers, Source followers & Cascodes

Amplifiers, Source followers & Cascodes Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 0-05 02 Operational amplifier Differential pair v- : B v + Current mirror

More information

Section 1: Common Emitter CE Amplifier Design

Section 1: Common Emitter CE Amplifier Design ECE 3274 BJT amplifier design CE, CE with Ref, and CC. Richard Cooper Section 1: CE amp Re completely bypassed (open Loop) Section 2: CE amp Re partially bypassed (gain controlled). Section 3: CC amp (open

More information

Multistage Amplifier Frequency Response

Multistage Amplifier Frequency Response Multistage Amplifier Frequency Response * Summary of frequency response of single-stages: CE/CS: suffers from Miller effect CC/CD: wideband -- see Section 0.5 CB/CG: wideband -- see Section 0.6 (wideband

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 2

55:041 Electronic Circuits The University of Iowa Fall Exam 2 Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.

More information

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Electronics II. Midterm II

Electronics II. Midterm II The University of Toledo f4ms_elct7.fm - Section Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo f4ms_elct7.fm - Problem 7 points Given in

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION 4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration

More information

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 = ECE 3050A, Spring 2004 Page Problem (20 points This problem must be attempted) The simplified schematic of a feedback amplifier is shown. Assume that all transistors are matched and g m ma/v and r ds.

More information

THE INVERTER. Inverter

THE INVERTER. Inverter THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

Tycho Brahe and Johannes Kepler

Tycho Brahe and Johannes Kepler Tycho Brahe and Johannes Kepler The Music of the Spheres 1 Tycho Brahe 1546-1601 Motivated by astronomy's predictive powers. Saw and reported the Nova of 1572. Considered poor observational data to be

More information

FYSE400 ANALOG ELECTRONICS

FYSE400 ANALOG ELECTRONICS YSE400 ANALOG ELECTONCS LECTUE 3 Bipolar Sub Circuits 1 BPOLA SUB CCUTS Bipolar Current Sinks and -Sources Transistor operates in forwardactive region. < < sat CE CN max CE < < + BN CN BN max CE N N N

More information

Electronics II. Midterm II

Electronics II. Midterm II The University of Toledo su7ms_elct7.fm - Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo su7ms_elct7.fm - Problem 7 points Equation (-)

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012 /3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS -V th " VGS vi - I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F

More information

ECE 304: Design Issues for Voltage Follower as Output Stage S&S Chapter 14, pp

ECE 304: Design Issues for Voltage Follower as Output Stage S&S Chapter 14, pp ECE 34: Design Issues for oltage Follower as Output Stage S&S Chapter 14, pp. 131133 Introduction The voltage follower provides a good buffer between a differential amplifier and a load in two ways: 1.

More information

Use of a Notch Filter in a Tuned Mode for LISA.

Use of a Notch Filter in a Tuned Mode for LISA. Use of a Notch Filter in a Tuned Mode for LISA. Giorgio Fontana September 00 Abstract. During interferometric measurements the proof mass must be free from any controlling force within a given observation

More information

ECE2210 Final given: Fall 13

ECE2210 Final given: Fall 13 ECE22 Final given: Fall 3. (23 pts) a) Draw the asymptotic Bode plot (the straight-line approximation) of the transfer function below. Accurately draw it on the graph provided. You must show the steps

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Advances in Radio Science

Advances in Radio Science Advances in Radio Science, 3, 331 336, 2005 SRef-ID: 1684-9973/ars/2005-3-331 Copernicus GmbH 2005 Advances in Radio Science Noise Considerations of Integrators for Current Readout Circuits B. Bechen,

More information

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: CHAPTER16 Two-Port Networks THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: Calculate the admittance, impedance, hybrid, and transmission parameter for two-port networks. Convert

More information

Switching circuits: basics and switching speed

Switching circuits: basics and switching speed ECE137B notes; copyright 2018 Switching circuits: basics and switching speed Mark Rodwell, University of California, Santa Barbara Amplifiers vs. switching circuits Some transistor circuit might have V

More information

University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS

University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits Final Exam 10Dec08 SOLUTIONS This exam is a closed book exam. Students are allowed to use a

More information

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an N-Switch, the

More information

BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example Small-Signal BJT Models Small-Signal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R

More information

ECE2210 Final given: Spring 08

ECE2210 Final given: Spring 08 ECE Final given: Spring 0. Note: feel free to show answers & work right on the schematic 1. (1 pts) The ammeter, A, reads 30 ma. a) The power dissipated by R is 0.7 W, what is the value of R. Assume that

More information

THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2

THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2 THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2 ORIGINS OF THE SCIENTIFIC REVOLUTION 335 BCE-1687 CE A New View of the Universe Scientists of the 1500s asked same questions as Greeks: What is the universe

More information

The Transmission Line Wave Equation

The Transmission Line Wave Equation 1//9 The Transmission Line Wave Equation.doc 1/8 The Transmission Line Wave Equation Let s assume that v ( t, ) and (, ) i t each have the timeharmonic form: j t { V e ω j t = } and i (, t) = Re { I( )

More information

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

EE 321 Analog Electronics, Fall 2013 Homework #8 solution EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various

More information

FEEDBACK AND STABILITY

FEEDBACK AND STABILITY FEEDBCK ND STBILITY THE NEGTIVE-FEEDBCK LOOP x IN X OUT x S + x IN x OUT Σ Signal source _ β Open loop Closed loop x F Feedback network Output x S input signal x OUT x IN x F feedback signal x IN x S x

More information

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00

More information

Time Varying Circuit Analysis

Time Varying Circuit Analysis MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

Prepared by: B.ELANGOVAN. M.Sc., M.Ed., M.Phil.,

Prepared by: B.ELANGOVAN. M.Sc., M.Ed., M.Phil., Book back One Mark questions And answers Prepared by: B.ELANGOVAN. M.Sc., M.Ed., M.Phil., (Tamil Nadu Dr. Radhakrishnan Best Teacher Award - 2011 recipient) Post Graduate Teacher in Physics ( Date of Appointment

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

CMOS Inverter (static view)

CMOS Inverter (static view) Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:

More information

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E.

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E. Lecture 070 Stage Frequency esponse I (/0/0) Page 070 LECTUE 070 SINGLESTAGE FEQUENCY ESPONSE I (EADING: GHLM 488504) Objective The objective of this presentation is:.) Illustrate the frequency analysis

More information

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Figure 1 Basic epitaxial planar structure of NPN Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Lecture Notes: 2304154 Physics and Electronics Lecture 6 (2 nd Half), Year: 2007

More information

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power - Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 12-3pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances

More information

Homework 6 Solutions and Rubric

Homework 6 Solutions and Rubric Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure

More information

Notes on Timaeus M. Baumer

Notes on Timaeus M. Baumer Notes on Timaeus M. Baumer I. About the Timaeus and Critias A. Timaeus, Critias, and Hermocrates were to form a connected series, but the Hermocrates was never written or at least does not survive, and

More information

Marwadi University Draft Syllabus for Bachelor of Technology Electronics and Communication. Subject Code: 03EC0302

Marwadi University Draft Syllabus for Bachelor of Technology Electronics and Communication. Subject Code: 03EC0302 Subject Code: 03EC0302 Subject Name: Circuits and Networks B. Tech. Year II (Semester III) Objective: After completion of this course, student will be able to: 1. To introduce electric circuits and its

More information

Stability and Frequency Compensation

Stability and Frequency Compensation 類比電路設計 (3349) - 2004 Stability and Frequency ompensation hing-yuan Yang National hung-hsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,

More information

Lecture 23. CMOS Logic Gates and Digital VLSI I

Lecture 23. CMOS Logic Gates and Digital VLSI I ecture 3 CMOS ogic Gates and Digital SI I In this lecture you will learn: Digital ogic The CMOS Inverter Charge and Discharge Dynamics Power Dissipation Digital evels and Noise NFET Inverter Cut-off Saturation

More information

Electronics II. Final Examination

Electronics II. Final Examination f3fs_elct7.fm - The University of Toledo EECS:3400 Electronics I Section Student Name Electronics II Final Examination Problems Points.. 3 3. 5 Total 40 Was the exam fair? yes no Analog Electronics f3fs_elct7.fm

More information

Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: Biasing and Small Signal Model Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

More information

EE 230. Lecture 4. Background Materials

EE 230. Lecture 4. Background Materials EE 230 Lecture 4 Background Materials Transfer Functions Test Equipment in the Laboratory Quiz 3 If the input to a system is a sinusoid at KHz and if the output is given by the following expression, what

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit esson 8 evenin s and Norton s theorems in the context of dc voltage and current sources acting in a resistive network Objectives To understand the basic philosophy behind the evenin

More information

Lecture 17 Date:

Lecture 17 Date: Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A

More information

SWITCHED CAPACITOR AMPLIFIERS

SWITCHED CAPACITOR AMPLIFIERS SWITCHED CAPACITOR AMPLIFIERS AO 0V 4. AO 0V 4.2 i Q AO 0V 4.3 Q AO 0V 4.4 Q i AO 0V 4.5 AO 0V 4.6 i Q AO 0V 4.7 Q AO 0V 4.8 i Q AO 0V 4.9 Simple amplifier First approach: A 0 = infinite. C : V C = V s

More information

TWO-PORT NETWORKS. Enhancing Your Career. Research is to see what everybody else has seen, and think what nobody has thought.

TWO-PORT NETWORKS. Enhancing Your Career. Research is to see what everybody else has seen, and think what nobody has thought. C H A P T E R TWO-PORT NETWORKS 8 Research is to see what everybody else has seen, and think what nobody has thought. Albert Szent-Gyorgyi Enhancing Your Career Career in Education While two thirds of

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Design of Analog Integrated Circuits Chapter 11: Introduction to Switched- Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4

More information

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 1 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 1 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 2 3 Fixator Norator Pairs Versus Direct Analytical Tools in Performing Analog Circuit Designs Reza Hashemian, Life Senior Member, 4 Abstract Two

More information

CS 436 HCI Technology Basic Electricity/Electronics Review

CS 436 HCI Technology Basic Electricity/Electronics Review CS 436 HCI Technology Basic Electricity/Electronics Review *Copyright 1997-2008, Perry R. Cook, Princeton University August 27, 2008 1 Basic Quantities and Units 1.1 Charge Number of electrons or units

More information

B [1] DF: decreases as greater proportion of voltage across fixed / 10 k Ω resistor no CE from first mark. B1 allow watt per amp

B [1] DF: decreases as greater proportion of voltage across fixed / 10 k Ω resistor no CE from first mark. B1 allow watt per amp Mark schemes B [] (a) (i) /R total = /(40) +/(0+5) = 0.0967 R total = 0.9 kω I = / 0.9 k =. ma (b) position pd / V AC 6.0 DF 4.0 CD.0 C.E. for CD (c) (i) AC: no change constant pd across resistors / parallel

More information

MICROELECTRONIC CIRCUIT DESIGN Second Edition

MICROELECTRONIC CIRCUIT DESIGN Second Edition MICROELECTRONIC CIRCUIT DESIGN Second Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 10/23/06 Chapter 1 1.3 1.52 years, 5.06 years 1.5 2.00 years, 6.65 years 1.8 113

More information

Chapter 5. BJT AC Analysis

Chapter 5. BJT AC Analysis Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor

More information

Sample-and-Holds David Johns and Ken Martin University of Toronto

Sample-and-Holds David Johns and Ken Martin University of Toronto Sample-and-Holds David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 18 Sample-and-Hold Circuits Also called track-and-hold circuits Often needed in A/D converters

More information

POLYHEDRON PUZZLES AND GROUPS

POLYHEDRON PUZZLES AND GROUPS POLYHEDRON PUZZLES AND GROUPS JORGE REZENDE. Introduction Consider a polyhedron. For example, a platonic, an archimedean, or a dual of an archimedean polyhedron. Construct flat polygonal plates in the

More information

ECE315 / ECE515 Lecture 11 Date:

ECE315 / ECE515 Lecture 11 Date: ecture 11 Date: 15.09.016 MOS Differential Pair Quantitative Analysis differential input Small Signal Analysis MOS Differential Pair ECE315 / ECE515 M 1 and M are perfectly matched (at least in theory!)

More information

Stability & Compensation

Stability & Compensation Advanced Analog Building Blocks Stability & Compensation Wei SHEN (KIP) 1 Bode Plot real zeros zeros with complex conjugates real poles poles with complex conjugates http://lpsa.swarthmore.edu/bode/bode.html

More information

Lecture 4, Noise. Noise and distortion

Lecture 4, Noise. Noise and distortion Lecture 4, Noise Noise and distortion What did we do last time? Operational amplifiers Circuit-level aspects Simulation aspects Some terminology Some practical concerns Limited current Limited bandwidth

More information

CPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles

CPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles PE/EE 427, PE 527 VLI Design I Pass Transistor Logic Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: MO ircuit

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

From this analogy you can deduce some rules that you should keep in mind during all your electronics work:

From this analogy you can deduce some rules that you should keep in mind during all your electronics work: Resistors, Volt and Current Posted on April 4, 2008, by Ibrahim KAMAL, in General electronics, tagged In this article we will study the most basic component in electronics, the resistor and its interaction

More information

ECEN 325 Electronics

ECEN 325 Electronics ECEN 325 Electronics Introduction Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ohm s Law i R i R v 1 v v 2 v v 1 v 2 v = v 1 v 2 v = v 1 v 2 v = ir

More information

Interconnects. Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters. ECE 261 James Morizio 1

Interconnects. Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters. ECE 261 James Morizio 1 Interconnects Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters ECE 261 James Morizio 1 Introduction Chips are mostly made of wires called interconnect In stick diagram,

More information

MARK SCHEME for the October/November 2015 series 0625 PHYSICS

MARK SCHEME for the October/November 2015 series 0625 PHYSICS CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International General Certificate of Secondary Education MARK SCHEME for the October/November 2015 series 0625 PHYSICS 0625/31 Paper 3 (Extended Theory),

More information

Department of Electrical Engineering and Computer Sciences University of California, Berkeley. Final Exam Solutions

Department of Electrical Engineering and Computer Sciences University of California, Berkeley. Final Exam Solutions Electrical Engineering 42/00 Summer 202 Instructor: Tony Dear Department of Electrical Engineering and omputer Sciences University of alifornia, Berkeley Final Exam Solutions. Diodes Have apacitance?!?!

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information