ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier


 Sibyl Hoover
 3 years ago
 Views:
Transcription
1 Common Emitter BJT Amplifier 1
2 Adding a signal source to the single power supply bias amplifier R C R 1 R C V CC V CC V B R E R 2 R E Desired effect addition of bias and signal sources Starting point  single dc source 2
3 Wrong Way to Combine Sources <> 0 0 Source with low output impedance upsets bias. Thevenin equivalent at base: 3
4 Wrong Way  Continued R S V B V th To analyze, 1. Isolate base circuit, 2. Use superposition, 3. Find Thevenin equivalent for the base bias source, V B : V th R th ' V B V B R S The signal source effectively shorts out the bias source! ( 0) The signal source v S is essentially is unaffected by the bias source V B. (Why? What is its Thevenin equivalent?) 4
5 ESE319 Introduction to Microelectronics The Right Way Use a Blocking Capacitor i Cb v Cb +  C b 0 r bg For convenience lets continue to use the base bias Thevenin equiv. 1. Capacitor C b is an OPEN at dc and R S does not affect the bias! 2. C b charges to the dc bias source, V B, to satisfy Kirchoff's voltage law. 3. The dc bias is in series with the signal source, i.e. DESIGN GOAL: for f f min1, set the value of C b so that its ac voltage drop v Cb is negligible at and above the low frequency cutoff at say f min1. v S V B 5
6 Using superposition, for smallsignal let V B 0. ESE319 Introduction to Microelectronics Blocking Capacitor Selection i b i c apply i b evaluate i e <> i b i e i c 0 r bg r bg v bg i b i e i b i b Use the small signal equivalent circuit and superposition to estimate the input resistance of the transistor. v bg i b r i e R E i b r i b 1 R E r bg v bg i b r 1 R E R E 6
7 Capacitor Selection continued The signal source sees the 20 kω bias source resistance in parallel with. So the signal source equivalent circuit is: i Cb r bg 0 R E 400 k Therefore: v Cb +  C b 0 r BG k r bg R E The capacitor voltage drop is: v Cb 1 i j C Cb b Where the capacitor current is: i Cb R S r bg 1 j C b i Cb 1 j C b > v Cb j C b 1 Goal: C b 1 7
8 i Cb v Cb +  ESE319 Introduction to Microelectronics Capacitor Selection  continued C b 1 v Cb or f RB C j C b 1 b 2 C b CONSERVATIVE DESIGN GOAL: Choose C b for negligible voltage drop at v Cb for f f min1, i.e. OR v Cb j C b 1 for f f min1 v Cb 2 f min1c b C b 2 f min1 DESIGN GOAL: Choose C b so that f RB C b 0.1 f min1, i.e. 1 f Cb 0.1 f 2 C b R min1 C b B 2 f min1 8
9 Capacitor Selection  continued C b 2 f min1 C b min 2 f min1 Select the LOWEST frequency of interest. This sets the lower bound on C b. Using f min1 20 Hz frequency for our example circuit: 2 f min sec 1 C b min F ANY capacitor larger than 4 do the job! F will also 9
10 Common Emitter Unity Gain Amplifier Cb 5 uf Cb 5 uf Equivalent circuits How can we achieve reasonable gain with this circuit? Solution: Split R E and use capacitor bypassing.
11 Cb 5 uf 0 ESE319 Introduction to Microelectronics + v RE1  + v ZE2  Bypass for Gain Procedure: 1. Split the emitter resistor in two. Later, we will show that the voltage gain will be close i e Z E2 R E2 1 j C byp to R C /R E1. 2. Bypass R E2 with a capacitor C byp that looks like a near short circuit at some suitable low frequency (f min2 f min1 ). i.e. v ZE2 << v RE1 for f f min2 ) v RE1 i e R E1 & v ZE2 i e Z E2 11
12 Bypass for Gain  continued Rb 20 k Ohm + v RE1  + Rb 20 k Ohm v ZE20 0 Small signal circuit Desired circuit for f f min2 i.e. CONSERVATIVE DESIGN GOAL: Choose C byp s.t. v ZE2 << v RE1 for f f min2 12
13 Rs Rb b c Need to develop a design equation for C byp s.t. DESIGN GOAL: v ZE2 << v RE1 i b e i c i e + v RE1 +  v ZE2 i e 1 i b  0 r e R E1 v RE1 i e R E1 & v ZE2 i e Z E2 where Z E2 v ZE2 V RE1 Z E2i e R E1 i e C byp R E2 R E1 1 2 f min2 R E2 C byp 2 f min2 R E1 R E2 j C byp R E2 1 R E2 / R E1 j C byp R E2 1 1 j 2 f min2 C byp R E2 1 R E2 R E1 1 2 f min2 R E1 13
14 C b 2 f min1 In Lab 2 Choose C b s.t. 1 2 f min1 C b R in r bg f min1 Hz C b f min1 20 C byp 2 f min2 R E1 Choose C byp s.t. C byp f min2 0Hz 1 R E 2 f min2 C byp f min2 R E /2 1 0 R E 14
15 C byp ESE319 Introduction to Microelectronics 2 f min R E1 2 x 20 x 00 F 79.6 F You may choose C byp 0 F Final Design Cb 5 uf 15
16 Gain Calculation in Passband Simple gain calculation: +  vout i b R s r 1 R E1 1 R E1 v out R C i c R C i b 0 Passband model v out R C v 1 R s E1 A v v out R C R E1 4 16
17 Multisim Simulation 20 Hz Gain I khz Gain 17
18 What if R E is Fully Bypassed? A v v out R C R E 0? 18
19 What if R E is Fully Bypassed? Cb 5 uf vout i b R s r 1 R E v out R C i c R C i b 0 R S r I C 1 ma g m I C /V T 0.04 S r / g m 2.5k 0 v out R C R S r R C r. R C / g m g m R C A v v out g m R C
BJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design Bias Design Example Small Signal BJT Models Small Signal Analysis 1 Emitter Feedback Bias Design Voltage bias circuit Single power supply
More informationBJT Biasing Cont. & Small Signal Model
BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example SmallSignal BJT Models SmallSignal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R
More informationChapter 5. BJT AC Analysis
Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model commonemitter fixedbias voltagedivider bias emitterbias & emitterfollower commonbase configuration Transistor
More informationEE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
More informationTutorial #4: Bias Point Analysis in Multisim
SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs
More informationESE319 Introduction to Microelectronics. BJT Biasing Cont.
BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple
More informationCHAPTER.4: Transistor at low frequencies
CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly
More informationESE319 Introduction to Microelectronics. Output Stages
Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class
More informationClass AB Output Stage
Class AB Output Stage Class AB amplifier Operation Multisim Simulation  VTC Class AB amplifier biasing Widlar current source Multisim Simulation  Biasing 1 Class AB Operation v I V B (set by V B ) Basic
More informationKOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )
KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU  Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,
More informationThe CommonEmitter Amplifier
c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The CommonEmitter Amplifier Basic Circuit Fig. shows the circuit diagram
More informationChapter 2  DC Biasing  BJTs
Objectives Chapter 2  DC Biasing  BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationChapter 2.  DC Biasing  BJTs
Chapter 2.  DC Biasing  BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationEE 321 Analog Electronics, Fall 2013 Homework #8 solution
EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various
More informationQuick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V Odm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1
Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V Odm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V Odm is the differential output offset
More informationBiasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationOperational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (opamp) An opamp is a highgain amplifier that has high input impedance and low output impedance. An ideal opamp has infinite gain and
More informationSection 1: Common Emitter CE Amplifier Design
ECE 3274 BJT amplifier design CE, CE with Ref, and CC. Richard Cooper Section 1: CE amp Re completely bypassed (open Loop) Section 2: CE amp Re partially bypassed (gain controlled). Section 3: CC amp (open
More informationESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model
Bode Plot Review High Frequency BJT Model 1 Logarithmic Frequency Response Plots (Bode Plots) Generic form of frequency response rational polynomial, where we substitute jω for s: H s=k sm a m 1 s m 1
More informationChapter 13 SmallSignal Modeling and Linear Amplification
Chapter 13 SmallSignal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 131 Chapter Goals Understanding of concepts related to: Transistors
More informationThe BJT Differential Amplifier. Basic Circuit. DC Solution
c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit
More informationCHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE
CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis  Bode plot low frequency response BJT amplifier Miller
More informationBipolar Junction Transistor (BJT)  Introduction
Bipolar Junction Transistor (BJT)  Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification
More informationCE/CS Amplifier Response at High Frequencies
.. CE/CS Amplifier Response at High Frequencies INEL 4202  Manuel Toledo August 20, 2012 INEL 4202  Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3
More informationWhereas the diode was a 1junction device, the transistor contains two junctions. This leads to two possibilities:
Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: ntype (favor e), ptype (favor holes) for conduction Whereas the diode was a junction
More informationEngineering 1620 Spring 2011 Answers to Homework # 4 Biasing and Small Signal Properties
Engineering 60 Spring 0 Answers to Homework # 4 Biasing and Small Signal Properties.).) The inband Thevenin equivalent source impedance is the parallel combination of R, R, and R3. ( Inband implies the
More information(Refer Slide Time: 1:49)
Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 14 Module no 01 Midband analysis of FET Amplifiers (Refer Slide
More information(Refer Slide Time: 1:41)
Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 13 Module no 01 Midband Analysis of CB and CC Amplifiers We are
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More informationR 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. CC Tsai
Chapter 07 SeriesParallel Circuits The SeriesParallel Network Complex circuits May be separated both series and/or parallel elements Combinations which are neither series nor parallel To analyze a circuit
More information55:041 Electronic Circuits The University of Iowa Fall Final Exam
Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a classb amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered
More informationChapter 9 Frequency Response. PART C: High Frequency Response
Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cutoff frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance
More informationUNIVERSITY F P RTLAND Sch l f Engineering
UNIVERSITY F P RTLAND Sch l f Engineering EE271Electrical Circuits Laboratory Spring 2004 Dr. Aziz S. Inan & Dr. Joseph P. Hoffbeck Lab Experiment #4: Electrical Circuit Theorems  p. 1 of 5  Electrical
More informationElectronics II. Midterm #1
The University of Toledo EECS:3400 Electronics I su3ms_elct7.fm Section Electronics II Midterm # Problems Points. 5. 6 3. 9 Total 0 Was the exam fair? yes no The University of Toledo su3ms_elct7.fm Problem
More informationMod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
More information1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)
HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn
More informationMod. Sim. Dyn. Sys. Amplifiers page 1
AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance
More informationAs light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR
LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both
More informationTransistor Characteristics and A simple BJT Current Mirror
Transistor Characteristics and A simple BJT Current Mirror Currentoltage (I) Characteristics Device Under Test DUT i v T T 1 R X R X T for test Independent variable on horizontal axis Could force current
More informationRefinements to Incremental Transistor Model
Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for nonideal transistor behavior Incremental output port resistance Incremental changes
More informationAssignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.
Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT3 Department of Electrical and Computer Engineering Winter 2012 1. A commonemitter amplifier that can be represented by the following equivalent circuit,
More informationSOME USEFUL NETWORK THEOREMS
APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem
More informationUNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time
More informationfigure shows a pnp transistor biased to operate in the active mode
Lecture 10b EE215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the
More informationECE342 Test 3: Nov 30, :008:00, Closed Book. Name : Solution
ECE342 Test 3: Nov 30, 2010 6:008:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown
More informationEE201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) 2V (4) 1V (5) 1V (6) None of above
EE201, Review Probs Test 1 page1 Spring 98 EE201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) 2V (4) 1V (5) 1V (6)
More informationBasic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture4 Biasing
More informationFigure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors
Figure 1 Basic epitaxial planar structure of NPN Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Lecture Notes: 2304154 Physics and Electronics Lecture 6 (2 nd Half), Year: 2007
More informationCapacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009
Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive
More informationECE 304: Design Issues for Voltage Follower as Output Stage S&S Chapter 14, pp
ECE 34: Design Issues for oltage Follower as Output Stage S&S Chapter 14, pp. 131133 Introduction The voltage follower provides a good buffer between a differential amplifier and a load in two ways: 1.
More informationCore Technology Group Application Note 3 AN3
Measuring Capacitor Impedance and ESR. John F. Iannuzzi Introduction In power system design, capacitors are used extensively for improving noise rejection, lowering power system impedance and power supply
More informationUniversity of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS
University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits Final Exam 10Dec08 SOLUTIONS This exam is a closed book exam. Students are allowed to use a
More informationFYSE400 ANALOG ELECTRONICS
YSE400 ANALOG ELECTONCS LECTUE 3 Bipolar Sub Circuits 1 BPOLA SUB CCUTS Bipolar Current Sinks and Sources Transistor operates in forwardactive region. < < sat CE CN max CE < < + BN CN BN max CE N N N
More informationID # NAME. EE255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom
ID # NAME EE255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.
More informationECE343 Test 2: Mar 21, :008:00, Closed Book. Name : SOLUTION
ECE343 Test 2: Mar 21, 2012 6:008:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
More informationLecture 37: Frequency response. Context
EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in
More informationI. Frequency Response of Voltage Amplifiers
I. Frequency Response of Voltage Amplifiers A. CommonEmitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o >, r oc >, R L > Find V BIAS such that I C
More informationLecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER
Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multistage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier
More informationSinusoidal Response of RLC Circuits
Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit RL Series Circuit RL Series Circuit RL Series Circuit Instantaneous
More informationBiasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION
4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration
More informationExperiment 9 Equivalent Circuits
Experiment 9 Equivalent Circuits Name: Jason Johnson Course/Section: ENGR 36104 Date Performed: November 15, 2001 Date Submitted: November 29, 2001 In keeping with the honor code of the School of Engineering,
More informationDelta & Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs
BME/ISE 3511 Bioelectronics  Test Three Course Notes Fall 2016 Delta & Y Configurations, Principles of Superposition, esistor Voltage Divider Designs Use following techniques to solve for current through
More informationECE137B Final Exam. Wednesday 6/8/2016, 7:3010:30PM.
ECE137B Final Exam Wednesday 6/8/2016, 7:3010:30PM. There are7 problems on this exam and you have 3 hours There are pages 132 in the exam: please make sure all are there. Do not open this exam until
More informationEE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits
EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00
More informationUNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal
More informationGeneral Purpose Transistors
General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount
More informationACADAMIC CHAPTER OF SWECHA September 2010
Swecha Documents SFSAC/ ECE / IIII/LM/2010 /ver. 1.0 LABMANAUALS DEPARTMENT : ECE ELECTRONIC CIRCUITS ANALYSIS LABORATORY MANUAL ACADAMIC CHAPTER OF SWECHA September 2010 INDEX S.NO NAME OF THE EXPERIMENT
More informationEE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)
EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband
More informationPHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit
PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 6 Transient Response of An RC Circuit Equipment: Supplies: Function Generator, Dual Trace Oscilloscope.002 Microfarad, 0.1 Microfarad capacitors; 1 Kilohm,
More informationSingle Phase Parallel AC Circuits
Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar
More informationHomework Assignment 09
Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =
More informationThe current source. The Active Current Source
V ref +  The current source Minimum noise euals: Thevenin Norton = V ref DC current through resistor gives an increase of /f noise (granular structure) Accuracy of source also determined by the accuracy
More informationElectronics II. Midterm II
The University of Toledo su7ms_elct7.fm  Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo su7ms_elct7.fm  Problem 7 points Equation ()
More informationESE319 Introduction to Microelectronics. Feedback Basics
Feedback Basics Stability Feedback concept Feedback in emitter follower Onepole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability
More informationCircle the one best answer for each question. Five points per question.
ID # NAME EE255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions
More informationUniversity of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions
Problem 1 A Butterworth lowpass filter is to be designed having the loss specifications given below. The limits of the the design specifications are shown in the brickwall characteristic shown in Figure
More informationD C Circuit Analysis and Network Theorems:
UNIT1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,
More informationFinal Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.
Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the opamp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at
More informationLecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics. Lena Peterson
Lecture 13 MOSFET as an amplifier with an introduction to MOSFET smallsignal model and smallsignal schematics Lena Peterson 20151013 Outline (1) Why is the CMOS inverter gain not infinite? Largesignal
More information55:041 Electronic Circuits The University of Iowa Fall Exam 2
Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.
More informationENGR4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):
ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):
More informationChapter 10 AC Analysis Using Phasors
Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to
More informationSimple Resistive Circuits
German Jordanian University (GJU) Electrical Circuits Laboratory Section 3 Experiment Simple Resistive Circuits Post lab Report Mahmood Hisham Shubbak 7 / / 8 Objectives: To learn how to use the Unitr@in
More informationE1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13
RevisionLecture 1: E1.1 Analysis of Circuits (20144530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer
More information3TERMINAL 0.1A NEGATIVE VOLTAGE REGULATOR
3TERMINAL A NEGATIE OLTAGE REGULATOR FEATURES Output Current Up to 1 No External Components Internal Thermal Overload Protection Internal ShortCircuit Limiting Output oltage of 5, 6, 8, 9, 12, 15, 18
More informationElectronic Circuits Summary
Electronic Circuits Summary Andreas Biri, DITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
More informationresistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )
DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify
More informationMicroelectronic Circuit Design 4th Edition Errata  Updated 4/4/14
Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: 1.35 x 10 6 cm/s Page 58, last exercise,
More informationOperational Amplifier (OpAmp) Operational Amplifiers. OPAmp: Components. Internal Design of LM741
(OpAmp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics
More informationEE 330. Lecture 35. Parasitic Capacitances in MOS Devices
EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A  β β VXX Q 2
More informationPrepare for this experiment!
Notes on Experiment #8 Theorems of Linear Networks Prepare for this experiment! If you prepare, you can finish in 90 minutes. If you do not prepare, you will not finish even half of this experiment. So,
More informationPOLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems
POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this
More informationMICROELECTRONIC CIRCUIT DESIGN Second Edition
MICROELECTRONIC CIRCUIT DESIGN Second Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 10/23/06 Chapter 1 1.3 1.52 years, 5.06 years 1.5 2.00 years, 6.65 years 1.8 113
More informationExamination paper for TFY4185 Measurement Technique/ Måleteknikk
Page 1 of 14 Department of Physics Examination paper for TFY4185 Measurement Technique/ Måleteknikk Academic contact during examination: Patrick Espy Phone: +47 41 38 65 78 Examination date: 15 August
More informationCARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130
ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED
More informationLecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen
Lecture 5 Followers (1/11/4) Page 51 LECTURE 5 FOLLOWERS (READING: GHLM 344362, AH 221226) Objective The objective of this presentation is: Show how to design stages that 1.) Provide sufficient output
More informationECE343 Test 1: Feb 10, :008:00pm, Closed Book. Name : SOLUTION
ECE343 Test : Feb 0, 00 6:008:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
More informationc Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Feedback Amplifiers CollectionofSolvedProblems A collection of solved
More informationLecture 7: Transistors and Amplifiers
Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many
More informationChapter 10: Sinusoidal SteadyState Analysis
Chapter 10: Sinusoidal SteadyState Analysis 10.1 10.2 10.3 10.4 10.5 10.6 10.9 Basic Approach Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin & Norton Equivalent Circuits
More information