Chapter 24: Electric Current


 Claire Ray
 4 years ago
 Views:
Transcription
1 Chapter 24: Electric Current Current Definition of current A current is any motion of charge from one region to another. Suppose a group of charges move perpendicular to surface of area A. The current is the rate that charge flows through this area: dq dt ; dq amount of charge that flows during the time interval dt Units: 1 A 1 ampere 1 C/s
2 Current Microscopic view of current
3 Current Microscopic view of current (cont d)
4 Current Microscopic view of current (cont d) n time t the electrons move a distance x υ There are n particles per unit volume that carry charge q The amount of charge that passes the area A in time tis Q q( na υ t) d The current is defined by: d t dq dt lim t 0 Q t nqυ A d The current density J is defined by: J A r J nqυ nq r υ d d Current per unit area Units: A/m 2 Vector current density
5 Ohm s law Resistivity The current density J in a conductor depends on the electric field E and on the properties of the material. This dependence is in general complex but for some material, especially metals, J is proportional to E. E J Ohm s law V/A ohm ρ ρ : resistivity, Units conductivi ty σ Substance ρ (Ωm) 8 silver copper gold steel (V/m)/(A/m ) V m/a Ωm J σe 1/resisitivity Substance graphite silicon glass teflon ρ (Ωm) >
6 Resistivity Conductors, semiconductors and insulators Good electrical conductors such as metals are in general good heat conductors as well. n a metal the free electrons that carry charge in electrical conduction also provide the principal mechanism for heat conduction. Poor electrical conductors such as plastic materials are in general poor thermal conductors as well. Semiconductors have resistivity intermediate between those of metals and those of insulators. A material that obeys Ohm s law reasonably well is called an ohmic conductor or a linear conductor.
7 Resistivity Resistivity and temperature The resistivity of a metallic conductor nearly always increases with increasing temperature. ρ( T ) ρ0[1 + α( T T0 )] reference temp. (often 0 o C) temperature coefficient of resistivity Material Material α ( o C) 1 α ( o C) 1 aluminum iron brass lead graphite manganin copper silver
8 Resistivity vs. temperature Resistivity The resistivity of graphite decreases with the temperature, since at higher temperature more electrons become loose out of the atoms and more mobile. This behavior of graphite above is also true for semiconductors. Some materials, including several metallic alloys and oxides, has a property called superconductivity. Superconductivity is a phenomenon where the resistivity at first decreases smoothly as the temperature decreases, and then at a certain critical temperature T c the resistivity suddenly drops to zero. ρ ρ ρ metal T semiconductor T T T c superconductor
9 Resistance Resistance For a conductor with resistivity r ρ, the r current density J at a point where the electric field is E : E ρj When Ohm s law is obeyed, ρ is constant and independent of the magnitude of the electric field. Consider a wire with uniform crosssectional area A and length L, and let V be the potential difference between the higherpotential and lowerpotential ends of the conductor so that V is positive. A E r J r L JA, V r r E ρj E V L EL ρ V A R ρl A As the current flows through the potential difference, electric potential is lost; this energy is transferred to the ions of the conducting material during collisions. V resistance 1 V/A1Ω
10 Resistance Resistance (cont d) As the resistivity of a material varies with temperature, the resistance of a specific conductor also varies with temperature. For temperature ranges that are not too great, this variation is approximately a linear relation: R( T ) R0[1 + α( T T0 )] A circuit device made to have a specific value of resistance is called a resistor. Ι Ι V V resistor that obeys Ohm s law semiconductor diode
11 Resistance Example: Calculating resistance A b a r Consider a hollow cylinder of length L and inner and outer radii a and b, made of a material with ρ. The potential difference between the inner and outer surface is set up so that current flows radially through cylinder. Now imagine a cylindrical shell of radius r, length L, and thickness dr. A dr 2πrL ρdr 2πrL :area of a cylinder represented by a circle from which the current flows : resistance of this shell dashed R ρ dr b dr ρ L 2πL a r 2π ln b a
12 Electromotive Force (emf) and Circuit Complete circuit and steady current For a conductor to have a steady current, it must be part of a path that forms a closed loop or complete circuit. E r E r + E r J r J r J r E r + E r Electric field E r 1 produced inside conductor causes current Current causes charge to build up at ends, producing opposing field E r 2 and reducing current r After a very short time E r the same magnitude as E r total field 0 and E total current stops completely. 2 1 : has
13 Electromotive Force (emf) and Circuit Maintaining a steady current and electromotive force When a charge q goes around a complete circuit and returns to its starting point, the potential energy must be the same as at the beginning. But the charge loses part of its potential energy due to resistance in a conductor. There needs to be something in the circuit that increases the potential energy. This something to increase the potential energy is called electromotive force (emf). Units: 1 V 1 J/C Emf makes current flow from lower to higher potential. A device that produces emf is called a source of emf. source of emf f a positive charge q is moved from b to a inside the F re b  E r a source, the nonelectrostatic force F n does a positive + F r amount of work W n qv ab on the charge. n This replacement is opposite to the electrostatic force E r E r F e, so the potential energy associated with the charge increases by qv ab. For an ideal source of emf F e F n current flow in magnitude but opposite in direction. W n qε qv ab, so V ab ε R for an ideal source.
14 Electromotive Force (emf) and Circuit nternal resistance Real sources in a circuit do not behave ideally; the potential difference across a real source in a circuit is not equal to the emf. V ab ε r (terminal voltage, source with internal resistance r) So it is only true that V ab E only when 0. Furthermore, ε r R or ε / (R + r)
15 Electromotive Force (emf) and Circuit Real battery c R d a b r Battery ε ba + Real battery has internal resistance, r. Terminal voltage, Voutput (Va Vb) ε r. V ε r ε R R R r out +
16 Electromotive Force (emf) and Circuit Potential in an ideal resistor circuit c d a b b a c d b
17 Electromotive Force (emf) and Circuit Potential in a resistor circuit in realistic situation c R d ab r Battery ε b a +  V R r ε ε R +  r 0 d c b a a b
18 Energy and Power in Electric Circuit Electric power Electrical circuit elements convert electrical energy into 1) heat energy( as in a resistor) or 2) light (as in a light emitting diode) or 3) work (as in an electric motor). t is useful to know the electrical power being supplied. Consider the following simple circuit. du dq V e dqv ab due is electrical potential energy lost as dq traverses the resistor and falls in V by V. Electric power rate of supply from Ue. dq 2 Electric power P Vab Vab R dt Units :(1 J/C)(1C/s) 1J/s 1 W (watts) V R 2 ab V ab R V ab
19 Energy and Power in Electric Circuit Power output of a source Consider a source of emf with the internal resistance r, connected by ideal conductors to an external circuit. The rate of the energy delivered to the external circuit is given by: P V ab For a source described by an emf and an internal resistance r V ab ε r +  net electrical power output of the source P V ε ab rate of conversion of nonelectrical energy to electrical energy in the source 2 r rate of electrical energy dissipation in the internal resistance of the source battery (source) a + b  headlight (external circuit)
20 Energy and Power in Electric Circuit Power input of a source Consider a source of emf with the internal resistance r, connected by ideal conductors to an external circuit. total electrical power input +  to the battery battery small emf V ab ε + r P V ε + ab 2 r a + v F n + b  rate of conversion of electrical energy into noneletrical energy in the battery rate of dissipation of energy in the internal resistance in the battery alternator large emf
21 Electromotive Force (emf) and Circuit Examples: r 2 Ω, ε 12 V, R 4 Ω a V cd V ab The rate of The rate of V t is also given by voltmeter dissipation of (2 A) A ammeter The electrical power output is ε The power output is also given by V 2 ε R + r V V. V V ab cd ab cd ε energy conversion in the battery is ε R b energy in the battery is 2 A 2 bc (4 Ω) 16 W. 12 V 4 Ω + 2 Ω 2 A. R (2 A)(4 Ω) 8 V. : measures potential difference r 16 W. r 12 V  (2 A)(2 Ω) 8 V. r (12 V)(2 A) 2 V (2 A) (8 V)(2 A) 16 W. : measures current through it 2 24 W. (2 Ω) 8 W.
22 Drude s model Electric Conduction
23 Drude s model (cont d) Electric Conduction
24 Drude s model (cont d) Electric Conduction
25 Exercise 1 Calculate the resistance of a coil of platinum wire with diameter 0.5 mm and length 20 m at 20 C given ρ Ω m. Also determine the resistance at 1000 C, given that for platinum α / C. R l 20 m ρ (11 10 Ω m) 11 Ω A π[0.5( m)] To find the resistance at 1000 C: ρ ρ α ( T T 0) l But R ρ A so we have : R R 1 + α ( T T ) 0 0 Where we have assumed l and A are independent of temperature  could cause an error of about 1% in the resistance change. 3 1 R(1000 C) (11 )[1 ( C )(1000 C 20 C)] 53 Ω + Ω
26 Exercise 2 A 1000 W hair dryer manufactured in the USA operates on a 120 V source. Determine the resistance of the hair dryer, and the current it draws. P 1000 W 8.33A V 120 V V 120V V R R 14.4 Ω 8.33A The hair dryer is taken to the UK where it is turned on with a 240 V source. What happens? P 2 2 ( V ) (240V) R 14.4Ω 4000 W This is four times the hair dryer s power rating BANG and SMOKE!
Handout 5: Current and resistance. Electric current and current density
1 Handout 5: Current and resistance Electric current and current density Figure 1 shows a flow of positive charge. Electric current is caused by the flow of electric charge and is defined to be equal to
More informationChapter 25 Current, Resistance, and Electromotive Force
Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity
More informationAP Physics C  E & M
Slide 1 / 27 Slide 2 / 27 AP Physics C  E & M Current, Resistance & Electromotive Force 20151205 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from
More information6 Chapter. Current and Resistance
6 Chapter Current and Resistance 6.1 Electric Current... 62 6.1.1 Current Density... 62 6.2 Ohm s Law... 65 6.3 Summary... 68 6.4 Solved Problems... 69 6.4.1 Resistivity of a Cable... 69 6.4.2 Charge
More informationChapter 27. Current and Resistance
Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new
More informationFlow Rate is the NET amount of water passing through a surface per unit time
Electric Current An Analogy Water Flow in a Pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a surface per unit time Individual molecules are bouncing around with speeds of
More informationElectric Current. Equilibrium: Nonequilibrium: Electric current: E = 0 inside conductor. Mobile charge carriers undergo random motion.
Electric Current Equilibrium: E = 0 inside conductor. Mobile charge carriers undergo random motion. Nonequilibrium: E 0 inside conductor. Mobile charge carriers undergo random motion and drift. Positive
More informationChapter 27. Current and Resistance
Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new
More information1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera
CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric
More informationChapter 27. Current And Resistance
Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric
More informationCurrent and Resistance
Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 21 Electric current 22
More informationElectric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A)
Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric current is I Average Electric
More informationChapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final
Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More informationChapter 3: Current and Resistance. Direct Current Circuits
Chapter 3: Current and Resistance. Direct Current Circuits 3.1. Electric Current 3.2. Resistance and Resistivity 3.3. Ohm s Law and a Microscopic View of Ohm s Law 3.4. Semiconductors and Superconductors
More informationChapter 25 Current Resistance, and Electromotive Force
Chapter 25 Current Resistance, and Electromotive Force 1 Current In previous chapters we investigated the properties of charges at rest. In this chapter we want to investigate the properties of charges
More informationPhysics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits
Physics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When
More informationChapter 27: Current & Resistance. HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68
Chapter 27: Current & Resistance HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68 Positive Charges move from HI to LOW potential. HI V LOW V Negative Charges move from LOW to HI potential.
More informationChapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance 251 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte.
More informationChapter 27. Current And Resistance
Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric
More informationChapter 27 Current and Resistance 27.1 Electric Current
Chapter 27 Current and esistance 27.1 Electric Current Electric current: dq dt, unit: ampere 1A = 1C s The rate at which charge flows through a surface. No longer have static equilibrium. E and Q can 0
More informationChapter 3: Electric Current and DirectCurrent Circuit
Chapter 3: Electric Current and DirectCurrent Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Directcurrent is current that flows
More informationElectric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More informationDirect Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014
Direct Currents We will now start to consider charges that are moving through a circuit, currents. 1 Direct Current Current usually consists of mobile electrons traveling in conducting materials Direct
More informationChapter 3: Electric Current And DirectCurrent Circuits
Chapter 3: Electric Current And DirectCurrent Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field
More informationChapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance 254 Resistivity Example 255: Speaker wires. Suppose you want to connect your stereo to remote speakers. (a) If each wire must be 20 m long, what diameter copper
More informationElectricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power
Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power Lana Sheridan De Anza College Feb 6, 2018 Last time resistance resistivity conductivity Ohm s Law Overview Drude model
More informationPhysics 142 Steady Currents Page 1. Steady Currents
Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of
More informationInsulators Nonmetals are very good insulators; their electrons are very tightly bonded and cannot move.
SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and nonohmic conductors Series and parallel connection Energy in an electric circuit Xplanation 1. CONDUCTORS AND INSULATORS
More information5. ELECTRIC CURRENTS
5. ELECTRIC CURRENTS TOPIC OUTLINE Section Recommended Time Giancoli Section 5.1 Potential Difference, Current, Resistance 5.2 Electric Circuits 3h 19.1, 19.2 6.2 Electric Field and Force 6.3 Magnetic
More informationElectric Current & DC Circuits
Electric Current & DC Circuits Circuits Click on the topic to go to that section Conductors Resistivity and Resistance Circuit Diagrams Measurement EMF & Terminal Voltage Kirchhoff's Rules Capacitors*
More informationELECTRICITY & CIRCUITS
ELECTRICITY & CIRCUITS Reason and justice tell me there s more love for humanity in electricity and steam than in chastity and vegetarianism. Anton Chekhov LIGHTNING, PART 2 Electricity is really just
More informationChapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance Units of Chapter 25 The Electric Battery Electric Current Ohm s Law: Resistance and Resistors Resistivity Electric Power Units of Chapter 25 Power in Household
More informationChapter 24: Electric Current
Chapter 24: Electric Current Electric current Electric current is a net flow of electric charge. Quantitatively, current is the rate at which charge crosses a given area. I = dq dt dq = q(n AL)=q(n Av
More informationPhysics for Scientists & Engineers 2
Review The resistance R of a device is given by Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 8 R =! L A ρ is resistivity of the material from which the device is constructed L is the
More informationBy Mir Mohammed Abbas II PCMB 'A' CHAPTER FORMULAS & NOTES. 1. Current through a given area of a conductor is the net charge passing
Formulae For u CURRENT ELECTRICITY 1 By Mir Mohammed Abbas II PCMB 'A' 1 Important Terms, Definitions & Formulae CHAPTER FORMULAS & NOTES 1. Current through a given area of a conductor is the net charge
More informationChapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**
Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Conductors under dynamic conditions Current, current density, drift velocity Ohm s law Types of conductor
More informationChapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q
More informationElectric Currents. Resistors (Chapters 2728)
Electric Currents. Resistors (Chapters 2728) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power
More informationChapter 27 Current and resistance
27.1 Electric Current Chapter 27 Current and resistance 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.6 Electrical Power 2 27.1 Electric Current Consider a system
More informationQuestion 3: How is the electric potential difference between the two points defined? State its S.I. unit.
EXERCISE (8 A) Question : Define the term current and state its S.I unit. Solution : Current is defined as the rate of flow of charge. I = Q/t Its S.I. unit is Ampere. Question 2: Define the term electric
More informationChapter 25: Electric Current
Chapter 25: Electric Current Conductors and Charge Carriers Consider a conducting piece of metal: The valence electrons are weakly bound to the nuclei form a fluidlike sea of electrons that can move through
More informationPHYS 1444 Section 003. Lecture #12
Chapter 5 Power PHYS 1444 Section 003 Alternating Current Microscopic Current Chapter 6 EMF and Terminal Voltage Lecture #1 Tuesday October 9, 01 Dr. Andrew Brandt Resistors in Series and Parallel Energy
More informationChapter 18. Direct Current Circuits
Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating
More informationPHYS 1444 Section 002 Lecture #13
PHYS 1444 Section 002 Lecture #13 Monday, Oct. 16, 2017 Dr. Animesh Chatterjee (disguising as Dr. Yu) Chapter 25 Electric Current Ohm s Law: Resisters, Resistivity Electric Power Alternating Current Microscopic
More informationObjective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge,
Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge, current, voltage, and energy. Chapter 2.22.4 Define resistance
More informationWhat is an Electric Current?
Electric Circuits NTODUCTON: Electrical circuits are part of everyday human life. e.g. Electric toasters, electric kettle, electric stoves All electrical devices need electric current to operate. n this
More informationThis work is licensed under a Creative Commons AttributionNoncommercialShare Alike 4.0 License.
University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 09. Resistors I Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License
More informationAP Physics C. Electric Circuits III.C
AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the crosssectional area of the conductor changes. If a conductor has no current,
More informationAlgebra Based Physics
Page 1 of 105 Algebra Based Physics Electric Current & DC Circuits 20151006 www.njctl.org Page 2 of 105 Electric Current & DC Circuits Circuits Conductors Resistivity and Resistance Circuit Diagrams
More information3 Electric current, resistance, energy and power
3 3.1 Introduction Having looked at static charges, we will now look at moving charges in the form of electric current. We will examine how current passes through conductors and the nature of resistance
More informationCurrent and Resistance
Chapter 26 Current and Resistance Copyright 261 Electric Current As Fig. (a) reminds us, any isolated conducting loop regardless of whether it has an excess charge is all at the same potential. No electric
More informationAP Physics C  E & M
AP Physics C  E & M Current and Circuits 20170712 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's
More informationChapter 21 Electric Current and Direct Current Circuits
Chapter 21 Electric Current and Direct Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s
More informationCHAPTER: 3 CURRENT ELECTRICITY
CHAPTER: 3 CURRENT ELECTRICITY 1. Define electric current. Give its SI unit. *Current is the rate of flow of electric charge. I (t) = dq dt or I = q t SI unit is ampere (A), 1A = 1C 1s 2. Define current
More informationChapter 27: Current and Resistance
Chapter 7: Current and esistance In this section of the course we will be studying the flow of electric charge, current, in a circuit. We have already seen electric current when we first discussed electric
More information2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E.
Circuits Topics: Current Conservation of current Batteries Resistance and resistivity Simple circuits 0.1 Electromotive Force and Current Conventional current is the hypothetical flow of positive charges
More informationClosed loop of moving charges (electrons move  flow of negative charges; positive ions move  flow of positive charges. Nucleus not moving)
Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit
More informationResistivity and Temperature Coefficients (at 20 C)
Homework # 4 Resistivity and Temperature Coefficients (at 0 C) Substance Resistivity, Temperature ( m) Coefficient, (C )  Conductors Silver.59 x 00.006 Copper.6 x 00.006 Aluminum.65 x 00.0049 Tungsten
More informationElectric Current & DC Circuits How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits
Slide 1 / 127 Slide 2 / 127 Electric Current & DC Circuits www.njctl.org Slide 3 / 127 How to Use this File Slide 4 / 127 Electric Current & DC Circuits Each topic is composed of brief direct instruction
More informationM. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]
M. C. Escher: Waterfall 18/9/2015 [tsl425 1/29] Direct Current Circuit Consider a wire with resistance R = ρl/a connected to a battery. Resistor rule: In the direction of I across a resistor with resistance
More informationCurrent and Resistance
PHYS102 Previous Exam Problems CHAPTER 26 Current and Resistance Charge, current, and current density Ohm s law Resistance Power Resistance & temperature 1. A current of 0.300 A is passed through a lamp
More informationChapter 17 Electric Current and Resistance Pearson Education, Inc.c
Chapter 17 Electric Current and Resistance 2010 Pearson Education, Inc.c 1 Units of Chapter 17 Batteries and Direct Current Current and Drift Velocity Resistance and Ohm s Law Electric Power 2010 Pearson
More informationSECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM
SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain
More informationPhysics 2B: Review for Celebration #2. Chapter 22: Current and Resistance
Physics 2: eview for Celebration #2 Chapter 22: Current and esistance Current: q Current: I [I] amps (A) 1 A 1 C/s t Current flows because a potential difference across a conductor creates an electric
More information9/22/16 ANNOUNCEMENT ANNOUNCEMENT FINAL EXAM
ANNOUNCEMENT Exam 1: Tuesday September 27, 2016, 8 PM 10 PM Location: Elliot Hall of Music Covers all readings, lectures, homework from Chapters 21 through 23 Multiple choice (1518 questions) Practice
More informationLesson 3. Electric Potential. Capacitors Current Electricity
Electric Potential Lesson 3 Potential Differences in a Uniform Electric Field Electric Potential and Potential Energy The Millikan OilDrop Experiment Capacitors Current Electricity Ohm s Laws Resistance
More informationLecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power
More informationElectric Currents and Circuits
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 19 Electric Currents and Circuits Marilyn Akins, PhD Broome Community College Electric Circuits The motion of charges leads to the idea of
More informationPhysics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II
Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II In today s lecture, we will learn to: Calculate the resistance of a conductor depending on the material and shape Apply
More informationUnit 2. Current, Voltage and Resistance
Strand G. Electricity Unit 2. Current, Voltage and Resistance Contents Page Current 2 Potential Difference, Electromotive Force and Power 5 Resistance and Ohm s Law 9 G.2.1. Current In a metallic conductor
More informationPhysics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3
Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 Summary of last lecture Equipotential surfaces: Surfaces where the potential is the same everywhere, e.g. the
More informationChapter 26 Current and Resistance
Chapter 26 Current and Resistance Electric Current Although an electric current is a stream of moving charges, not all moving charges constitute an electric current. If there is to be an electric current
More informationSection 1 Electric Charge and Force
CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible
More informationELECTRIC CURRENT. Ions CHAPTER Electrons. ELECTRIC CURRENT and DIRECTCURRENT CIRCUITS
LCTRC CURRNT CHAPTR 25 LCTRC CURRNT and DRCTCURRNT CRCUTS Current as the motion of charges The Ampère Resistance and Ohm s Law Ohmic and nonohmic materials lectrical energy and power ons lectrons nside
More informationElectricity. From the word Elektron Greek for amber
Electricity From the word Elektron Greek for amber Electrical systems have two main objectives: To gather, store, process, transport information & Energy To distribute and convert energy Electrical Engineering
More informationElectric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)
Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which
More informationPhysics Lecture 19: FRI 10 OCT
Resistance Is Futile! Physics 2113 Jonathan Dowling Physics 2113 Lecture 19: FRI 10 OCT Current & Resistance III Georg Simon Ohm (17891854) Resistance is NOT Futile! Electrons are not completely free
More informationElectric Current. Volta
Electric Current Galvani Volta In the late 1700's Luigi Galvani and Alessandro Volta carried out experiements dealing with the contraction of frogs' leg muscles. Volta's work led to the invention of the
More informationTridib s Physics Tutorials visit NCERTXII / Unit 03 Current Electricity
CURRENT ELECTRICITY OHM S LAW: Let us consider a conductor through which a current I is flowing and V be the potential difference between its ends,then Ohm s law states that V I or, V = R I..(1) where
More informationPhysics 7B1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20
Physics 7B1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making
More information8. Electric circuit: The closed path along which electric current flows is called an electric circuit.
GIST OF THE LESSON 1. Positive and negative charges: The charge acquired by a glass rod when rubbed with silk is called positive charge and the charge acquired by an ebonite rod when rubbed with wool is
More informationCHARGE AND ELECTRIC CURRENT:
ELECTRICITY: CHARGE AND ELECTRIC CURRENT ELECTRIC CHARGE ELECTRIC CURRENT ELECTRIC CIRCUIT DEFINITION AND COMPONENTS EFFECTS OF ELECTRIC CURRENT TYPES OF CIRCUITS ELECTRIC QUANTITIES VOLTAGE CURRENT RESISTANCE
More informationA free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law,
Exercises Question 3.1: The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery? Answer 3.1: Emf
More informationElectron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.
Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 9 Electrodynamics Electric current temperature variation of resistance electrical energy and power http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 1718 1 Department
More informationElectromagnetism Physics 15b
Electromagnetism Physics 5b Lecture #9 DC Circuits Purcell 4.7 4. What We Did Last Time Define current and current density J J da S Charge conservation divj ρ or 0 in steady current t Carrier densities
More informationand in a simple circuit Part 2
Current, Resistance, and Voltage in a simple circuit Part 2 Electric Current Whenever electric charges of like signs move, an electric current is said to exist. Look at the charges flowing perpendicularly
More informationMonday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example
Monday July 14 Lecture 5 Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example Lecture 6 Currents and esistance Lecture 9 Circuits Wear Microphone 1 3 Lecture 6 Current and
More informationPhysics 11b Lecture #8
Physics 11b Lecture #8 Current and Resistance S&J Chapter 27 Administravia First midterm this Thursday Covers up to and including capacitance Lectures #1 #7, textbook chapters 23 26 Five problems Problem
More informationDirect Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1
Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving
More informationCapacitance, Resistance, DC Circuits
This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple
More informationLESSON 5: ELECTRICITY II
LESSON 5: ELECTRICITY II The first two points are a review of the previous lesson 1.1.ELECTRIC CHARGE  Electric charge is a property of all objects and is responsible for electrical phenomena. All matter
More informationPhysics 169. Luis anchordoqui. Kitt Peak National Observatory. Wednesday, March 8, 17
Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 5.1 Ohm s Law and Resistance ELECTRIC CURRENT is defined as flow of electric charge through a crosssectional area Convention i = dq dt Unit
More informationElectric charge is conserved the arithmetic sum of the total charge cannot change in any interaction.
Electrostatics Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction. Electric Charge in the Atom Atom: Nucleus (small, massive, positive charge) Electron
More informationWhich of the following is the SI unit of gravitational field strength?
T52 [122 marks] 1. A cell is connected in series with a 2.0Ω resistor and a switch. The voltmeter is connected across the cell and reads 12V when the switch is open and 8.0V when the switch is closed.
More informationUNIT 5: Electric Current and DirectCurrent Circuit (D.C.)
UNT 5: Electric Current DirectCurrent Circuit (D.C.) SF07 5. Electric Current, Consider a simple closed circuit consists of wires, a battery a lamp as shown in figure 5.a. F r e E r rea, From the figure,
More informationElectricity and Magnetism Current and Resistance Resistance and Resistivity
Electricity and Magnetism Current and Resistance Resistance and Resistivity Lana Sheridan De Anza College Feb 5, 2018 Last time current current density drift velocity : J (ne)v : d. Warm Up Question (267)
More informationChapter 17. Current and Resistance
Chapter 17 Current and Resistance Electric Current The current is the rate at which the charge flows through a surface Look at the charges flowing perpendicularly through a surface of area A I av The SI
More informationChapter 28. Direct Current Circuits
Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining
More informationPhysics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules
Physics 115 General Physics II Session 24 Circuits Series and parallel R Meters Kirchoff s Rules R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/15/14 Phys
More information