Chapter 21. Current and Direct Current Circuits 21.1 Electric Current

Size: px
Start display at page:

Download "Chapter 21. Current and Direct Current Circuits 21.1 Electric Current"

Transcription

1 Chapter 21 Current and Direct Current Circuits 21.1 Electric Current Electric Current 1 is defmed as the rate ofcharge flowing through a cross-section. =dq dt The "81" unit ofelectric current is the Ampere or the Amp. la = 1 C/sec. The convention is that the direction of the electric current is opposite to the direction of flow of the "free electrons". A. Microscopic Model ofcurrent Let n = number of free electrons per unit volume q = charge of each electron (also called "e") A = cross-sectional area through which the free electrons flow. Vd = drift velocity of the free electrons (-- 1 mm/sec) lave = average current 1

2 1Q lave = 1t but lax 1t V d ave = {n q Vd } A Define the electric current density J as E Resistance and Ohm's Law n electrostatics, we learned that the electric field E inside a conductor in static equilibrium is zero. Connecting a battery (or potential difference) across the ends of a conductor sets up an electric field E inside the conductor. An electric current density J and an electric field E are established in a conductor whenever a potential difference is maintained across the conductor..,r ~e -~')oj'" (Ohm's Law) 2

3 J=oE -=-- where 0= electrical conductivity p= electrical resistivity ( in Ohm meters) a Consider the following conductor connected to a battery: --e >i,\ ~~~~ Applying Ohm's law yields: A 1 AV P One then defines the electrical resistance R as so that Ohm's law becomes, when applied to a resistor, AV=R ~ ~ ~~-- The "S" unit of electrical resistance is the Ohm (Q). 3

4 B. Change in Electrical Resistance with Temperature The electrical resistivity pof a metal varies linearly with temperature (for high temperatures) according to where Po == resistivity at temperature To P = resistivity at temperature T a == temperature coefficient of resistivity p OC T (i) high temperature resistivity (linear regime) due to collisions between the free electrons and metal atoms. (ii) low temperature resistivity (non-linear regime) due to collisions between free electrons with impurities and imperfections. Since p is proportional to R, then 4

5 21.3 fuwerconductors R(Q) 0.15 For superconductors the electrical resistivity drops to zero at a temperature known as the critical temperature T c.,/ i.,/ Te , Critical Temperatures for Various Superconductors Material T e (K) HgBa2Ca2CuSOS 134 1GURE 21.9 ~ Resistance versus l1-ba-ca-cu-o 125 temperature for a sample of mercury. Bi-Sr-Ca-Cu-O 105 The graph follows that of a normal YBa2Cus07 92 metal above the Clitical temperature NbsGe 23.2 T e The resistance drops to zero at T", NbsSn which is 4.2 K for mercury. Nb 9.46 Ph 718 Hg 4.15 Sn 3.72 Al 1.19 Zn 0.88 T(K) Some ceramics have a high T c (like Yba2Cu307) Superconducting metals have low values of T c. Copper, Silver, and Gold (which are excellent conductors) do not exhibit superconductivity. Superconducting magnets produce magnetic fields lox greater than those produced by the best electromagnets. Superconducting magnets are used in medical magnetic resonance imaging (MR) units, which produce high quality images of internal organs without excessive exposure of patients to x-rays or other harmful radiation Microscopic Model of Electrical Conduction 5

6 The electrical conductivity a depends on microscopic parameters such as (Drude model 1900). 2 ne L 0=- n = number offree electrons per unit volume ( ) e = charge of electron L = average time between collisions of free electrons with the metal atoms (also called lattice atoms). me = mass of electron == mean-free path == average distance traveled by the free electrons between collisions. V th == V == average speed of free electrons between collisions. (~ 10 6 m/s) _ v =V = th L 21.5 Electrical Power and Enera Electrical power is defmed as the rate of electrical energy supplied by a voltage source (battery), or the rate of electrical energy dissipated (converted from electrical 6

7 energy to other forms of energy such as thermal energy) by a resistor) is given by lp = (AV] For a resistor, AV = R, so that P'esistor = (R ) ~esistor 2 (AVY = R = ---l R 21.7 Resistors Connected in Series and in Parallel A. Resistors connected in Series 1 1 =1 2 =1 R 1 R 2 a b c t ~1, t. V J + - R<:q=R l +R 2 a ~~ vy L',V + 1' ~1 Where more generally, 7

8 The electric current is the same through all the resistors connected in series. That is and B. Resistors connected in parallel More generally, 6 V ~ Llv?: C, V R\ y y y T\ t R A-A a y y -T 2 rt + li~v = Req R 1 ~ ~ ".f T 8

9 The voltage is the same across all the resistors connected in parallel. and 21.8 Kirchhoff's Rules and Simple DC Circuits Consider the voltages across different circuit elements such as batteries and resistors. A. Batteries + [. (i) f YOU move across the battery from the positive terminal to the negative terminal, then the voltage across the battery is written as then ~ V = - E (ii) f YOU move across the battery from the negative terminal to the positive terminal, then the voltage across the battery is written as then ~ V = + E 9

10 B. Resistors ----~---- R.. (i) fyou move across the resistor in the same direction as the current through the resistor, then the voltage across the resistor is written as 11V = - R (ii) fyou move across the resistor in the opposite direction as the current through the resistor, then the voltage across the resistor is written as 11V = + R c. Kirchhoffs Junction Rule A statement of conservation of charge. A junction is where 3 or more wires connect. 2 ~nteri~g 2 ~ leaving JunctOn JunctOn currents 1 [currents \ 10

11 D. KirchhofCs Loop Rule A statement of conservation of energy. For any loop containing circuit elements, Go over problem 29 on page 797 ofthe textbook. Electromotive Force E Consider the circuit shown below which consists of a Battery The resistance r is called the internal resistance ofthe battery. Terminal b is maintained by the source at a higher potential than terminal a. The electromotiveforce E ofthe bqttery is defined as the work per unit charge performed by the source when a charge moves from the negative terminal a to the positive terminal b. prefer to think of the E as the voltage across the terminals ofthe battery 11

12 when the circuit is open, that is, when there is no current through the battery. Let's calculate the open-circuit terminal voltage AVba = Vb - Va, ofthe battery by starting at point a and moving to point b across the battery: AVba,= E- r Notice that ifthe current in the battery is zero, then the terminal voltage across the battery equals the emf E ofthe battery. fthe current through the battery is not zero, then the terminal voltage across the battery will be smaller than the emjeofthe battery. By the way, what ifthe above circuit a stronger source is connected in series with the load resistor R such that the current in the circuit is in the opposite direction shown? What is then the terminal voltage AVba = Vb - Va across the battery? n this case AVba = E+ r and notice that the terminal voltage across the battery will be higher than the emfeofthe battery. More generally, 12

13 Operation of a Three- Way Lightbulb: Wiring Diagram for a Household Circuit: ---, V Live Neurral \ S \~G+nc4 A-ff ~ i ayl[ e s TQO\~-\-er Ro.*J cjc qs-o w4 - b,..\j \'2.D YD Hs ---- D - C\ ~ Wi.\m.L---L-~. = l\~l A~1~ 5 ~Rl--'-----r--'~,---R2---'--~R_ G) me 0 V (0 t~ ONlu. r ~ ~ Bc\~~. EexGh Figure:aellM Wirin-g,tliagraro for a household circuit. The resistances Gd'c b D 0 wc01j represent appliances or other electrical devices that operate with ) 'ni\~ -:::.. w~tts - ~" 12-0 vo\1s an applied voltage of 120 V. _ P "f) D ::. 'S A","",\,5 ) Hov\r d.rj-t:c (0 bvio\a.sl..,~ \ ~ ~ W~S J r ==-L =-llooo ~~ ~'- La y~ "'L. ::: \2'. ~ Amys ' 13

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

Chapter 27 Current and Resistance 27.1 Electric Current

Chapter 27 Current and Resistance 27.1 Electric Current Chapter 27 Current and esistance 27.1 Electric Current Electric current: dq dt, unit: ampere 1A = 1C s The rate at which charge flows through a surface. No longer have static equilibrium. E and Q can 0

More information

Lecture 6 Current and Resistance Ch. 26

Lecture 6 Current and Resistance Ch. 26 Lecture 6 Current and esistance Ch. 6 Cartoon -nvention of the battery and Voltaic Cell Warm-up problem Topics What is current? Current density Conservation of Current esistance Temperature dependence

More information

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Conductors under dynamic conditions Current, current density, drift velocity Ohm s law Types of conductor

More information

Current and Resistance. PHY2049: Chapter 26 1

Current and Resistance. PHY2049: Chapter 26 1 Current and Resistance PHY2049: Chapter 26 1 What You Will Learn in This Chapter Nature of electric current Drift speed, current and current density Current and voltage measurements Conductivity and resistivity

More information

Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27. Electric Current and Direct- Current Circuits Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

More information

Current and Resistance

Current and Resistance Chapter 26 Current and Resistance Copyright 26-1 Electric Current As Fig. (a) reminds us, any isolated conducting loop regardless of whether it has an excess charge is all at the same potential. No electric

More information

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance

Physics 2B: Review for Celebration #2. Chapter 22: Current and Resistance Physics 2: eview for Celebration #2 Chapter 22: Current and esistance Current: q Current: I [I] amps (A) 1 A 1 C/s t Current flows because a potential difference across a conductor creates an electric

More information

Chapter 3: Electric Current and Direct-Current Circuit

Chapter 3: Electric Current and Direct-Current Circuit Chapter 3: Electric Current and Direct-Current Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Direct-current is current that flows

More information

Physics 142 Steady Currents Page 1. Steady Currents

Physics 142 Steady Currents Page 1. Steady Currents Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

More information

Chapter 3: Current and Resistance. Direct Current Circuits

Chapter 3: Current and Resistance. Direct Current Circuits Chapter 3: Current and Resistance. Direct Current Circuits 3.1. Electric Current 3.2. Resistance and Resistivity 3.3. Ohm s Law and a Microscopic View of Ohm s Law 3.4. Semiconductors and Superconductors

More information

Electric Currents. Resistors (Chapters 27-28)

Electric Currents. Resistors (Chapters 27-28) Electric Currents. Resistors (Chapters 27-28) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 0 Electric Circuits Chevy olt --- Electric vehicle of the future Goals for Chapter 9 To understand the concept of current. To study resistance and Ohm s Law. To observe examples of electromotive

More information

Chapter 26 Current and Resistance

Chapter 26 Current and Resistance Chapter 26 Current and Resistance Electric Current Although an electric current is a stream of moving charges, not all moving charges constitute an electric current. If there is to be an electric current

More information

Monday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example

Monday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example Monday July 14 Lecture 5 Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example Lecture 6 Currents and esistance Lecture 9 Circuits Wear Microphone 1 3 Lecture 6 Current and

More information

Engineering Fundamentals and Problem Solving, 6e

Engineering Fundamentals and Problem Solving, 6e Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive

More information

SPS Presents: A Cosmic Lunch!

SPS Presents: A Cosmic Lunch! SPS Presents: A Cosmic Lunch! Who: Dr. Brown will be speaking about Evolution of the Elements: from Periodic table to Standard Model and Beyond! When: October 7 th at am Where: CP 79 (by the front office)

More information

Chapter 27. Current and Resistance

Chapter 27. Current and Resistance Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new

More information

10/14/2018. Current. Current. QuickCheck 30.3

10/14/2018. Current. Current. QuickCheck 30.3 Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,

More information

Current. Lecture 10. Chapter Physics II. Course website:

Current. Lecture 10. Chapter Physics II. Course website: Lecture 10 Chapter 30 Physics II Current Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii 95.144 Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html A Model

More information

Chapter 27. Current And Resistance

Chapter 27. Current And Resistance Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

More information

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply Current The current, which is Coulomb s per second, is simply I = ei e = en e Av d e is the charge is the electron! ne is the density of electrons! A is the cross sectional area of the wire! vd is the

More information

Current and Resistance

Current and Resistance Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 2-1 Electric current 2-2

More information

What are the two types of current? The two types of current are direct current and alternating current.

What are the two types of current? The two types of current are direct current and alternating current. Electric Current What are the two types of current? The two types of current are direct current and alternating current. Electric Current The continuous flow of electric charge is an electric current.

More information

Chapter 24: Electric Current

Chapter 24: Electric Current Chapter 24: Electric Current Current Definition of current A current is any motion of charge from one region to another. Suppose a group of charges move perpendicular to surface of area A. The current

More information

PHYSICS. Chapter 27 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 27 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 27 Lecture RANDALL D. KNIGHT Chapter 27 Current and Resistance IN THIS CHAPTER, you will learn how and why charge moves through a wire

More information

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Outline of College Physics OpenStax Book

Outline of College Physics OpenStax Book Outline of College Physics OpenStax Book Taken from the online version of the book Dec. 27, 2017 18. Electric Charge and Electric Field 18.1. Static Electricity and Charge: Conservation of Charge Define

More information

Chapter 27. Current And Resistance

Chapter 27. Current And Resistance Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

More information

AP Physics C - E & M

AP Physics C - E & M Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

More information

CURRENT ELECTRICITY The charge flowing any cross-section per unit time in a conductor is called electric current.

CURRENT ELECTRICITY The charge flowing any cross-section per unit time in a conductor is called electric current. CUENT ELECTICITY Important Points:. Electric Current: The charge flowing any cross-section per unit time in a conductor is called electric current. Electric Current I q t. Current Density: a) The current

More information

CHAPTER: 3 CURRENT ELECTRICITY

CHAPTER: 3 CURRENT ELECTRICITY CHAPTER: 3 CURRENT ELECTRICITY 1. Define electric current. Give its SI unit. *Current is the rate of flow of electric charge. I (t) = dq dt or I = q t SI unit is ampere (A), 1A = 1C 1s 2. Define current

More information

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When

More information

ELECTRIC CURRENT INTRODUCTION. Introduction. Electric current

ELECTRIC CURRENT INTRODUCTION. Introduction. Electric current Chapter 7 ELECTRIC CURRENT Introduction Electric current Charge conservation Electric conductivity Microscopic picture Electric power Electromotive force Kirchhoff s rules Summary INTRODUCTION The first

More information

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Electromotive Force An electromotive force device, or emf device, is a source of constant potential. The emf describes the work done per unit charge and has units of

More information

Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A)

Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric current is I Average Electric

More information

Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving)

Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving) Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit

More information

PHYS 1444 Section 003. Lecture #12

PHYS 1444 Section 003. Lecture #12 Chapter 5 Power PHYS 1444 Section 003 Alternating Current Microscopic Current Chapter 6 EMF and Terminal Voltage Lecture #1 Tuesday October 9, 01 Dr. Andrew Brandt Resistors in Series and Parallel Energy

More information

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric

More information

Chapter 25 Current, Resistance, and Electromotive Force

Chapter 25 Current, Resistance, and Electromotive Force Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity

More information

Superconductors A class of materials and compounds whose resistances fall to virtually zero below a certain temperature, T C T C is called the critical temperature The graph is the same as a normal metal

More information

Flow Rate is the NET amount of water passing through a surface per unit time

Flow Rate is the NET amount of water passing through a surface per unit time Electric Current An Analogy Water Flow in a Pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a surface per unit time Individual molecules are bouncing around with speeds of

More information

Kirchhoff's Laws I 2 I 3. junc. loop. loop -IR +IR 2 2 V P I V I R R R R R C C C. eff R R R C C C. eff 3.0

Kirchhoff's Laws I 2 I 3. junc. loop. loop -IR +IR 2 2 V P I V I R R R R R C C C. eff R R R C C C. eff 3.0 V Kirchhoff's Laws junc j 0 1 2 3 - -V + +V - + loop V j 0 2 2 V P V - + loop eff 1 2 1 1 1 eff 1 2 1 1 1 C C C eff C C C eff 1 2 1 2 3.0 Charges in motion Potential difference V + E Metal wire cross-section

More information

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II In today s lecture, we will learn to: Calculate the resistance of a conductor depending on the material and shape Apply

More information

Electric Currents & Resistance

Electric Currents & Resistance Electric Currents & Resistance Electric Battery A battery produces electricity by transforming chemical energy into electrical energy. The simplest battery contains two plates or rods made of dissimilar

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

physics for you February 11 Page 68

physics for you February 11 Page 68 urrent Electricity Passage 1 4. f the resistance of a 1 m length of a given wire t is observed that good conductors of heat are also is 8.13 10 3 W, and it carried a current 1, the good conductors of electricity.

More information

Electric Currents and Circuits

Electric Currents and Circuits Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 19 Electric Currents and Circuits Marilyn Akins, PhD Broome Community College Electric Circuits The motion of charges leads to the idea of

More information

Electric currents (primarily, in metals)

Electric currents (primarily, in metals) Electric currents (primarily, in metals) Benjamin Franklin was experimenting electricity in the mid- XVIII Century. Nobody knew if it was the positive charges or negative charges carrying the current through

More information

UNIT 5: Electric Current and Direct-Current Circuit (D.C.)

UNIT 5: Electric Current and Direct-Current Circuit (D.C.) UNT 5: Electric Current Direct-Current Circuit (D.C.) SF07 5. Electric Current, Consider a simple closed circuit consists of wires, a battery a lamp as shown in figure 5.a. F r e E r rea, From the figure,

More information

What is an Electric Current?

What is an Electric Current? Electric Circuits NTODUCTON: Electrical circuits are part of everyday human life. e.g. Electric toasters, electric kettle, electric stoves All electrical devices need electric current to operate. n this

More information

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9,

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, Look over Chapter 26 sections 1-7 Examples 3, 7 Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, 1)How to find a current in a wire. 2)What the Current Density and Draft Speed are. 3)What

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review The resistance R of a device is given by Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 8 R =! L A ρ is resistivity of the material from which the device is constructed L is the

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok 1 Course Progress Introductory level Electrostatic, Coulomb s Law Electric Field, Gauss Law Magnetic field, Maxwell s Equations Current,

More information

Chapter 27: Current and Resistance

Chapter 27: Current and Resistance Chapter 7: Current and esistance In this section of the course we will be studying the flow of electric charge, current, in a circuit. We have already seen electric current when we first discussed electric

More information

Chapter 26 Direct-Current and Circuits. - Resistors in Series and Parallel - Kirchhoff s Rules - Electric Measuring Instruments - R-C Circuits

Chapter 26 Direct-Current and Circuits. - Resistors in Series and Parallel - Kirchhoff s Rules - Electric Measuring Instruments - R-C Circuits Chapter 26 Direct-Current and Circuits - esistors in Series and Parallel - Kirchhoff s ules - Electric Measuring Instruments - -C Circuits . esistors in Series and Parallel esistors in Series: V ax I V

More information

Chapter 25 Current Resistance, and Electromotive Force

Chapter 25 Current Resistance, and Electromotive Force Chapter 25 Current Resistance, and Electromotive Force 1 Current In previous chapters we investigated the properties of charges at rest. In this chapter we want to investigate the properties of charges

More information

Chapter 27: Current & Resistance. HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68

Chapter 27: Current & Resistance. HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68 Chapter 27: Current & Resistance HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68 Positive Charges move from HI to LOW potential. HI V LOW V Negative Charges move from LOW to HI potential.

More information

Note 5: Current and Resistance

Note 5: Current and Resistance Note 5: Current and Resistance In conductors, a large number of conduction electrons carry electricity. If current flows, electrostatics does not apply anymore (it is a dynamic phenomenon) and there can

More information

Chapter 24: Electric Current

Chapter 24: Electric Current Chapter 24: Electric Current Electric current Electric current is a net flow of electric charge. Quantitatively, current is the rate at which charge crosses a given area. I = dq dt dq = q(n AL)=q(n Av

More information

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Electricity. From the word Elektron Greek for amber

Electricity. From the word Elektron Greek for amber Electricity From the word Elektron Greek for amber Electrical systems have two main objectives: To gather, store, process, transport information & Energy To distribute and convert energy Electrical Engineering

More information

PEP 2017 Assignment 12

PEP 2017 Assignment 12 of the filament?.16.. Aductile metal wire has resistance. What will be the resistance of this wire in terms of if it is stretched to three times its original length, assuming that the density and resistivity

More information

EE301 RESISTANCE AND OHM S LAW

EE301 RESISTANCE AND OHM S LAW Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short

More information

Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits Chapter 21 Electric Current and Direct- Current Circuits 1 Overview of Chapter 21 Electric Current and Resistance Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s Rules

More information

Electroscope Used to are transferred to the and Foil becomes and

Electroscope Used to are transferred to the and Foil becomes and Electricity Notes Chapter 17 Section 1: Electric Charge and Forces Electric charge is a variety of independent all with one single name. Electricity is related to, and both (-) and (+) carry a charge.

More information

week 6 chapter 31 Current and Resistance

week 6 chapter 31 Current and Resistance week 6 chapter 31 Current and Resistance Which is the correct way to light the lightbulb with the battery? 4) all are correct 5) none are correct 1) 2) 3) Which is the correct way to light the lightbulb

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3 Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 Summary of last lecture Equipotential surfaces: Surfaces where the potential is the same everywhere, e.g. the

More information

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014 Direct Currents We will now start to consider charges that are moving through a circuit, currents. 1 Direct Current Current usually consists of mobile electrons traveling in conducting materials Direct

More information

Chapter 25: Electric Current

Chapter 25: Electric Current Chapter 25: Electric Current Conductors and Charge Carriers Consider a conducting piece of metal: The valence electrons are weakly bound to the nuclei form a fluidlike sea of electrons that can move through

More information

XII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K.

XII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K. XII PHYSICS LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [CURRENT ELECTRICITY] CHAPTER NO. 13 CURRENT Strength of current in a conductor is defined as, Number of coulombs

More information

Chapter 18 Electric Currents

Chapter 18 Electric Currents Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple

More information

r where the electric constant

r where the electric constant 1.0 ELECTROSTATICS At the end of this topic, students will be able to: 10 1.1 Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, charging

More information

Physics 212 Midterm 2 Form A

Physics 212 Midterm 2 Form A 1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 10-19 C B. 6.4 10-19 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus

More information

11. ELECTRIC CURRENT. Questions and Answers between the forces F e and F c. 3. Write the difference between potential difference and emf. A.

11. ELECTRIC CURRENT. Questions and Answers between the forces F e and F c. 3. Write the difference between potential difference and emf. A. CLSS-10 1. Explain how electron flow causes electric current with Lorentz-Drude theory of electrons?. Drude and Lorentz, proposed that conductors like metals contain a large number of free electrons while

More information

Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapter 25 University Physics (PHY 2326) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm

More information

Physics 202: Lecture 5, Pg 1

Physics 202: Lecture 5, Pg 1 Resistance Resistors Series Parallel Ohm s law Electric Circuits Current Physics 132: Lecture e 15 Elements of Physics II Kirchhoff s laws Agenda for Today Physics 202: Lecture 5, Pg 1 Electric Current

More information

Chapter 27 Current and resistance

Chapter 27 Current and resistance 27.1 Electric Current Chapter 27 Current and resistance 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.6 Electrical Power 2 27.1 Electric Current Consider a system

More information

Current and Resistance. February 12, 2014 Physics for Scientists & Engineers 2, Chapter 25 1

Current and Resistance. February 12, 2014 Physics for Scientists & Engineers 2, Chapter 25 1 Current and Resistance February 12, 2014 Physics for Scientists & Engineers 2, Chapter 25 1 Helproom hours! Strosacker learning center, BPS 1248! Mo: 10am noon, 1pm 9pm! Tue: noon 6pm! We: noon 2pm! Th:

More information

CURRENT ELECTRICITY MARKS WEIGHTAGE 7 marks

CURRENT ELECTRICITY MARKS WEIGHTAGE 7 marks CURRENT ELECTRICITY MARKS WEIGHTAGE 7 marks QUICK REVISION (Important Concepts & Formulas) Electric current The current is defined as the rate of flow of charges across any cross sectional area of a conductor.

More information

EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

More information

Resistivity and Temperature Coefficients (at 20 C)

Resistivity and Temperature Coefficients (at 20 C) Homework # 4 Resistivity and Temperature Coefficients (at 0 C) Substance Resistivity, Temperature ( m) Coefficient, (C ) - Conductors Silver.59 x 0-0.006 Copper.6 x 0-0.006 Aluminum.65 x 0-0.0049 Tungsten

More information

Direct Current (DC) Circuits

Direct Current (DC) Circuits Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

More information

Current. source charges. test charg. 1. Charges in motion

Current. source charges. test charg. 1. Charges in motion Current 1. Charges in motion 1. Cause of motion 2. Where is it going? 3. Let's keep this going. 2. Current 1. Flow of particles in pipes. 2. A constant problem 3. Conservation Laws 4. Microscopic motion

More information

Chapter 26 Direct-Current Circuits

Chapter 26 Direct-Current Circuits Chapter 26 Direct-Current Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell.

Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell. Experiment I: Electromotive force and internal resistance Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell. Experimental tools and materials:

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

Electricity & Magnetism

Electricity & Magnetism Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams

More information

In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY.

In this unit, we will examine the movement of electrons, which we call CURRENT ELECTRICITY. Recall: Chemistry and the Atom! What are the 3 subatomic Where are they found in the particles? atom? What electric charges do they have? How was a positive ion created? How was a negative ion created?

More information

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance 25-4 Resistivity Example 25-5: Speaker wires. Suppose you want to connect your stereo to remote speakers. (a) If each wire must be 20 m long, what diameter copper

More information

Course Updates.

Course Updates. Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html Notes for today: 1) Chapter 26 this week (DC, C circuits) 2) Assignment 6 (Mastering Physics) online and separate, written

More information

Let s go to something more concrete

Let s go to something more concrete Let s go to something more concrete Let me define an electric current Whenever charges of like sign are moving, an electric current exists Suppose I have a surface A with charges (assume + because of Franklin

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII PHYSICS ASSIGNMENT ES/CE/MAG Class XII MM : 70 1. What is dielectric strength of a medium? Give its value for vacuum. 1 2. What is the physical importance of the line integral of an electrostatic field?

More information