# XII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K.

Size: px
Start display at page:

Download "XII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K."

Transcription

1 XII PHYSICS LECTURER PHYSICS, AKHSS, K [CURRENT ELECTRICITY] CHAPTER NO. 13

2 CURRENT Strength of current in a conductor is defined as, Number of coulombs of charge which pass any section of the conductor in one second. Mathematically, I = q t Unit, Its S.I. unit is Ampere (A) = Coulomb/second. Direction of Current The direction of current is taken from positive to negative terminal of a battery. Since the amount of negative charges that flows in one direction is the same as one can think the positive charges that flows in opposite direction. Therefore, the direction of electric current is taken from positive to negative terminal and called as conventional current. OHM S LAW Statement, If physical state and temperature of the conductor remains constant then current passing through the conductor is directly proportional to the potential difference applied across the conductor Mathematical Form, Consider a conductor in which current I is passes due to some potential difference V applied across the conductor then according to the law, I V I = KV where K is called conductance of a conductor which is inversely proportional to the resistance of the conductor, therefore, we may write K = 1 R Hence, above equation can be written as, Or, I = 1 R V V = IR Limitation of the Law: Ohm s law valid if the resistance of the conductor doesn t change. Since resistance depends upon temperature i.e. with the increase in temperature resistance increases and vice versa. From the graph Ohm s law is verified up to a certain range of voltage but after that the temperature of conductor no more remains constant and thus Ohm s law is not verified, and curve is obtained instead of straight line.

3 RESISTANCE The opposition in the flow of current is called resistance Resistance in a conductor is due to collisions of electron with the vibrating atoms of the conductor. If the temperature of the conductor increases, then the amplitude of vibration of atoms increases which results in increment of resistance. The S.I. unit of resistance is Ohm (Ω) RESISTIVITY The resistance of a conductor in unit area of cross section per unit length is called resistivity. Mathematical form, Consider a conductor of length L cross sectional area A and resistance R then it is experimentally proved that resistance of the material depends on the following factors. Resistance of a material is directly proportional to the length of conductor. R L Resistance of a material is inversely proportional to the area of conductor. R 1 A It also depends upon the nature of conductor, Combining both we get, R L A R = ρl A where ρ represents the resistivity of the conductor. Unit, The S.I. unit of resistivity is Ωm EFFECT OF TEMPERATURE ON RESISTANCE As resistance also depends upon temperature such that the resistance of a conductor increases as temperature increases. Due to which resistivity also changes with the temperature. Consider a conductor whose resistance is R 0 at 0 o C, if the temperature rises to T o C then resistance changes to R T. It is experimentally proved that change in resistance is directly proportional to the change in temperature, R T Also, it also depends upon the initial resistance, R R o Combining both, we get R R o T

4 R = (constant)r o T R = αr O T where α is called is temperature coefficient of resistivity. R T R o = αr o T R T = R o + αr o T R T = R o (1 + α T) But as we know that R = ρl A therefore, we may substitute it accordingly L ρ T A = ρ L (1 + α T) A ρ T = ρ(1 + α T) where, ρ T and ρ are resistivity of the material at T o C and at 0 o C respectively. Temperature Co-efficient of Resistivity: The fractional change in resistivity per degree rise in temperature is called temperature Its S.I. unit is K 1. coefficient of resistivity α = ρ ρ o T COMBINATION OF RESISTORS PARALLEL COMBINATON: The combination of resistors in which they have multiple paths for the flow of current is called parallel combination. Equivalent Resistance: Consider n Resistors having resistance R1, R Rn are connected to a battery of potential difference V in parallel combination. Since all resistors are directly joint to the battery, therefore their voltage will be equal to the voltage of the battery. V 1 = V 2 = V 3 = = Vn = V Different magnitude of current pass through each resistor according to its resistance and their sum gives the total current, If I1, I2, I In are the currents flowing through different resistors then we can write, I = I 1 + I I n But according to Ohm s law I = V/R hence, V R = V R 1 + V R V R n

5 V R = V ( 1 R R 2 ± 1 R n ) 1 R = 1 R R 2 ± 1 R n Result: This equation shows that the equivalent resistance would decrease. Series Combination The combination of resistors in which they have one path for the flow of current is called parallel combination. Equivalent Resistance: Consider n resistors having resistances R1, R2, --- Rn are connected to a battery of potential difference V in series combination. Since all the resistors are joint in a row to the battery, therefore their current will be same. I 1 = I 2 = I 3 = = I n = I Different potential differences appear across each resistor according to its resistance and their sum gives the total potential difference of the battery then we can write, V = V 1 + V 2 ± V n But V = IR, therefore, IR = IR 1 + IR IR n IR = I(R 1 + R R n ) R = R 1 + R R n Result: The equation shows that the equivalent resistance would increase. INTERNAL RESISTANCE When current passes through a source of potential difference such as battery then it experiences some opposition within the source and this opposition in the flow of current is called internal resistance. ELECTROMOTIVE FORCE (E.M.F.) Electromotive force is the potential difference appears across the two terminals of a source when there is no current passing through it or its internal resistance is zero. When current passes through a circuit of any resistance, electron losses their energy in the resistance and for continuous flow of the current there requires a source of energy which supplies energy to the electrons and this source is called electromotive force.

6 Mathematical Form: Let a resistor R is connected to a source of E.M.F. ξ like a battery. When the circuit is switched on then current I passes through the resistor due to potential difference across the resistor. When this current pass through the battery then due to internal resistance r of the source some potential drops across it and remaining potential appears at the two terminals of the load, hence E.M.F. of the source divided into two parts which can be written as, ξ = V + V r where, V is the potential appeared at the load and V r is the potential drop due to internal resistance of the source. Or we may write, ξ = IR + Ir Terminal Voltage The potential difference appears at the tow terminals of a source in the presence of internal resistance and a current passing through it, is called terminal voltage. To find an equation for terminal voltage we may consider above equation, ξ = V + V r V = ξ V r V = ξ Ir Charging a Battery: While charging a battery, the potential applied across the battery must compensate the loss due to internal resistance of the battery, therefore the above equation for charging a battery can be written as, V = ξ + Ir POWER DISSIPATION IN RESISTORS When a resistor R is connected to battery then a potential difference appears at the two ends or the resistor causing a current I in the circuit. As the moving electrons pass through the resistor they collide with the atoms and heat is produced due to the loss of kinetic energy of the moving electron. Battery does work on the electrons to overcome this loss by its potential difference, thus the energy dissipated by the moving electron can be written as, W = qv and power dissipated as heat is, P = W t P = qv t

7 P = IV Using Ohm s law V = IR, we can substitute V with IR, we get, P = I(IR) P = I 2 R Also, again using Ohm s law we can substitute I with V/R, we get P = ( V R ) V As we know that, P = V2 R ELECTRICAL ENERGY IN A CIRCUIT P = W t Or, W = Pt we may write P = VI, W = VIt The work is done as due to electrical energy therefore, Electrical Energy = VIt

CURRENT ELECTRICITY CHAPTER 13 CURRENT ELECTRICITY Qs. Define Charge and Current. CHARGE Definition Flow of electron is known as Charge. It is denoted by Q. Unit Its unit is Coulomb. 1 Coulomb = 10(-6)

### 3 Electric current, resistance, energy and power

3 3.1 Introduction Having looked at static charges, we will now look at moving charges in the form of electric current. We will examine how current passes through conductors and the nature of resistance

### 6. In a dry cell electrical energy is obtained due to the conversion of:

1. If a wire of uniform area of cross section is cut into two halves (equal in size), the resistivity of each part will be: a) Halved. b) Doubled. c) Becomes four times its initial value. d) Remains the

### CHAPTER 1 ELECTRICITY

CHAPTER 1 ELECTRICITY Electric Current: The amount of charge flowing through a particular area in unit time. In other words, it is the rate of flow of electric charges. Electric Circuit: Electric circuit

### Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When

### Version 001 CIRCUITS holland (1290) 1

Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

### Physics for Scientists & Engineers 2

Review The resistance R of a device is given by Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 8 R =! L A ρ is resistivity of the material from which the device is constructed L is the

### Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9,

Look over Chapter 26 sections 1-7 Examples 3, 7 Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, 1)How to find a current in a wire. 2)What the Current Density and Draft Speed are. 3)What

### Current and Resistance

Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 2-1 Electric current 2-2

### Chapter 25 Current, Resistance, and Electromotive Force

Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity

### Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

### Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Electricity

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Electricity ELECTRIC NATURE OF MATTER: The electric nature of matter means the ability of a matter to produce charge on it. The addition

### AP Physics C - E & M

Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

### and in a simple circuit Part 2

Current, Resistance, and Voltage in a simple circuit Part 2 Electric Current Whenever electric charges of like signs move, an electric current is said to exist. Look at the charges flowing perpendicularly

### 1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric

### Lecture #3. Review: Power

Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

### ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,

### Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that produces and store electric charges at high voltage

### Chapter 33 - Electric Fields and Potential. Chapter 34 - Electric Current

Chapter 33 - Electric Fields and Potential Chapter 34 - Electric Current Electric Force acts through a field An electric field surrounds every electric charge. It exerts a force that causes electric charges

### Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving

### Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 Summary of last lecture Equipotential surfaces: Surfaces where the potential is the same everywhere, e.g. the

### CLASS X- ELECTRICITY

Conductor- Insulator: Materia Materials through which electric current cannot pass are called insulators. Electric Circuit: A continuous a CLASS X- ELECTRICITY als through which electric current can pass

### In the following information, you will study these three physical quantities as they relate to simple electrical circuits.

Module 7 Ohm's Law INTRODUCTION In this experiment, you will study Ohm's Law, the most fundamental relation used in the analysis of electrical circuits. Ohm's Law relates the quantities of voltage, electric

### What does it mean for an object to be charged? What are charges? What is an atom?

What does it mean for an object to be charged? What are charges? What is an atom? What are the components of an atom? Define the following: Electric Conductor Electric Insulator Define the following: Electric

### Class 8. Resistivity and Resistance Circuits. Physics 106. Winter Press CTRL-L to view as a slide show. Class 8. Physics 106.

and Circuits and Winter 2018 Press CTRL-L to view as a slide show. Last time we learned about Capacitance Problems Parallel-Plate Capacitors Capacitors in Circuits Current Ohm s Law and Today we will learn

### DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEL PHYSCS THE BADDEST CLASS ON CAMPUS B PHYSCS TSOKOS LESSON 5-4: ELECTRC CURRENT AND ELECTRC RESSTANCE Reading Activity Questions? Objectives By the end of this class you should be able to: Q State the

### Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits 1 Overview of Chapter 21 Electric Current and Resistance Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s Rules

### Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

### Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Conductors under dynamic conditions Current, current density, drift velocity Ohm s law Types of conductor

### (b) State the relation between work, charge and potential difference for an electric circuit.

Question Bank on Ch-Electricity 1. (a) Define the S.I unit of potential difference. (b) State the relation between work, charge and potential difference for an electric circuit. Calculate the potential

### 52 VOLTAGE, CURRENT, RESISTANCE, AND POWER

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage

### Chapter 25 Current Resistance, and Electromotive Force

Chapter 25 Current Resistance, and Electromotive Force 1 Current In previous chapters we investigated the properties of charges at rest. In this chapter we want to investigate the properties of charges

### Which of the following is the SI unit of gravitational field strength?

T5-2 [122 marks] 1. A cell is connected in series with a 2.0Ω resistor and a switch. The voltmeter is connected across the cell and reads 12V when the switch is open and 8.0V when the switch is closed.

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 9 Electrodynamics Electric current temperature variation of resistance electrical energy and power http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 17-18 1 Department

### ELECTRIC CIRCUITS. Checklist. Exam Questions

ELECTRIC CIRCUITS Checklist Make sure you can. State Ohm's law in words. Determine relationship between current, potential difference and resistance at constant temperature using a simple circuit Draw,

### Question 3: How is the electric potential difference between the two points defined? State its S.I. unit.

EXERCISE (8 A) Question : Define the term current and state its S.I unit. Solution : Current is defined as the rate of flow of charge. I = Q/t Its S.I. unit is Ampere. Question 2: Define the term electric

### Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply

Current The current, which is Coulomb s per second, is simply I = ei e = en e Av d e is the charge is the electron! ne is the density of electrons! A is the cross sectional area of the wire! vd is the

### Chapter 3: Electric Current and Direct-Current Circuit

Chapter 3: Electric Current and Direct-Current Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Direct-current is current that flows

### Current. Lecture 10. Chapter Physics II. Course website:

Lecture 10 Chapter 30 Physics II Current Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii 95.144 Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html A Model

### Applied Natural Sciences

Het basisvak Toegepaste Natuurwetenschappen http://www.phys.tue.nl/nfcmr/natuur/collegenatuur.html Applied Natural Sciences Leo Pel e mail: 3nab0@tue.nl http://tiny.cc/3nab0 Bijles Email: p.j.neuraij@tue.nl

### RESISTANCE AND NETWORKS

PURPOSE The purpose of this laboratory is to learn to construct simple circuits; and, to become familiar with the use of power supplies and the digital multimeter. to experimentally find the equivalent

### Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and non-ohmic conductors Series and parallel connection Energy in an electric circuit X-planation 1. CONDUCTORS AND INSULATORS

### 9/22/16 ANNOUNCEMENT ANNOUNCEMENT FINAL EXAM

ANNOUNCEMENT Exam 1: Tuesday September 27, 2016, 8 PM 10 PM Location: Elliot Hall of Music Covers all readings, lectures, homework from Chapters 21 through 23 Multiple choice (1518 questions) Practice

### Figure 1. In the following information, you will study these three physical quantities as they relate to simple electrical circuits.

Module 7 Ohm s Law INTRODUCTION In this experiment, you will study Ohm s Law, the most fundamental relation used in the analysis of electrical circuits. Ohm s Law relates the quantities of voltage, electric

### What are the two types of current? The two types of current are direct current and alternating current.

Electric Current What are the two types of current? The two types of current are direct current and alternating current. Electric Current The continuous flow of electric charge is an electric current.

Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

### Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q

### Electricity. dronstudy.com

Electricity Electricity is a basic part of our nature and it is one of our most widely used forms of energy. We use electricity virtually every minute of every day for example in lighting, heating, refrigeration,

### Physics 202: Lecture 5, Pg 1

Resistance Resistors Series Parallel Ohm s law Electric Circuits Current Physics 132: Lecture e 15 Elements of Physics II Kirchhoff s laws Agenda for Today Physics 202: Lecture 5, Pg 1 Electric Current

### Chapter 18. Direct Current Circuits

Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating

### Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that... and... at high voltage on its dome. dome 2. You

### Chapter 27 Current and resistance

27.1 Electric Current Chapter 27 Current and resistance 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.6 Electrical Power 2 27.1 Electric Current Consider a system

### Physics 212 Midterm 2 Form A

1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 10-19 C B. 6.4 10-19 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus

### Current and Resistance. February 12, 2014 Physics for Scientists & Engineers 2, Chapter 25 1

Current and Resistance February 12, 2014 Physics for Scientists & Engineers 2, Chapter 25 1 Helproom hours! Strosacker learning center, BPS 1248! Mo: 10am noon, 1pm 9pm! Tue: noon 6pm! We: noon 2pm! Th:

### ELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page

ELECTRICITY 1. Name a device that helps to maintain a potential difference across a conductor. Cell or battery 2. Define 1 volt. Express it in terms of SI unit of work and charge calculate the amount of

### EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

### Series & Parallel Resistors 3/17/2015 1

Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both

### Notes on Electricity (Circuits)

A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

### Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II In today s lecture, we will learn to: Calculate the resistance of a conductor depending on the material and shape Apply

### Ohm's Law and Resistance

Ohm's Law and Resistance Resistance Resistance is the property of a component which restricts the flow of electric current. Energy is used up as the voltage across the component drives the current through

### Algebra Based Physics

Page 1 of 105 Algebra Based Physics Electric Current & DC Circuits 2015-10-06 www.njctl.org Page 2 of 105 Electric Current & DC Circuits Circuits Conductors Resistivity and Resistance Circuit Diagrams

### Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

### PhysicsAndMathsTutor.com 1

M. (a) (i) (use of V = IR) R total = (ohm) V = =.0 V (use of V = IR) R = 9.0/.0 = 9.0 Ω r = 9.0.0 6.0 =.0 Ω or use of (E = I(R + r)) 9.0 = (7 + r) r = 9.0 7.0 =.0 Ω (iii) (use of W = Vlt) W = 9.0.0 5 60

### Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell.

Experiment I: Electromotive force and internal resistance Experiment Aim: Students will describe the magnitude of resistance and define the EMF (electromotive force) of a cell. Experimental tools and materials:

### 1. What is heating effect of current? What is its cause?

GRADE: X PHYSICS (ELECTRICITY) DOMESTIC ELECTRIC CIRCUITS: SERIES OR PARALLEL Disadvantages of series circuits for domestic wiring : In series circuit, if one electrical appliance stops working, due to

### A Review of Circuitry

1 A Review of Circuitry There is an attractive force between a positive and a negative charge. In order to separate these charges, a force at least equal to the attractive force must be applied to one

### Handout 5: Current and resistance. Electric current and current density

1 Handout 5: Current and resistance Electric current and current density Figure 1 shows a flow of positive charge. Electric current is caused by the flow of electric charge and is defined to be equal to

### SPS Presents: A Cosmic Lunch!

SPS Presents: A Cosmic Lunch! Who: Dr. Brown will be speaking about Evolution of the Elements: from Periodic table to Standard Model and Beyond! When: October 7 th at am Where: CP 79 (by the front office)

### CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING

PHYSICS A2 UNIT 4 SECTION 3: CAPACITANCE CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING # Question CAPACITORS 1 What is current? Current is the rate of flow of charge in a circuit

### DC circuits, Kirchhoff s Laws

DC circuits, Kirchhoff s Laws Alternating Current (AC), Direct Current (DC) DC Circuits Resistors Kirchhoff s Laws CHM6158C - Lecture 2 1 Electric current Movement of electrons in a conductor Examples

### Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)

Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which

### Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

### This week. 3/23/2017 Physics 214 Summer

This week Electrical Circuits Series or parallel that s the question. Current, Power and Energy Why does my laptop battery die? Transmission of power to your home Why do we have big transmission towers?

### This week. 6/2/2015 Physics 214 Summer

This week Electrical Circuits Series or parallel that s the question. Current, Power and Energy Why does my laptop battery die? Transmission of power to your home Why do we have big transmission towers?

### CHAPTER INTRODUCTION TO ELECTRIC CIRCUITS. C h a p t e r INTRODUCTION

C h a p t e r CHAPTE NTODUCTON TO ELECTC CCUTS.0 NTODUCTON This chapter is explaining about the basic principle of electric circuits and its connections. The learning outcome for this chapter are the students

### r where the electric constant

1.0 ELECTROSTATICS At the end of this topic, students will be able to: 10 1.1 Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, charging

### PHY102 Electricity Course Summary

TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

### Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power

### Notes on Electricity (Circuits)

A circuit is defined to be a collection of energy-givers (active elements) and energy-takers (passive elements) that form a closed path (or complete path) through which electrical current can flow. The

### An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path?

T5-1 [237 marks] 1. A circuit is formed by connecting a resistor between the terminals of a battery of electromotive force (emf) 6 V. The battery has internal resistance. Which statement is correct when

### Chapter 21 Electric Current and Circuits

Chapter 21 Electric Current and Circuits 1 As an introduction to this chapter you should view the following movie. If you cannot click on the link, then copy it and paste it into your web browser. http://www.ionaphysics.org/movies/vir.mp4

### Ohms Law. V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω)

Ohms Law V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω) Current How would you define it? Current the movement of electric charge through a medium

### Topic 5.2 Heating Effect of Electric Currents

Topic 5.2 Heating Effect of Electric Currents Kari Eloranta 2017 Jyväskylän Lyseon lukio International Baccalaureate February 14, 2017 Topic 5.2 Heating Effect of Electric Currents In subtopic 5.2 we study

### Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making

### A) Know that electric current is the rate of flow of charge 1 What is current?

PHYSICS AS UNIT 1 SECTION 3: CURRENT ELECTRiCiTY Question Answer A) Know that electric current is the rate of flow of charge 1 What is current? The rate of flow of charge Measured in amps (A) Symbol is

### Monday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example

Monday July 14 Lecture 5 Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example Lecture 6 Currents and esistance Lecture 9 Circuits Wear Microphone 1 3 Lecture 6 Current and

### Electric Currents. Resistors (Chapters 27-28)

Electric Currents. Resistors (Chapters 27-28) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power

### ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS. SEMESTER 2 July 2012

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 July 2012 COURSE NAME: PHYSICS 2 CODE: GROUP: ADET 1 DATE: July 4, 2012 TIME: DURATION: 1:00 pm 2 HOUR INSTRUCTIONS: 1. This paper

### Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

### Chapter 18 Electric Currents

Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple

### Electric Currents and Circuits

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 19 Electric Currents and Circuits Marilyn Akins, PhD Broome Community College Electric Circuits The motion of charges leads to the idea of

### Resistance Learning Outcomes

Resistance Learning Outcomes Define resistance and give its unit. Solve problems about resistance. State Ohm s Law. HL: Derive the formulas for resistors in series and parallel. Solve problems about resistors

### Continuous flow of electric charges. Current Electricity

Continuous flow of electric charges Current Electricity Did You Know? The voltage across a muscle cell in your body is about 70 millivolts. A millivolt (mv) is one thousandth of a volt. AC and DC DC Direct

### Unit 2 Electrical Quantities and Ohm s Law

Electrical Quantities and Ohm s Law Objectives: Define a coulomb. Define an ampere. Define a volt. Define an ohm. Define a watt. Objectives: Compute electrical values using Ohm s law. Discuss basic types

### BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Introduction Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang Introduction BFF1303 ELECTRICAL/ELECTRONICS

### Exam 3--PHYS 102--S14

Name: Exam 3--PHYS 102--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these statements is always true? a. resistors in parallel have the

### Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance

Higher Physics Electricity Summary Notes Monitoring and measuring a.c. Current, potential difference, power and resistance Electrical sources and internal resistance Capacitors Conductors, semiconductors

### Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014

Direct Currents We will now start to consider charges that are moving through a circuit, currents. 1 Direct Current Current usually consists of mobile electrons traveling in conducting materials Direct