Operational Amplifiers


 Myles Anthony
 3 years ago
 Views:
Transcription
1 Operational Amplifiers A Linear IC circuit Operational Amplifier (opamp) An opamp is a highgain amplifier that has high input impedance and low output impedance. An ideal opamp has infinite gain and input impedance and zero output impedance. An integrated circuit (IC) contains a number of components on a single piece of semiconductor. Most opamps are IC chips. 1
2 The 741 Operational Amplifier OpAmp Input/Output We consider the opamp as a single component with input and output characteristics. Two signal inputs: Inverting Noninverting Two dc power supply leads (+ and ) One output lead 2
3 OpAmp Packages The Operation of Opamps The input stage of an opamp is a differential amplifier. The opamp amplifies the difference between the two input terminal voltages. V diff =V 2 V 1 V 1 V 2 + 3
4 OpAmp Output The output of the amplifier is determined by The gain of the amplifier. The polarity relationship between V 1 and V 2. The values of the supply voltages, +V and V. The load resistance OpAmp Gain The maximum possible gain of an opamp is called the openloop gain A OL. Generally A OL is greater than 10,000. Typical values are on the order of 200,000. An ideal opamp would have infinite gain. 4
5 Input/Output Polarity The output polarity follows the sign of V diff. If V 2 V 1 > 0 the output polarity will be positive. If V 2 V 1 < 0 the output polarity will be negative. V 1 V 2 + Supply Voltages The supply voltages determine the limits of output voltage swing. No matter what the gain and input voltages the output value can not exceed +V or V. In practice the maximum output voltage is slightly less than the supply voltages. For resistive loads > 10kΩ the output voltages are about 1V less than the supply voltages. For resistive loads > 2kΩ the output voltages are about 2V less than the supply voltages. 5
6 Open Loop Opamp Use As the open loop gain of most opamps is extremely large the output of an openloop circuit is either the maximum positive or negative voltage. +15 V V 1 V 2 + # + 14 V V > V 2 V out = " $ 14 V V2 <! V V Feedback Circuits 6
7 Feedback Most opamp circuits are designed to use feedback. Feedback is defined as taking a portion of the output of a circuit and coupling or feeding it back into the input. If the output fed back is in phase with the input then the circuit has positive feedback. If the output fed back is out of phase with the input then the circuit has negative feedback. Negative Feedback Most amplifiers use negative feedback. Disadvantages: decreased gain. Advantages: increased circuit stability, increased input impedance, decreased output impedance, increased frequency bandwidth at constant gain. 7
8 Negative Voltage Feedback A fraction B < 1 of the output voltage is subtracted from the input voltage. v " =! Bv out Σ v A OL v out B Negative Voltage Feedback The closed loop gain, A v, is defined as The closed loop gain can be calculated from two equations Σ v A OL v out B 8
9 Negative Voltage Feedback Solving for A v gives Usually the openloop gain is so large that we can approximate: Σ v A OL v out B Negative Feedback The gain of the amplifier circuit depends only on B, the fraction of output voltage fed back. B can be made very constant so that the amplifier has great gain stabilization. Bv out R 1 v out Example: B could be determined by two resistors in a voltage divider relationship. R 2 9
10 Negative Feedback Impedance The input and output impedance is also changed by the feedback. OpAmp Circuits With Negative Feedback 10
11 NonInverting Amplifier Using Kirchoff s rule, Ohm s Law, and our knowledge of opamps we can derive a closed loopvoltage gain for the noninverting amplifier circuit shown below. i 2 i 1 R 2 R 1 i v 1 v 2 v out NonInverting Amplifier As the input resistance of the opamp is very large we can neglect i. The output voltage is given by the voltage difference and the openloop gain. i 2 i 1 R 2 R 1 i v 1 v 2 v out 11
12 NonInverting Amplifier Combining the previous equations we find: A v = v out = A OL (R 1 + R 2 ) (A OL +1)R 1 + R 2 If the openloop gain is very large: i 2 i 1 R 2 R 1 i v 1 v 2 v out Inverting Amplifier Using Kirchoff s rule, Ohm s Law, and our knowledge of opamps we can derive a closed loopvoltage gain for the inverting amplifier circuit shown below i 2 i 1 R 2 R 1 i v 1 v 2 vout 12
13 Inverting Amplifier The output voltage is related to the voltage difference. Neglecting i and combining the equations gives i 2 i 1 R 2 R 1 i v 1 v 2 vout Inverting Amplifier For a very large openloop gain becomes i 2 i 1 R 2 R 1 i v 1 v 2 vout 13
14 The Two Golden Rules of OpAmp Circuits Notice in both derivations two approximations were made: (1) the input current i flowing into the opamp was neglected compared to other currents; and (2) the openloop op amp gain A OL was assumed to be very large compared to the gain with feedback. These two approximations can be extended to form two golden rules for analyzing an opamp circuits with negative feedback. OpAmp Current Rule (OACR): The current into or out of each opamp input terminal is approximately zero. OpAmp Voltage Rule (OAVR): The voltage difference between the two opamp input terminals is approximately zero. OpAmp Current Rule The OACR basically says that the input impedance of the opamp is much higher than the external input impedance from the input terminal to ground. For BJT opamps input impedance is on the order of 10MΩ. For FET opamps input impedance is on the order of Ω. 14
15 OpAmp Voltage Rule The OAVR is the equivalent of saying that the openloop gain is infinite. The output of the opamp can never be greater than the supply voltage (~15V) which means that (v 2 v 1 ) must be less that 150 µv for a typical A OL or the output will be saturated. Therefore if the opamp is not saturated then the difference between the input terminals must be nearly zero. The rule says that in an actual op amp circuit the negative feedback plus the high gain of the opamp effectively zeros the difference between the two inputs. Noninverting Amp OACR: i 1 = i 2 OAVR: v 1 = v 2 = i 2 i R 1 2 R 1 v 1 v 2 v out 15
16 Inverting Amp OACR: i 1 = i 2 OAVR: v 1 = v 2 = 0 i 2 i R 1 2 R 1 v 1 v 2 vout Instrumentation Amplifier 16
17 Peak Detection Amplifier Positive Feedback 17
18 Positive Feedback Circuits Rather than placing a portion of the output back into the inverting input a portion of the output is sent back to the noninverting terminal to produce positive feedback. Positive Feedback Circuits Oscillators 18
19 Positive Feedback Circuits Oscillators 19
D is the voltage difference = (V +  V  ).
1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V , and one output terminal Y. It provides a gain A, which is usually
More informationPHYS225 Lecture 9. Electronic Circuits
PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current
More informationLecture 4: Feedback and OpAmps
Lecture 4: Feedback and OpAmps Last time, we discussed using transistors in smallsignal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,
More informationThe equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =
The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational
More informationLecture 7: Transistors and Amplifiers
Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many
More informationDesigning Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Opamps in Negative Feedback
EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Opamps in Negative Feedback In the last note, we saw that can use an opamp as a comparator. However,
More informationECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OPAMP) Circuits
ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OPAMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform
More informationEE100Su08 Lecture #9 (July 16 th 2008)
EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart
More informationE1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13
RevisionLecture 1: E1.1 Analysis of Circuits (20144530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer
More informationDESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OPAMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C
MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OPAMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 Email: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OPAMP It consists of two stages: First
More informationELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems  C3 13/05/ DDC Storey 1
Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and
More informationEE 321 Analog Electronics, Fall 2013 Homework #3 solution
EE 32 Analog Electronics, Fall 203 Homework #3 solution 2.47. (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by + [ Rf v N + R f v N2 +... + R ] f v Nn R N R N2 R [
More informationLecture 5: Using electronics to make measurements
Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly
More informationGeorgia Institute of Technology School of Electrical and Computer Engineering. Midterm1 Exam (Solution)
Georgia Institute of Technology School of Electrical and Computer Engineering Midterm1 Exam (Solution) ECE6414 Spring 2012 Friday, Feb. 17, 2012 Duration: 50min First name Solutions Last name Solutions
More informationFinal Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.
Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the opamp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at
More information55:041 Electronic Circuits The University of Iowa Fall Final Exam
Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a classb amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered
More informationESE319 Introduction to Microelectronics. Output Stages
Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class
More informationElectronics II Physics 3620 / 6620
Electronics II Physics 3620 / 6620 Jan 28, 2009 Part 1 Operational Amplifiers 2/3/2009 1 Some History Fairchild 0.60 Inches 1964: The First Linear IC The µa702 OpAmp 12 Transistors Designer: Bob Widlar
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More informationEE201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) 2V (4) 1V (5) 1V (6) None of above
EE201, Review Probs Test 1 page1 Spring 98 EE201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) 2V (4) 1V (5) 1V (6)
More informationStudio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.
Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232242 Twostage opamp Analysis Strategy Recognize
More informationElectronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory
Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, AntiLogarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in
More informationMidterm Exam (closed book/notes) Tuesday, February 23, 2010
University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple
More informationFEEDBACK AND STABILITY
FEEDBCK ND STBILITY THE NEGTIVEFEEDBCK LOOP x IN X OUT x S + x IN x OUT Σ Signal source _ β Open loop Closed loop x F Feedback network Output x S input signal x OUT x IN x F feedback signal x IN x S x
More informationECE343 Test 2: Mar 21, :008:00, Closed Book. Name : SOLUTION
ECE343 Test 2: Mar 21, 2012 6:008:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
More informationESE319 Introduction to Microelectronics Common Emitter BJT Amplifier
Common Emitter BJT Amplifier 1 Adding a signal source to the single power supply bias amplifier R C R 1 R C V CC V CC V B R E R 2 R E Desired effect addition of bias and signal sources Starting point 
More informationENGR4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):
ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):
More informationE40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1
E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863866. Reader, Chapter 8 Noninverting Amp http://www.electronicstutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronicstutorials.ws/opamp/opamp_2.html
More informationc Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Feedback Amplifiers CollectionofSolvedProblems A collection of solved
More informationAt point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
More informationTime Varying Circuit Analysis
MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set
More informationChapter 10 Feedback. PART C: Stability and Compensation
1 Chapter 10 Feedback PART C: Stability and Compensation Example: Noninverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits
More informationECE Analog Integrated Circuit Design  II P.E. Allen
Lecture 290 Feedback Analysis using Return Ratio (3/20/02) Page 2901 LECTURE 290 FEEDBACK CIRCUIT ANALYSIS USING RETURN RATIO (READING: GHLM 599613) Objective The objective of this presentation is: 1.)
More informationFeedback Control G 1+FG A
Introduction to Operational Amplifiers Circuit Functionality So far, only passive circuits (C, L and LC) have been analyzed in terms of the timedomain operator T and the frequencydomain operator A(ω),
More informationElectronics II. Final Examination
The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11
More informationCARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130
ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED
More informationSimultaneous equations for circuit analysis
Simultaneous equations for circuit analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationOperational Amplifiers
NDSU Operational Amplifiers ECE 06 JSG Operational Amplifiers An operational amplifier is a input device with V o k(v V ) where k is a large number. For short, the following symbol is used for an differential
More informationCHAPTER.4: Transistor at low frequencies
CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly
More informationOperational amplifiers (Op amps)
Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.
More informationECS 40, Fall 2008 Prof. ChangHasnain Test #3 Version A
ECS 40, Fall 2008 Prof. ChangHasnain Test #3 Version A 10:10 am 11:00 am, Wednesday December 3, 2008 Total Time Allotted: 50 minutes Total Points: 100 1. This is a closed book exam. However, you are allowed
More informationOPERATIONAL AMPLIFIER APPLICATIONS
OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Noninverting Configuration (Chapter 2.3) 2.4 Difference
More informationKOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 7 DC BIASING FETS (CONT D)
KOM751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU Control and Automation Dept. 1 7 DC BIASING FETS (CONT D) Most of the content is from the textbook: Electronic devices and circuit theory, Robert
More informationEE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
More informationESE319 Introduction to Microelectronics. Feedback Basics
Feedback Basics Stability Feedback concept Feedback in emitter follower Onepole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationLecture 5: Using electronics to make measurements
Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly
More informationThe BJT Differential Amplifier. Basic Circuit. DC Solution
c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit
More informationSeries & Parallel Resistors 3/17/2015 1
Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the singleloop circuit as shown in figure. The two resistors are in series, since the same current i flows in both
More informationChapter 2  DC Biasing  BJTs
Objectives Chapter 2  DC Biasing  BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationPhysics 364, Fall 2012, reading due your answers to by 11pm on Thursday
Physics 364, Fall 2012, reading due 20120920. Email your answers to ashmansk@hep.upenn.edu by 11pm on Thursday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: This
More informationSolved Problems. Electric Circuits & Components. 11 Write the KVL equation for the circuit shown.
Solved Problems Electric Circuits & Components 11 Write the KVL equation for the circuit shown. 12 Write the KCL equation for the principal node shown. 12A In the DC circuit given in Fig. 1, find (i)
More informationFundamentals of Electric Circuits, Second Edition  Alexander/Sadiku
Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω j 8 30 o I j 4 j 4 I 2 j2v For loop, 8 30 = (2 j4)i ji 2
More informationOperational Amplifier (OpAmp) Operational Amplifiers. OPAmp: Components. Internal Design of LM741
(OpAmp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics
More informationHomework Assignment 09
Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =
More informationOPAMPs I: The Ideal Case
I: The Ideal Case The basic composition of an operational amplifier (OPAMP) includes a high gain differential amplifier, followed by a second high gain amplifier, followed by a unity gain, low impedance,
More informationBasic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture4 Biasing
More informationmith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut
mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut dthiebaut@smith.edu Crash Course in Electricity and Electronics Zero Physics background expected!
More informationor Op Amps for short
or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Define voltage gain, current gain, transresistance gain, and transconductance gain. Explain the operation
More informationHomework 6 Solutions and Rubric
Homework 6 Solutions and Rubric EE 140/40A 1. KW Tube Amplifier b) Load Resistor e) Commoncathode a) Input Diff Pair f) CathodeFollower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure
More informationKOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )
KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,
More informationECE343 Test 1: Feb 10, :008:00pm, Closed Book. Name : SOLUTION
ECE343 Test : Feb 0, 00 6:008:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
More informationECEN 325 Electronics
ECEN 325 Electronics Operational Amplifiers Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Opamp Terminals positive supply inverting input terminal non
More informationUNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal
More informationSection 1: Common Emitter CE Amplifier Design
ECE 3274 BJT amplifier design CE, CE with Ref, and CC. Richard Cooper Section 1: CE amp Re completely bypassed (open Loop) Section 2: CE amp Re partially bypassed (gain controlled). Section 3: CC amp (open
More informationHC5503PRC SLIC and the IDT Quad PCM CODEC with Programmable Gain
HC5503PC SLIC and the IDT821034 Quad PCM CODEC with Programmable Gain Application Note AN352 eference Design Using the HC5503PC SLIC and the IDT821034 Quad PCM CODEC with Programmable Gain The network
More informationFeedback design for the Buck Converter
Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation
More informationProblem Set 4 Solutions
University of California, Berkeley Spring 212 EE 42/1 Prof. A. Niknejad Problem Set 4 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
More informationHomework 3 Solution. Due Friday (5pm), Feb. 14, 2013
University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 3 Solution Due Friday (5pm), Feb. 14, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled
More informationFrequency Dependent Aspects of Opamps
Frequency Dependent Aspects of Opamps Frequency dependent feedback circuits The arguments that lead to expressions describing the circuit gain of inverting and noninverting amplifier circuits with resistive
More informationElectronic Circuits Summary
Electronic Circuits Summary Andreas Biri, DITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
More informationElectronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi
Electronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi Module No. 07 Differential and Operational Amplifiers Lecture No. 39 Summing, Scaling and Averaging Amplifiers (Refer
More informationTexas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos
Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 5: Electrical and Electromagnetic System Components The objective of this
More informationSampleandHolds David Johns and Ken Martin University of Toronto
SampleandHolds David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 18 SampleandHold Circuits Also called trackandhold circuits Often needed in A/D converters
More informationBJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example SmallSignal BJT Models SmallSignal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R
More informationECE137B Final Exam. Wednesday 6/8/2016, 7:3010:30PM.
ECE137B Final Exam Wednesday 6/8/2016, 7:3010:30PM. There are7 problems on this exam and you have 3 hours There are pages 132 in the exam: please make sure all are there. Do not open this exam until
More informationSection 4. Nonlinear Circuits
Section 4 Nonlinear Circuits 1 ) Voltage Comparators V P < V N : V o = V ol V P > V N : V o = V oh One bit A/D converter, Practical gain : 10 3 10 6 V OH and V OL should be far apart enough Response Time:
More informationQuick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V Odm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1
Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V Odm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V Odm is the differential output offset
More informationExperiment 9 Equivalent Circuits
Experiment 9 Equivalent Circuits Name: Jason Johnson Course/Section: ENGR 36104 Date Performed: November 15, 2001 Date Submitted: November 29, 2001 In keeping with the honor code of the School of Engineering,
More informationEE214 Early Final Examination: Fall STANFORD UNIVERSITY Department of Electrical Engineering. SAMPLE FINAL EXAMINATION Fall Quarter, 2002
STANFORD UNIVERSITY Department of Electrical Engineering SAMPLE FINAL EXAMINATION Fall Quarter, 2002 EE214 8 December 2002 CLOSED BOOK; Two std. 8.5 x 11 sheets of notes permitted CAUTION: Useful information
More informationElectrical System Elements
Electrical System Elements Application areas include: Electromechanical (motor) Electrooptical (phototransistor) Electrothermal Electromechanoacoustic (loudspeaker, microphone) Measurement Systems and
More informationOperational amplifiers (Op amps)
Operational amplifiers (Op amps) Recall the basic twoport model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also
More informationApplication Report. Mixed Signal Products SLOA021
Application Report May 1999 Mixed Signal Products SLOA021 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product
More informationBiasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION
4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration
More informationBiasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationEE 321 Analog Electronics, Fall 2013 Homework #8 solution
EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various
More informationID # NAME. EE255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom
ID # NAME EE255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.
More informationLecture 11: JFET and MOSFET
ENE 311 Lecture 11: JFET and MOSFET FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.
More informationLecture 25 ANNOUNCEMENTS. Reminder: Prof. Liu s office hour is cancelled on Tuesday 12/4 OUTLINE. General considerations Benefits of negative feedback
Lecture 25 ANNOUNCEMENTS eminder: Prof. Liu s office hour is cancelled on Tuesday 2/4 Feedback OUTLINE General considerations Benefits of neative feedback Sense andreturn techniques Voltae voltae feedback
More informationThe Approximating Impedance
Georgia Institute of Technology School of Electrical and Computer Engineering ECE 4435 Op Amp Design Laboratory Fall 005 DesignProject,Part A White Noise and Pink Noise Generator The following explains
More informationSwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto
SwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually
More informationECE 220 Laboratory 4 Volt Meter, Comparators, and Timer
ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer Michael W. Marcellin Please follow all rules, procedures and report requirements as described at the beginning of the document entitled ECE 220 Laboratory
More informationChapter 2.  DC Biasing  BJTs
Chapter 2.  DC Biasing  BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationECE3050 Assignment 7
ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linearlog scales for the phase plots. On the magnitude
More informationCHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012
1 CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN Hà Nội, 9/24/2012 Chapter 3: MOSFET 2 Introduction Classifications JFET DFET (Depletion MOS) MOSFET (Enhancement EFET) DC biasing Small signal
More informationLecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics. Lena Peterson
Lecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics Lena Peterson 20151013 Outline (1) Why is the CMOS inverter gain not infinite? Largesignal
More informationD C Circuit Analysis and Network Theorems:
UNIT1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,
More informationP1: Basics  Things you now know that you didn t know you knew (25 pts)
P1: Basics  Things you now know that you didn t know you knew (25 pts) a) Birds routinely land and relax on power lines which carry tens of thousands of volts of electricity. Explain why these birds do
More informationNotes for course EE1.1 Circuit Analysis TOPIC 10 2PORT CIRCUITS
Objectives: Introduction Notes for course EE1.1 Circuit Analysis 45 Reexamination of 1port subcircuits Admittance parameters for port circuits TOPIC 1 PORT CIRCUITS Gain and port impedance from port
More informationThe CommonEmitter Amplifier
c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The CommonEmitter Amplifier Basic Circuit Fig. shows the circuit diagram
More information