# Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final

Size: px
Start display at page:

Download "Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final"

Transcription

1 Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge flows through this surface Look at the charges flowing perpendicularly to a surface of area A Q I t The SI unit of current is Ampere (A) A = C/s Electric Current, cont The direction of the current is the direction positive charge would flow This is known as conventional current direction In a common conductor, such as copper, the current is due to the motion of the negatively charged electrons It is common to refer to a moving charge as a mobile charge carrier A charge carrier can be positive or negative Was decided before it was realized that electrons are negatively charged Current and Drift Speed Charged particles move through a conductor of cross-sectional area A n is the number of charge carriers per unit volume n A Δx is the total number of charge carriers Current and Drift Speed, cont The total charge is the number of carriers times the charge per carrier, q ΔQ total = (n (volume)) q carrier = (n A cross sectional Δx) q The drift speed, v d, is the speed at which the carriers move v d = Δx/ Δt ewritten: ΔQ = (n A v d Δt) q Finally, current, I = ΔQ/Δt = nq c v d A cs Current and Drift Speed, final If the conductor is isolated, the electrons undergo random motion When an electric field is set up in the conductor, it creates an electric force on the electrons and hence a current

2 Charge Carrier Motion in a Conductor The zig-zag black line represents the motion of charge carrier in a conductor The net drift speed is small The sharp changes in direction are due to collisions The net motion of electrons is opposite the direction of the electric field Electrons in a Circuit The drift speed is much smaller than the average speed between collisions When a circuit is completed, the electric field (NOT THE ELECTON) travels with a speed close to the speed of light Although the drift speed is on the order of 0-4 m/s the effect of the electric field is felt on the order of 0 8 m/s 2- Electric Current A battery uses chemical reactions to produce a potential difference between its terminals. It causes current to flow through the flashlight bulb similar to the way the person lifting the water causes the water to flow through the paddle wheel. 2- Electric Current A battery that is disconnected from any circuit has an electric potential difference between its terminals that is called the electromotive force or emf: emember despite its name, the emf is an electric potential, not a force. The amount of work it takes to move a charge ΔQ from one terminal to the other is: esistance In a conductor, the voltage applied across the ends of the conductor is proportional to the current through the conductor The constant of proportionality is the resistance of the conductor esistance, cont Units of resistance are ohms (Ω) Ω = V / A esistance in a circuit arises due to collisions between the electrons carrying the current with the fixed atoms inside the conductor V I 2

3 Georg Simon Ohm Formulated the concept of resistance Discovered the proportionality between current and voltages Ohm s Law Experiments show that for many materials, including most metals, the resistance remains constant over a wide range of applied voltages or currents This statement has become known as Ohm s Law ΔV = I Ohm s Law is an empirical relationship that is valid only for certain materials Materials that obey Ohm s Law are said to be ohmic Ohm s Law, cont An ohmic device The resistance is constant over a wide range of voltages The relationship between current and voltage is linear The slope is related to the resistance Ohm s Law, final Non-ohmic materials are those whose resistance changes with voltage or current The current-voltage relationship is nonlinear A diode is a common example of a non-ohmic device esistivity The resistance of an ohmic conductor is proportional to its length, L, and inversely proportional to its cross-sectional area, A L A ρ is the constant of proportionality and is called the resistivity of the material 2-2 esistance and Ohm s Law The difference between insulators, semiconductors, and conductors can be clearly seen in their resistivities: 3

4 Temperature Variation of esistivity For most metals, resistivity increases with increasing temperature With a higher temperature, the metal s constituent atoms vibrate with increasing amplitude The electrons find it more difficult to pass through the atoms Temperature Variation of esistance Since the resistance of a conductor with uniform cross sectional area is proportional to the resistivity, you can find the effect of temperature on resistance o [ (T T o )] Temperature Variation of esistivity, cont For most metals, resistivity increases approximately linearly with temperature over a limited temperature range o [ (T To )] ρ is the resistivity at some temperature T ρ o is the resistivity at some reference temperature T o T o is usually taken to be 20 C is the temperature coefficient of resistivity 2-2 esistance and Ohm s Law In general, the resistance of materials goes up as the temperature goes up, due to thermal effects. This property can be used in thermometers. esistivity decreases as the temperature decreases, but there is a certain class of materials called superconductors in which the resistivity drops suddenly to zero at a finite temperature, called the critical temperature T C. Electrical Energy and Power Superconductors will be discussed in AP Physics 2 In a circuit, as a charge moves through the battery, the electrical potential energy of the system is increased by ΔQΔV The chemical potential energy of the battery decreases by the same amount As the charge moves through a resistor, it loses this potential energy during collisions with atoms in the resistor The temperature of the resistor will increase 4

5 2-3 Energy and Power in Electric Circuits When a charge moves across a potential difference, its potential energy changes: Therefore, the power it takes to do this is Energy Transfer in the Circuit Consider the circuit shown Imagine a quantity of positive charge, Q, moving around the circuit from point A back to point A Energy Transfer in the Circuit, cont Point A is the reference point It is grounded and its potential is taken to be zero As the charge moves through the battery from A to B, the potential energy of the system increases by Q V The chemical energy of the battery decreases by the same amount Energy Transfer in the Circuit, final As the charge moves through the resistor, from C to D, it loses energy in collisions with the atoms of the resistor The energy is transferred to internal energy When the charge returns to A, the net result is that some chemical energy of the battery has been delivered to the resistor and caused its temperature to rise Electrical Energy and Power, cont The rate at which the energy is lost is the power Q V I V t From Ohm s Law, alternate forms of power are 2-3 Energy and Power in Electric Circuits When the electric company sends you a bill, your usage is quoted in kilowatt-hours (kwh). They are charging you for energy use, and kwh are a measure of energy. 2 V I 2 5

6 Electrical Energy and Power, final The SI unit of power is Watt (W) I must be in Amperes, in ohms and V in Volts The unit of energy used by electric companies is the kilowatt-hour This is defined in terms of the unit of power and the amount of time it is supplied kwh = 3.60 x 0 6 J Electrical Activity in the Heart Will Be Discussed in AP Physics 2 Meters in a Circuit Ammeter 2-8 Ammeters An ammeter is a device for measuring current, and a voltmeter measures voltages. The current in the circuit must flow through the ammeter; therefore the ammeter should have as low a resistance as possible, for the least disturbance. An ammeter is used to measure current In line with the bulb, all the charge passing through the bulb also must pass through the meter Meters in a Circuit Voltmeter 2-8 Voltmeters A voltmeter measures the potential drop between two points in a circuit. It therefore is connected in parallel; in order to minimize the effect on the circuit, it should have as large a resistance as possible. A voltmeter is used to measure voltage (potential difference) Connects to the two ends of the bulb 6

7 More Detailed EMF Will be Discussed in AP Physics 2 esistors in Series When two or more resistors are connected end-to-end, they are said to be in series They can be replaced by a single equivalent resistance without changing the current in the circuit. The current is the same in all resistors because any charge that flows through one resistor flows through the other The sum of the potential differences across the resistors is equal to the total potential difference across the combination esistors in Series, cont Potentials add ΔV = I + I 2 = I ( + 2 ) Consequence of Conservation of Energy The equivalent resistance has the effect on the circuit as the original combination of resistors Equivalent esistance Series eq = The equivalent resistance of a series combination of resistors is the algebraic sum of the individual resistances and is always greater than any of the individual resistors Equivalent esistance Series: An Example Four resistors are replaced with their equivalent resistance esistors in Parallel The potential difference across each resistor is the same because each is connected directly across the battery terminals esistors are in parallel when they are across the same potential difference; they can again be replaced by a single equivalent resistance: The current, I, that enters a point must be equal to the total current leaving that point I = I + I 2 The currents are generally not the same Consequence of Conservation of Charge 7

8 Equivalent esistance Parallel, Example Equivalent resistance replaces the two original resistances Household circuits are wired so the electrical devices are connected in parallel Circuit breakers may be used in series with other circuit elements for safety purposes Equivalent esistance Parallel Equivalent esistance eq 2 3 The inverse of the equivalent resistance of two or more resistors connected in parallel is the algebraic sum of the inverses of the individual resistance The equivalent is always less than the smallest resistor in the group ules to emember Combine all resistors in series They carry the same current The potential differences across them are not the same The resistors add directly to give the equivalent resistance of the series combination: eq = ules to emember Combine all resistors in parallel The potential differences across them are the same The currents through them are not the same The equivalent resistance of a parallel combination is found through reciprocal addition: eq esistors in Series and Parallel If a circuit is more complex, start with combinations of resistors that are either purely in series or in parallel. eplace these with their equivalent resistances; as you go on you will be able to replace more and more of them. Equivalent esistance Complex Circuit 8

9 Gustav Kirchhoff Invented spectroscopy with obert Bunsen Formulated rules about radiation 2-5 Kirchhoff s ules More complex circuits cannot be broken down into series and parallel pieces. For these circuits, Kirchhoff s rules are useful. The junction rule is a consequence of charge conservation; the loop rule is a consequence of energy conservation. Statement of Kirchhoff s ules Junction ule The sum of the currents entering any junction must equal the sum of the currents leaving that junction A statement of Conservation of Charge Loop ule The sum of the potential differences across all the elements around any closed circuit loop must be zero A statement of Conservation of Energy More About the Junction ule I = I 2 + I 3 From Conservation of Charge Diagram b shows a mechanical analog Setting Up Kirchhoff s ules Assign symbols and directions to the currents in all branches of the circuit If a direction is chosen incorrectly, the resulting answer will be negative, but the magnitude will be correct When applying the loop rule, choose a direction for transversing the loop ecord voltage drops and rises as they occur More About the Loop ule Traveling around the loop from a to b In a, the resistor is transversed in the direction of the current, the potential across the resistor is I In b, the resistor is transversed in the direction opposite of the current, the potential across the resistor is +I 9

10 Loop ule, final In c, the source of emf is transversed in the direction of the emf (from to +), the change in the electric potential is +ε In d, the source of emf is transversed in the direction opposite of the emf (from + to -), the change in the electric potential is -ε Junction Equations from Kirchhoff s ules Use the junction rule as often as needed, so long as, each time you write an equation, you include in it a current that has not been used in a previous junction rule equation In general, the number of times the junction rule can be used is one fewer than the number of junction points in the circuit Loop Equations from Kirchhoff s ules The loop rule can be used as often as needed so long as a new circuit element (resistor or battery) or a new current appears in each new equation You need as many independent equations as you have unknowns Circuits Containing Capacitors Will Be Discussed in AP Physics 2 0

### Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

### Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power

### Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q

### Chapter 18. Direct Current Circuits

Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating

### Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits 1 Overview of Chapter 21 Electric Current and Resistance Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s Rules

### Chapter 17. Current and Resistance

Chapter 17 Current and Resistance Electric Current The current is the rate at which the charge flows through a surface Look at the charges flowing perpendicularly through a surface of area A I av The SI

### Chapter 17 Current and Resistance

Chapter 17 Current and Resistance Current Practical applications were based on static electricity. A steady source of electric current allowed scientists to learn how to control the flow of electric charges

### and in a simple circuit Part 2

Current, Resistance, and Voltage in a simple circuit Part 2 Electric Current Whenever electric charges of like signs move, an electric current is said to exist. Look at the charges flowing perpendicularly

### Current and Resistance

Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 2-1 Electric current 2-2

### What is an Electric Current?

Electric Circuits NTODUCTON: Electrical circuits are part of everyday human life. e.g. Electric toasters, electric kettle, electric stoves All electrical devices need electric current to operate. n this

### Chapter 27. Current And Resistance

Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

### Chapter 20 Electric Circuits

Chapter 0 Electric Circuits Chevy olt --- Electric vehicle of the future Goals for Chapter 9 To understand the concept of current. To study resistance and Ohm s Law. To observe examples of electromotive

### Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s

### Chapter 27. Current and Resistance

Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new

### Chapter 27. Current And Resistance

Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

### Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When

### Electric Currents and Circuits

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 19 Electric Currents and Circuits Marilyn Akins, PhD Broome Community College Electric Circuits The motion of charges leads to the idea of

Superconductors A class of materials and compounds whose resistances fall to virtually zero below a certain temperature, T C T C is called the critical temperature The graph is the same as a normal metal

### Electric Currents. Resistors (Chapters 27-28)

Electric Currents. Resistors (Chapters 27-28) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power

### Class 8. Resistivity and Resistance Circuits. Physics 106. Winter Press CTRL-L to view as a slide show. Class 8. Physics 106.

and Circuits and Winter 2018 Press CTRL-L to view as a slide show. Last time we learned about Capacitance Problems Parallel-Plate Capacitors Capacitors in Circuits Current Ohm s Law and Today we will learn

### Chapter 27. Current and Resistance

Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new

### Chapter 28. Direct Current Circuits

Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

### Chapter 28. Direct Current Circuits

Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

### Chapter 3: Electric Current and Direct-Current Circuit

Chapter 3: Electric Current and Direct-Current Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Direct-current is current that flows

### Chapter 27 Current and resistance

27.1 Electric Current Chapter 27 Current and resistance 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.6 Electrical Power 2 27.1 Electric Current Consider a system

### Chapter 18 Electric Currents

Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple

### Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

### Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)

Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which

### Topic 5.2 Heating Effect of Electric Currents

Topic 5.2 Heating Effect of Electric Currents Kari Eloranta 2017 Jyväskylän Lyseon lukio International Baccalaureate February 14, 2017 Topic 5.2 Heating Effect of Electric Currents In subtopic 5.2 we study

### POWER B. Terms: EMF, terminal voltage, internal resistance, load resistance. How to add up resistors in series and parallel: light bulb problems.

iclicker Quiz (1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. A. True B. False Hint: this is a good time to

### 52 VOLTAGE, CURRENT, RESISTANCE, AND POWER

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage

### Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals

Direct Current When the current in a circuit has a constant magnitude and direction, the current is called direct current Because the potential difference between the terminals of a battery is constant,

### By Mir Mohammed Abbas II PCMB 'A' CHAPTER FORMULAS & NOTES. 1. Current through a given area of a conductor is the net charge passing

Formulae For u CURRENT ELECTRICITY 1 By Mir Mohammed Abbas II PCMB 'A' 1 Important Terms, Definitions & Formulae CHAPTER FORMULAS & NOTES 1. Current through a given area of a conductor is the net charge

### ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S

ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S lecture based on 2016 Pearson Education, Ltd. The Electric Battery Electric Current

### University Physics (PHY 2326)

Chapter 25 University Physics (PHY 2326) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm

### Electrical Circuits. Sources of Voltage

Electrical Circuits ALESSANDRO VOLTA (1745-1827) ANDRE MARIE AMPERE (1775-1836) GEORG SIMON OHM (1789-1854) POTENTIAL IN VOLTS, CURRENT IN AMPS, RESISTANCE IN OHMS! Sources of Voltage Voltage, also known

### Chapter 18. Direct Current Circuits -II

Chapter 18 Direct Current Circuits -II So far A circuit consists of three-four elements: Electromotive force/power supply/battery capacitors, resistors inductors Analyzed circuits with capacitors or resistors

### Monday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example

Monday July 14 Lecture 5 Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example Lecture 6 Currents and esistance Lecture 9 Circuits Wear Microphone 1 3 Lecture 6 Current and

Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

### Electric Current & DC Circuits

Electric Current & DC Circuits Circuits Click on the topic to go to that section Conductors Resistivity and Resistance Circuit Diagrams Measurement EMF & Terminal Voltage Kirchhoff's Rules Capacitors*

### CHAPTER 1 ELECTRICITY

CHAPTER 1 ELECTRICITY Electric Current: The amount of charge flowing through a particular area in unit time. In other words, it is the rate of flow of electric charges. Electric Circuit: Electric circuit

### ELECTRIC CURRENT. Ions CHAPTER Electrons. ELECTRIC CURRENT and DIRECT-CURRENT CIRCUITS

LCTRC CURRNT CHAPTR 25 LCTRC CURRNT and DRCTCURRNT CRCUTS Current as the motion of charges The Ampère Resistance and Ohm s Law Ohmic and nonohmic materials lectrical energy and power ons lectrons nside

### Engineering Fundamentals and Problem Solving, 6e

Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive

### Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014

Direct Currents We will now start to consider charges that are moving through a circuit, currents. 1 Direct Current Current usually consists of mobile electrons traveling in conducting materials Direct

### Chapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance 25-1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte.

### AP Physics C - E & M

Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

### Chapter 25 Current, Resistance, and Electromotive Force

Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity

### R R V I R. Conventional Current. Ohms Law V = IR

DC Circuits opics EMF and erminal oltage esistors in Series and in Parallel Kirchhoff s ules EMFs in Series and in Parallel Capacitors in Series and in Parallel Ammeters and oltmeters Conventional Current

### 10/14/2018. Current. Current. QuickCheck 30.3

Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,

### Chapter 17 Electric Current and Resistance Pearson Education, Inc.c

Chapter 17 Electric Current and Resistance 2010 Pearson Education, Inc.c 1 Units of Chapter 17 Batteries and Direct Current Current and Drift Velocity Resistance and Ohm s Law Electric Power 2010 Pearson

### Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving)

Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit

### Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9,

Look over Chapter 26 sections 1-7 Examples 3, 7 Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, 1)How to find a current in a wire. 2)What the Current Density and Draft Speed are. 3)What

### Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and non-ohmic conductors Series and parallel connection Energy in an electric circuit X-planation 1. CONDUCTORS AND INSULATORS

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm s law http://www.physics.wayne.edu/~apetrov/phy2140/

### Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Conductors under dynamic conditions Current, current density, drift velocity Ohm s law Types of conductor

### Chapter 24: Electric Current

Chapter 24: Electric Current Current Definition of current A current is any motion of charge from one region to another. Suppose a group of charges move perpendicular to surface of area A. The current

### Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction.

Electrostatics Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction. Electric Charge in the Atom Atom: Nucleus (small, massive, positive charge) Electron

### AP Physics C. Electric Circuits III.C

AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

### College Physics B - PHY2054C

Power College - PHY2054C and 09/15/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building PHY2054C Power First Mini-Exam this week on Wednesday!! Location: UPL 101, 10:10-11:00 AM Exam on chapters

### Physics 214 Spring

Lecture 23 March 4 2016 The elation between Voltage Differences V and Voltages V? Current Flow, Voltage Drop on esistors and Equivalent esistance Case 1: Series esistor Combination and esulting Currents

### Electric Currents and Circuits

Electric Currents and Circuits Producing Electric Current Electric Current flow of charged particles Need a potential difference to occur Conventional Current- flow of positive charges flowing from positive

### SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background

SIMPLE D.C. CICUITS AND MEASUEMENTSBackground This unit will discuss simple D.C. (direct current current in only one direction) circuits: The elements in them, the simple arrangements of these elements,

### Electric Current, Resistance and Resistivity. Brief otes

Electric current, resistance and restivity Electric Current, esistance and esistivity In This small e-book we will learn all we need to know about current electricity but in short and then we ll have some

### Direct Current (DC) Circuits

Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

### Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making

### Flow Rate is the NET amount of water passing through a surface per unit time

Electric Current An Analogy Water Flow in a Pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a surface per unit time Individual molecules are bouncing around with speeds of

### 6. In a dry cell electrical energy is obtained due to the conversion of:

1. If a wire of uniform area of cross section is cut into two halves (equal in size), the resistivity of each part will be: a) Halved. b) Doubled. c) Becomes four times its initial value. d) Remains the

### PHYSICS. Chapter 27 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 27 Lecture RANDALL D. KNIGHT Chapter 27 Current and Resistance IN THIS CHAPTER, you will learn how and why charge moves through a wire

### physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION

Chapter 31 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 31 Fundamentals of Circuits Chapter Goal: To understand the fundamental physical principles

### Question 3: How is the electric potential difference between the two points defined? State its S.I. unit.

EXERCISE (8 A) Question : Define the term current and state its S.I unit. Solution : Current is defined as the rate of flow of charge. I = Q/t Its S.I. unit is Ampere. Question 2: Define the term electric

### AP Physics C - E & M

AP Physics C - E & M Current and Circuits 2017-07-12 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's

### Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A)

Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric current is I Average Electric

### Current and Resistance

Chapter 26 Current and Resistance Copyright 26-1 Electric Current As Fig. (a) reminds us, any isolated conducting loop regardless of whether it has an excess charge is all at the same potential. No electric

### Current. source charges. test charg. 1. Charges in motion

Current 1. Charges in motion 1. Cause of motion 2. Where is it going? 3. Let's keep this going. 2. Current 1. Flow of particles in pipes. 2. A constant problem 3. Conservation Laws 4. Microscopic motion

### Section 1 Electric Charge and Force

CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible

### Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

### Electric currents (primarily, in metals)

Electric currents (primarily, in metals) Benjamin Franklin was experimenting electricity in the mid- XVIII Century. Nobody knew if it was the positive charges or negative charges carrying the current through

### Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

### A Review of Circuitry

1 A Review of Circuitry There is an attractive force between a positive and a negative charge. In order to separate these charges, a force at least equal to the attractive force must be applied to one

### ELECTRICITY UNIT REVIEW

ELECTRICITY UNIT REVIEW S1-3-04: How does the Atomic Model help to explain static electricity? 1. Which best describes static electricity? a) charges that can be collected and held in one place b) charges

### Chapter 27: Current and Resistance

Chapter 7: Current and esistance In this section of the course we will be studying the flow of electric charge, current, in a circuit. We have already seen electric current when we first discussed electric

### Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance Units of Chapter 25 The Electric Battery Electric Current Ohm s Law: Resistance and Resistors Resistivity Electric Power Units of Chapter 25 Power in Household

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 4 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm s law resistivity

### physics for you February 11 Page 68

urrent Electricity Passage 1 4. f the resistance of a 1 m length of a given wire t is observed that good conductors of heat are also is 8.13 10 3 W, and it carried a current 1, the good conductors of electricity.

### Current. Lecture 10. Chapter Physics II. Course website:

Lecture 10 Chapter 30 Physics II Current Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii 95.144 Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html A Model

### 1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric

### SPS Presents: A Cosmic Lunch!

SPS Presents: A Cosmic Lunch! Who: Dr. Brown will be speaking about Evolution of the Elements: from Periodic table to Standard Model and Beyond! When: October 7 th at am Where: CP 79 (by the front office)

### Notes on Electricity (Circuits)

A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

### Lecture 6 Current and Resistance Ch. 26

Lecture 6 Current and esistance Ch. 6 Cartoon -nvention of the battery and Voltaic Cell Warm-up problem Topics What is current? Current density Conservation of Current esistance Temperature dependence

### 12/2/2018. Monday 12/17. Electric Charge and Electric Field

Electricity Test Monday 1/17 Electric Charge and Electric Field 1 In nature, atoms are normally found with equal numbers of protons and electrons, so they are electrically neutral. By adding or removing

### Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving

### PHY102 Electricity Course Summary

TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

### Electricity & Magnetism

Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams

### Ch. 21: Current, Resistance, Circuits

Ch. 21: Current, Resistance, Circuits Current: How charges flow through circuits Resistors: convert electrical energy into thermal/radiative energy Electrical Energy & Power; Household Circuits Time-Dependent

### Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules

Physics 115 General Physics II Session 24 Circuits Series and parallel R Meters Kirchoff s Rules R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/15/14 Phys

### Electric Current & DC Circuits How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits

Slide 1 / 127 Slide 2 / 127 Electric Current & DC Circuits www.njctl.org Slide 3 / 127 How to Use this File Slide 4 / 127 Electric Current & DC Circuits Each topic is composed of brief direct instruction

### Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

### EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete