# Chapter 27. Current and Resistance

Size: px
Start display at page:

Transcription

1 Chapter 27 Current and Resistance

2 Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new element added to circuits. Energy can be transferred to a device in an electric circuit. The energy transfer mechanism is electrical transmission, T ET. Introduction

3 Electric Current Electric current is the rate of flow of charge through some region of space. The SI unit of current is the ampere (A). 1 A = 1 C / s The symbol for electric current is I. Section 27.1

4 Average Electric Current Assume charges are moving perpendicular to a surface of area A. If ΔQ is the amount of charge that passes through A in time Δt, then the average current is I avg Q t Section 27.1

5 Instantaneous Electric Current If the rate at which the charge flows varies with time, the instantaneous current, I, is defined as the differential limit of average current as Δt 0. I dq dt Section 27.1

6 Direction of Current The charged particles passing through the surface could be positive, negative or both. It is conventional to assign to the current the same direction as the flow of positive charges. In an ordinary conductor, the direction of current flow is opposite the direction of the flow of electrons. It is common to refer to any moving charge as a charge carrier. Section 27.1

7 Current and Drift Speed Charged particles move through a cylindrical conductor of cross-sectional area A. n is the number of mobile charge carriers per unit volume. naδx is the total number of charge carriers in a segment. Section 27.1

8 Current and Drift Speed, cont The total charge is the number of carriers times the charge per carrier, q. ΔQ = (naδx)q Assume the carriers move with a velocity parallel to the axis of the cylinder such that they experience a displacement in the x-direction. If v d is the speed at which the carriers move, then v d = Δx / Δt and x = v d t Rewritten: ΔQ = (nav d Δt)q Finally, current, I ave = ΔQ/Δt = nqv d A v d is an average speed called the drift speed. Section 27.1

9 Charge Carrier Motion in a Conductor When a potential difference is applied across the conductor, an electric field is set up in the conductor which exerts an electric force on the electrons. The motion of the electrons is no longer random. The zigzag black lines represents the motion of a charge carrier in a conductor in the presence of an electric field. The net drift speed is small. The sharp changes in direction are due to collisions. The net motion of electrons is opposite the direction of the electric field. Section 27.1

10 Motion of Charge Carriers, cont. In the presence of an electric field, in spite of all the collisions, the charge carriers slowly move along the conductor with a drift velocity, v d The electric field exerts forces on the conduction electrons in the wire. These forces cause the electrons to move in the wire and create a current. Section 27.1

11 Motion of Charge Carriers, final The electrons are already in the wire. They respond to the electric field set up by the battery. The battery does not supply the electrons, it only establishes the electric field. Section 27.1

12 Drift Velocity, Example Assume a copper wire, with one free electron per atom contributed to the current. The drift velocity for a 12-gauge copper wire carrying a current of 10.0 A is 2.23 x 10-4 m/s This is a typical order of magnitude for drift velocities. Section 27.1

13 Current Density J is the current density of a conductor. It is defined as the current per unit area. J I / A = nqv d This expression is valid only if the current density is uniform and A is perpendicular to the direction of the current. J has SI units of A/m 2 The current density is in the direction of the positive charge carriers. Section 27.2

14 Conductivity A current density and an electric field are established in a conductor whenever a potential difference is maintained across the conductor. For some materials, the current density is directly proportional to the field. The constant of proportionality, σ, is called the conductivity of the conductor. Section 27.2

15 Ohm s Law Ohm s law states that for many materials, the ratio of the current density to the electric field is a constant σ that is independent of the electric field producing the current. Most metals obey Ohm s law Mathematically, J = σ E Materials that obey Ohm s law are said to be ohmic Not all materials follow Ohm s law Materials that do not obey Ohm s law are said to be nonohmic. Ohm s law is not a fundamental law of nature. Ohm s law is an empirical relationship valid only for certain materials. Section 27.2

16 Georg Simon Ohm German physicist Formulated idea of resistance Discovered the proportionalities now known as forms of Ohm s Law Section 27.2

17 Resistance In a conductor, the voltage applied across the ends of the conductor is proportional to the current through the conductor. The constant of proportionality is called the resistance of the conductor. R V I SI units of resistance are ohms (Ω). 1 Ω = 1 V / A Resistance in a circuit arises due to collisions between the electrons carrying the current with the fixed atoms inside the conductor. Section 27.2

18 Resistors Most electric circuits use circuit elements called resistors to control the current in the various parts of the circuit. Stand-alone resistors are widely used. Resistors can be built into integrated circuit chips. Values of resistors are normally indicated by colored bands. The first two bands give the first two digits in the resistance value. The third band represents the power of ten for the multiplier band. The last band is the tolerance. Section 27.2

19 Resistor Color Codes Section 27.2

20 Resistor Color Code Example Red (=2) and blue (=6) give the first two digits: 26 Green (=5) gives the power of ten in the multiplier: 10 5 The value of the resistor then is 26 x 10 5 Ω (or 2.6 MΩ) The tolerance is 10% (silver = 10%) or 2.6 x 10 5 Ω Section 27.2

21 Resistivity The inverse of the conductivity is the resistivity: ρ = 1 / σ Resistivity has SI units of ohm-meters (Ω. m) Resistance is also related to resistivity: R ρ A Section 27.2

22 Resistivity Values Section 27.2

23 Resistance and Resistivity, Summary Every ohmic material has a characteristic resistivity that depends on the properties of the material and on temperature. Resistivity is a property of substances. The resistance of a material depends on its geometry and its resistivity. Resistance is a property of an object. An ideal conductor would have zero resistivity. An ideal insulator would have infinite resistivity. Section 27.2

24 Ohmic Material, Graph An ohmic device The resistance is constant over a wide range of voltages. The relationship between current and voltage is linear. The slope is related to the resistance. Section 27.2

25 Nonohmic Material, Graph Nonohmic materials are those whose resistance changes with voltage or current. The current-voltage relationship is nonlinear. A junction diode is a common example of a nonohmic device. Section 27.2

26 Resistance of a Cable, Example Assume the silicon between the conductors to be concentric elements of thickness dr. The resistance of the hollow cylinder of silicon is dr ρ dr 2πrL Section 27.2

27 Resistance of a Cable, Example, cont. The total resistance across the entire thickness is b ρ b R dr ln a 2πL a This is the radial resistance of the cable. The calculated value is fairly high, which is desirable since you want the current to flow along the cable and not radially out of it. Section 27.2

28 Electrical Conduction A Model Treat a conductor as a regular array of atoms plus a collection of free electrons. The free electrons are often called conduction electrons. These electrons become free when the atoms are bound in the solid. In the absence of an electric field, the motion of the conduction electrons is random. Their speed is on the order of 10 6 m/s. Section 27.3

29 Conduction Model, 2 When an electric field is applied, the conduction electrons are given a drift velocity. Assumptions: The electron s motion after a collision is independent of its motion before the collision. The excess energy acquired by the electrons in the electric field is transferred to the atoms of the conductor when the electrons and atoms collide. This causes the temperature of the conductor to increase. Section 27.3

30 Conduction Model Calculating the Drift Velocity The force experienced by an electron is F qe From Newton s Second Law, the acceleration is F a m qe m Applying a motion equation e qe vf = vi + at or vf = vi + t m e Since the initial velocities are random, their average value is zero. Section 27.3

31 Conduction Model, 4 Let t be the average time interval between successive collisions. The average value of the final velocity is the drift velocity. v f, avg q v E d m t e This is also related to the current density: J = nqv d = (nq 2 E / m e )t n is the number of charge carriers per unit volume. Section 27.3

32 Conduction Model, final Using Ohm s Law, expressions for the conductivity and resistivity of a conductor can be found: 2 nq t m e m nq t 1 e 2 Note, according to this classical model, the conductivity and the resistivity do not depend on the strength of the field. This feature is characteristic of a conductor obeying Ohm s Law. Section 27.3

33 Resistance and Temperature Over a limited temperature range, the resistivity of a conductor varies approximately linearly with the temperature. ρ ρ [1 α( T T )] o ρ o is the resistivity at some reference temperature T o T o is usually taken to be 20 C α is the temperature coefficient of resistivity SI units of α are o C -1 o The temperature coefficient of resistivity can be expressed as 1 T o Section 27.4

34 Temperature Variation of Resistance Since the resistance of a conductor with uniform cross sectional area is proportional to the resistivity, you can find the effect of temperature on resistance. R = R o [1 + α(t - T o )] Use of this property enables precise temperature measurements through careful monitoring of the resistance of a probe made from a particular material. Section 27.4

35 Resistivity and Temperature, Graphical View For some metals, the resistivity is nearly proportional to the temperature. A nonlinear region always exists at very low temperatures. The resistivity usually reaches some finite value as the temperature approaches absolute zero. Section 27.4

36 Residual Resistivity The residual resistivity near absolute zero is caused primarily by the collisions of electrons with impurities and imperfections in the metal. High temperature resistivity is predominantly characterized by collisions between the electrons and the metal atoms. This is the linear range on the graph. Section 27.4

37 Semiconductors Semiconductors are materials that exhibit a decrease in resistivity with an increase in temperature. α is negative There is an increase in the density of charge carriers at higher temperatures. Section 27.4

38 Superconductors A class of materials and compounds whose resistances fall to virtually zero below a certain temperature, T C. T C is called the critical temperature. The graph is the same as a normal metal above T C, but suddenly drops to zero at T C. Section 27.5

39 Superconductors, cont The value of T C is sensitive to: chemical composition pressure molecular structure Once a current is set up in a superconductor, it persists without any applied voltage. Since R = 0 Section 27.5

40 Superconductor Application An important application of superconductors is a superconducting magnet. The magnitude of the magnetic field is about 10 times greater than a normal electromagnet. These magnets are being considered as a means of storing energy. Are currently used in MRI units Section 27.5

41 Electrical Power Assume a circuit as shown The entire circuit is the system. As a charge moves from a to b, the electric potential energy of the system increases by Q V. The chemical energy in the battery must decrease by this same amount. This electric potential energy is transformed into internal energy in the resistor. Corresponds to increased vibrational motion of the atoms in the resistor Section 27.6

42 Electric Power, 2 The resistor is normally in contact with the air, so its increased temperature will result in a transfer of energy by heat into the air. The resistor also emits thermal radiation. After some time interval, the resistor reaches a constant temperature. The input of energy from the battery is balanced by the output of energy by heat and radiation. The rate at which the system s potential energy decreases as the charge passes through the resistor is equal to the rate at which the system gains internal energy in the resistor. The power is the rate at which the energy is delivered to the resistor. Section 27.6

43 Electric Power, final The power is given by the equation P = I ΔV. Applying Ohm s Law, alternative expressions can be found: P I V I R 2 2 V R Units: I is in A, R is in Ω, ΔV is in V, and P is in W Section 27.6

44 Some Final Notes About Current A single electron is moving at the drift velocity in the circuit. It may take hours for an electron to move completely around a circuit. The current is the same everywhere in the circuit. Current is not used up anywhere in the circuit The charges flow in the same rotational sense at all points in the circuit.

45 Electric Power Transmission Real power lines have resistance. Power companies transmit electricity at high voltages and low currents to minimize power losses.

### Chapter 27. Current And Resistance

Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

### Chapter 27. Current And Resistance

Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

### Chapter 27. Current and Resistance

Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new

### Chapter 27 Current and resistance

27.1 Electric Current Chapter 27 Current and resistance 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.6 Electrical Power 2 27.1 Electric Current Consider a system

### Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A)

Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric current is I Average Electric

### Chapter 17. Current and Resistance

Chapter 17 Current and Resistance Electric Current The current is the rate at which the charge flows through a surface Look at the charges flowing perpendicularly through a surface of area A I av The SI

### Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final

Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

### Chapter 17 Current and Resistance

Chapter 17 Current and Resistance Current Practical applications were based on static electricity. A steady source of electric current allowed scientists to learn how to control the flow of electric charges

### and in a simple circuit Part 2

Current, Resistance, and Voltage in a simple circuit Part 2 Electric Current Whenever electric charges of like signs move, an electric current is said to exist. Look at the charges flowing perpendicularly

### Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q

### Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

### Chapter 27. Current and Resistance

Chapter 27 Current and Resistance CHAPTER OUTLINE 27.1 Electric Current 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.5 Superconductors 27.6 Electrical Power

### Current and Resistance

Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 2-1 Electric current 2-2

### 6 Chapter. Current and Resistance

6 Chapter Current and Resistance 6.1 Electric Current... 6-2 6.1.1 Current Density... 6-2 6.2 Ohm s Law... 6-5 6.3 Summary... 6-8 6.4 Solved Problems... 6-9 6.4.1 Resistivity of a Cable... 6-9 6.4.2 Charge

### Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Conductors under dynamic conditions Current, current density, drift velocity Ohm s law Types of conductor

### Electric Currents. Resistors (Chapters 27-28)

Electric Currents. Resistors (Chapters 27-28) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power

### Chapter 27: Current & Resistance. HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68

Chapter 27: Current & Resistance HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68 Positive Charges move from HI to LOW potential. HI V LOW V Negative Charges move from LOW to HI potential.

### Chapter 24: Electric Current

Chapter 24: Electric Current Current Definition of current A current is any motion of charge from one region to another. Suppose a group of charges move perpendicular to surface of area A. The current

### Current and Resistance

chapter 27 Current and Resistance 27.1 Electric Current 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.5 Superconductors 27.6 Electrical Power We now consider

### Chapter 25 Current, Resistance, and Electromotive Force

Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity

### Current. source charges. test charg. 1. Charges in motion

Current 1. Charges in motion 1. Cause of motion 2. Where is it going? 3. Let's keep this going. 2. Current 1. Flow of particles in pipes. 2. A constant problem 3. Conservation Laws 4. Microscopic motion

### Chapter 27 Current and Resistance 27.1 Electric Current

Chapter 27 Current and esistance 27.1 Electric Current Electric current: dq dt, unit: ampere 1A = 1C s The rate at which charge flows through a surface. No longer have static equilibrium. E and Q can 0

### Chapter 26 Current and Resistance

Chapter 26 Current and Resistance Electric Current Although an electric current is a stream of moving charges, not all moving charges constitute an electric current. If there is to be an electric current

### PHYSICS. Chapter 27 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 27 Lecture RANDALL D. KNIGHT Chapter 27 Current and Resistance IN THIS CHAPTER, you will learn how and why charge moves through a wire

### ELECTRIC CURRENT. Ions CHAPTER Electrons. ELECTRIC CURRENT and DIRECT-CURRENT CIRCUITS

LCTRC CURRNT CHAPTR 25 LCTRC CURRNT and DRCTCURRNT CRCUTS Current as the motion of charges The Ampère Resistance and Ohm s Law Ohmic and nonohmic materials lectrical energy and power ons lectrons nside

### Chapter 18. Direct Current Circuits

Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating

### Current and Resistance

Chapter 26 Current and Resistance Copyright 26-1 Electric Current As Fig. (a) reminds us, any isolated conducting loop regardless of whether it has an excess charge is all at the same potential. No electric

### Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014

Direct Currents We will now start to consider charges that are moving through a circuit, currents. 1 Direct Current Current usually consists of mobile electrons traveling in conducting materials Direct

### Electric Currents and Circuits

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 19 Electric Currents and Circuits Marilyn Akins, PhD Broome Community College Electric Circuits The motion of charges leads to the idea of

### Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9,

Look over Chapter 26 sections 1-7 Examples 3, 7 Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, 1)How to find a current in a wire. 2)What the Current Density and Draft Speed are. 3)What

### Electric currents (primarily, in metals)

Electric currents (primarily, in metals) Benjamin Franklin was experimenting electricity in the mid- XVIII Century. Nobody knew if it was the positive charges or negative charges carrying the current through

### From last time. Today: More on electric potential and connection to E-field How to calculate E-field from V Capacitors and Capacitance

From last time More on electric potential and connection to Efield How to calculate Efield from V Capacitors and Capacitance Today: More on Capacitors and Capacitance Energy stored in Capacitors Current

### Chapter 25 Current Resistance, and Electromotive Force

Chapter 25 Current Resistance, and Electromotive Force 1 Current In previous chapters we investigated the properties of charges at rest. In this chapter we want to investigate the properties of charges

### Handout 5: Current and resistance. Electric current and current density

1 Handout 5: Current and resistance Electric current and current density Figure 1 shows a flow of positive charge. Electric current is caused by the flow of electric charge and is defined to be equal to

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 4 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm s law resistivity

### University Physics (PHY 2326)

Chapter 25 University Physics (PHY 2326) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm

### Electric Currents & Resistance

Electric Currents & Resistance Electric Battery A battery produces electricity by transforming chemical energy into electrical energy. The simplest battery contains two plates or rods made of dissimilar

### 1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric

### Electric Current. You must know the definition of current, and be able to use it in solving problems.

Today s agenda: Electric Current. You must know the definition of current, and be able to use it in solving problems. Current Density. You must understand the difference between current and current density,

### Chapter 1 The Electric Force

Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

### Chapter 3: Current and Resistance. Direct Current Circuits

Chapter 3: Current and Resistance. Direct Current Circuits 3.1. Electric Current 3.2. Resistance and Resistivity 3.3. Ohm s Law and a Microscopic View of Ohm s Law 3.4. Semiconductors and Superconductors

Superconductors A class of materials and compounds whose resistances fall to virtually zero below a certain temperature, T C T C is called the critical temperature The graph is the same as a normal metal

### By Mir Mohammed Abbas II PCMB 'A' CHAPTER FORMULAS & NOTES. 1. Current through a given area of a conductor is the net charge passing

Formulae For u CURRENT ELECTRICITY 1 By Mir Mohammed Abbas II PCMB 'A' 1 Important Terms, Definitions & Formulae CHAPTER FORMULAS & NOTES 1. Current through a given area of a conductor is the net charge

### Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Wednesday, March 8, 17

Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 5.1 Ohm s Law and Resistance ELECTRIC CURRENT is defined as flow of electric charge through a cross-sectional area Convention i = dq dt Unit

### AP Physics C - E & M

Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

### Lesson 3. Electric Potential. Capacitors Current Electricity

Electric Potential Lesson 3 Potential Differences in a Uniform Electric Field Electric Potential and Potential Energy The Millikan Oil-Drop Experiment Capacitors Current Electricity Ohm s Laws Resistance

### 10/14/2018. Current. Current. QuickCheck 30.3

Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,

### Chapter 25: Electric Current

Chapter 25: Electric Current Conductors and Charge Carriers Consider a conducting piece of metal: The valence electrons are weakly bound to the nuclei form a fluidlike sea of electrons that can move through

Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

### Chapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance 25-1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte.

### Engineering Fundamentals and Problem Solving, 6e

Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive

### Announcements. final exam average (excluding regrades): 79% regrade requests are due by Thursday, Sept 28 in recitation

Announcements final exam average (excluding regrades): 79% ill file. regrade requests are due by Thursday, Sept 28 in recitation On a separate sheet of paper, explain the reason for your request. This

### Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power

Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power Lana Sheridan De Anza College Feb 6, 2018 Last time resistance resistivity conductivity Ohm s Law Overview Drude model

### AP Physics C - E & M

AP Physics C - E & M Current and Circuits 2017-07-12 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm s law http://www.physics.wayne.edu/~apetrov/phy2140/

### Today in Physics 122: resistance

Today in Physics 122: resistance Ohm s Law Resistivity and the physics behind resistance Resistors of different shapes and sizes, and how to calculate their resistance from their resistivity Resistor networks

### fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok 1 Course Progress Introductory level Electrostatic, Coulomb s Law Electric Field, Gauss Law Magnetic field, Maxwell s Equations Current,

### DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEL PHYSCS THE BADDEST CLASS ON CAMPUS B PHYSCS TSOKOS LESSON 5-4: ELECTRC CURRENT AND ELECTRC RESSTANCE Reading Activity Questions? Objectives By the end of this class you should be able to: Q State the

### ragsdale (zdr82) HW5 ditmire (58335) 1

ragsdale (zdr82) HW5 ditmire (58335) 1 This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 (part 1 of 2) 10.0

### Topic 5.2 Heating Effect of Electric Currents

Topic 5.2 Heating Effect of Electric Currents Kari Eloranta 2017 Jyväskylän Lyseon lukio International Baccalaureate February 14, 2017 Topic 5.2 Heating Effect of Electric Currents In subtopic 5.2 we study

### Electrical Circuits. Sources of Voltage

Electrical Circuits ALESSANDRO VOLTA (1745-1827) ANDRE MARIE AMPERE (1775-1836) GEORG SIMON OHM (1789-1854) POTENTIAL IN VOLTS, CURRENT IN AMPS, RESISTANCE IN OHMS! Sources of Voltage Voltage, also known

### Introduction to Electrical Theory and DC Circuits

Introduction to Electrical Theory and DC Circuits For Engineers of All Disciplines by James Doane, PhD, PE Contents 1.0 Course Overview... 4 2.0 Fundamental Concepts... 4 2.1 Electric Charges... 4 2.1.1

### Monday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example

Monday July 14 Lecture 5 Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example Lecture 6 Currents and esistance Lecture 9 Circuits Wear Microphone 1 3 Lecture 6 Current and

### Current and Resistance. PHY2049: Chapter 26 1

Current and Resistance PHY2049: Chapter 26 1 What You Will Learn in This Chapter Nature of electric current Drift speed, current and current density Current and voltage measurements Conductivity and resistivity

### Chapter 18 Electric Currents

Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple

### Electric Current. Equilibrium: Nonequilibrium: Electric current: E = 0 inside conductor. Mobile charge carriers undergo random motion.

Electric Current Equilibrium: E = 0 inside conductor. Mobile charge carriers undergo random motion. Nonequilibrium: E 0 inside conductor. Mobile charge carriers undergo random motion and drift. Positive

### Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

### EE301 RESISTANCE AND OHM S LAW

Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short

### Lesson 8 Electrical Properties of Materials. A. Definition: Current is defined as the rate at which charge flows through a surface:

Lesson 8 Electrical Properties of Materials I. Current I A. Definition: Current is defined as the rate at which charge flows through a surface: + + B. Direction: The direction of positive current flow

### Physics 1502: Lecture 8 Today s Agenda. Today s Topic :

Physics 1502: Lecture 8 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics today: due next Friday Go to masteringphysics.com

### Chapter 03. Resistance. Resistance of Conductors. Type of Material resistivity (Ω m) Type of Material. Length / Area. Resistance Formula

Chapter 03 Resistance Resistance of Conductors Resistance of material depends on several factors: Type of Material, Conductor length, or l Cross-sectional area, A Temperature, T C-C Source: Tsai Circuit

### 5. ELECTRIC CURRENTS

5. ELECTRIC CURRENTS TOPIC OUTLINE Section Recommended Time Giancoli Section 5.1 Potential Difference, Current, Resistance 5.2 Electric Circuits 3h 19.1, 19.2 6.2 Electric Field and Force 6.3 Magnetic

### Electric Currents and Simple Circuits

-1 Electric Currents and Simple Circuits Electrons can flow along inside a metal wire if there is an E-field present to push them along ( F= qe). The flow of electrons in a wire is similar to the flow

### Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance Units of Chapter 25 The Electric Battery Electric Current Ohm s Law: Resistance and Resistors Resistivity Electric Power Units of Chapter 25 Power in Household

### PHYS 1444 Section 004 Lecture #10

PHYS 1444 Section 004 Lecture #10 Dr. Electric Current and Resistance The Battery Ohm s Law: Resisters Resistivity Electric Power Alternating Current Power Delivered by AC Today s homework is #6, due 10pm,

### Flow Rate is the NET amount of water passing through a surface per unit time

Electric Current An Analogy Water Flow in a Pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a surface per unit time Individual molecules are bouncing around with speeds of

### Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits 1 Overview of Chapter 21 Electric Current and Resistance Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s Rules

### Conducting surface - equipotential. Potential varies across the conducting surface. Lecture 9: Electrical Resistance.

Lecture 9: Electrical Resistance Electrostatics (time-independent E, I = 0) Stationary Currents (time-independent E and I 0) E inside = 0 Conducting surface - equipotential E inside 0 Potential varies

### Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When

### Question 3: How is the electric potential difference between the two points defined? State its S.I. unit.

EXERCISE (8 A) Question : Define the term current and state its S.I unit. Solution : Current is defined as the rate of flow of charge. I = Q/t Its S.I. unit is Ampere. Question 2: Define the term electric

### Lecture PowerPoints. Chapter 18 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints Chapter 18 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

### Current. Lecture 10. Chapter Physics II. Course website:

Lecture 10 Chapter 30 Physics II Current Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii 95.144 Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html A Model

### CHAPTER: 3 CURRENT ELECTRICITY

CHAPTER: 3 CURRENT ELECTRICITY 1. Define electric current. Give its SI unit. *Current is the rate of flow of electric charge. I (t) = dq dt or I = q t SI unit is ampere (A), 1A = 1C 1s 2. Define current

### CHAPTER 1 ELECTRICITY

CHAPTER 1 ELECTRICITY Electric Current: The amount of charge flowing through a particular area in unit time. In other words, it is the rate of flow of electric charges. Electric Circuit: Electric circuit

### 9/22/16 ANNOUNCEMENT ANNOUNCEMENT FINAL EXAM

ANNOUNCEMENT Exam 1: Tuesday September 27, 2016, 8 PM 10 PM Location: Elliot Hall of Music Covers all readings, lectures, homework from Chapters 21 through 23 Multiple choice (1518 questions) Practice

### Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

### PHYS 1444 Section 002 Lecture #13

PHYS 1444 Section 002 Lecture #13 Monday, Oct. 16, 2017 Dr. Animesh Chatterjee (disguising as Dr. Yu) Chapter 25 Electric Current Ohm s Law: Resisters, Resistivity Electric Power Alternating Current Microscopic

### Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge,

Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge, current, voltage, and energy. Chapter 2.2-2.4 Define resistance

### Where k = 1. The electric field produced by a point charge is given by

Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

### Electricity & Magnetism Qualifier

Electricity & Magnetism Qualifier For each problem state what system of units you are using. 1. Imagine that a spherical balloon is being filled with a charged gas in such a way that the rate of charge

### Lecture 6 Current and Resistance Ch. 26

Lecture 6 Current and esistance Ch. 6 Cartoon -nvention of the battery and Voltaic Cell Warm-up problem Topics What is current? Current density Conservation of Current esistance Temperature dependence

### PHYSICS EXPERIMENTS 133. P (x 0,y 0 )

RvsT-1 Week 3: Recitation Electric field of a continuous charge distribution Q1. Find the electric field at point (x 0, y 0 ) due a thin rod (length L) of charge with uniform linear charge density and

### Chapter 27: Current and Resistance

Chapter 7: Current and esistance In this section of the course we will be studying the flow of electric charge, current, in a circuit. We have already seen electric current when we first discussed electric

### Physics Lecture 19: FRI 10 OCT

Resistance Is Futile! Physics 2113 Jonathan Dowling Physics 2113 Lecture 19: FRI 10 OCT Current & Resistance III Georg Simon Ohm (1789-1854) Resistance is NOT Futile! Electrons are not completely free

### ELECTRIC CURRENT INTRODUCTION. Introduction. Electric current

Chapter 7 ELECTRIC CURRENT Introduction Electric current Charge conservation Electric conductivity Microscopic picture Electric power Electromotive force Kirchhoff s rules Summary INTRODUCTION The first

### Electric Current and Resistance

Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

### Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge

Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 7 ELECTRICITY AND MAGNETISM Electric forces can attract some objects and repel others Electric charge: the fundamental quantity that underlies

### Electricity

Electricity Electric Charge There are two fundamental charges in the universe. Positive (proton) has a charge of +1.60 x 10-19 C Negative (electron) has a charge of 1.60 x 10-19 C There is one general