Version 001 CIRCUITS holland (1290) 1

Size: px
Start display at page:

Download "Version 001 CIRCUITS holland (1290) 1"

Transcription

1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated in a wire carrying a constant electric current I may be written as a function of I, the length l of the wire, the diameter d of the wire, and the resistivity ρ of the material in the wire In this expression, the power P dissipated is directly proportional to which of the following? P d and P ρ only P d only P l, P d and P ρ P l and P ρ only P l only AP M 99 MC 67 points A variable resistor is connected across a constant voltage source Which of the following graphs represents the power P dissipated by the resistor as a function of its resistance R? AP M 998 MC points A wire of resistance R dissipates power P when a current I passes through it The wire is replaced by another wire with resistance R The power P dissipated by the new wire when the same current passed through it is P = 6P

2 Version CIRCUITS holland (9) P = P P = P 9 P = P P = P AP B 99 MC (part of ) points A battery with an internal resistance is connected to two resistors in series 6 Ω Ω A X internal resistance What is the emf of the battery? = V = 6 V = V = 8 V = V Ω (part of ) points What is the potential difference across the terminals Y and X of the battery? V YX = 8 V V YX = V V YX = V V YX = 6 V V YX = V 6 (part of ) points What power P internal is dissipated by the Ω Y internal resistance of the battery? P internal = W P internal = 6 W P internal = 8 W P internal = W P internal = 6 W AP M 99 MC (part of ) points The switch has been open for a long period of time R R V Immediately after the switch is closed, the current supplied by the battery is I = V (R +R ) R R I = I = V R I = I = V R V R +R 8 (part of ) points A long time after the switch has been closed, the current I supplied by the battery is I = V R +R I = V (R +R ) R R C S

3 Version CIRCUITS holland (9) I = V R I = V R I = AP M 99 MC 7 9 (part of ) points The circuit has been connected as shown in the figure for a long time t t / = 6 µs t t / = µs t t / = 68 µs t t / = 6 µs t t / = 98 µs 6 t t / = µs 8 Ω Ω 7 t t / = 8 µs V Ω 8 µf Ω S 8 t t / = 6 µs 9 t t / = 76 µs t t / = µs What is the magnitude of the electric potential C across the capacitor? C = V C = 8 V C = 6 V C = V C = V 6 C = V 7 C = 6 V 8 C = V 9 C = V C = 9 V (part of ) points Ifthebatteryisdisconnected,howlongdoesit take for the capacitor to discharge to t = e of its initial voltage? AP M 998 MC (part of ) points The following diagram shows part of a closed electrical circuit Ω 7 Ω X 9 Ω Find the electric resistance R XY of the part of the circuit shown between point X and Y R XY = Ω R XY = 6 Ω R XY = Ω R XY = 8 Ω R XY = Ω 6 R XY = Ω 7 R XY = Ω I Y

4 Version CIRCUITS holland (9) 8 R XY = Ω 9 R XY = 8 Ω R XY = 7 Ω (part of ) points When there is a steady current in the circuit, the amount of charge passing a point per unit time is greater at point X than at point Y greaterinthe9ωresistorthaninthe7ω resistor greater in the Ω resistor than in the 7 Ω resistor greater in the 7 Ω resistor than in the 9 Ω resistor the same everywhere in the circuit AP M 998 MC 6 points A resistor R and a capacitor C are connected in series to a battery of terminal voltage V Which of the following equations relating the current I in the circuit and the charge Q on the capacitor describes this circuit? V Q C IR = V Q C I R = V +QC I R = V C dq dt I R = Q C IR = Which of the following combinations of resistors would dissipate 7 W when connected to a 7 V power supply? 9 Ω 9 Ω 8 Ω 8 Ω 8 Ω 7 Ω Ω 7 Ω 8 Ω 6 Ω 7 Ω 6 Ω Ω 8 Ω Ω 7 Ω AP B 99 MC points Kirchhoff s loop rule for circuit analysis is an expression of which of the following? Conservation of energy Faraday s law Conservation of charge Ohm s law Ampère s law AP B 99 MC 6 6 (part of ) points Consider the circuit AP M 998 MC 7 points

5 Version CIRCUITS holland (9) a V µf µf c µf µf b R R What is the equivalent capacitance for this network? C equivalent = 7 µf C equivalent = µf C equivalent = 7 µf C equivalent = 7 µf C equivalent = µf 7 (part of ) points What is the charge stored in the -µf lowerright capacitor? Q = µc Q = 7 µc Q =,8 µc Q = 6 µc Q =, µc AP B 99 MC 8 points Consider resistors R and R connected in series R R and in parallel to a source of emf that has no internal resistance How does the power dissipated by the resistors in these two cases compare? It is greater for the series connection Itisdifferent for eachconnection, but one must know the values of R and R to know which is greater It is greater for the parallel connection Itisdifferent for eachconnection, but one must know the values of to know which is greater It is the same for both connections AP M 99 MC 9 9 (part of ) points Consider the system of equivalent capacitors µf µf a B µf µf µf µf Find the equivalent capacitance C ab of the network of capacitors C = µf C = µf C = µf b

6 Version CIRCUITS holland (9) 6 C = µf µf µf C = 6 µf µf µf Find 6 C = µf 7 C = µf B µf 8 C = µf µf (part of ) points What potential difference must be applied between points a and b so that the charge on each plate of each capacitor will have a magnitude of 6 µc? V ab = V V ab = 9 V V ab = V V ab = 6 V V ab = 8 V 6 V ab = V 7 V ab = V 8 V ab = V AP M 99 MC (part of ) points Consider the following system of equivalent capacitors the equivalent capacitance of the circuit C = µf C = µf C = µf C = µf C = µf 6 C = µf 7 C = µf (part of ) points What potential difference must be applied across the capacitor network so that the charge on each plate of each capacitor will have a magnitude of 6 µc? V ad = 8V V ad = 6V V ad = V V ad = V V ad = V 6 V ad = V 7 V ad = V

7 Version CIRCUITS holland (9) 7 8 V ad = V AP M 998 MC 6 (part of ) points The following diagram shows part of a closed electrical circuit Ω X Ω Ω Y Ω resistor greater at point X than at point Y greater in the Ω resistor than in the Ω resistor I FindtheelectricresistanceR XY ofthepart of the circuit shown between point X and Y R XY = 9 Ω R XY = Ω R XY = Ω R XY = Ω R XY = Ω 6 R XY = 7 Ω 7 R XY = 7 Ω 8 R XY = 7 Ω 9 R XY = Ω R XY = 9 Ω (part of ) points When there is a steady current in the circuit, the amount of charge passing a point per unit time is the same everywhere in the circuit greater in the Ω resistor than in the Ω resistor greater in the Ω resistor than in the

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: PHYS 102 Exams Exam 2 PRINT (A) The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: It is connected to a battery with constant emf V.

More information

Circuits Practice Websheet 18.1

Circuits Practice Websheet 18.1 Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10-Ω resistors? a. 24

More information

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1 1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Chapter 26 Direct-Current Circuits

Chapter 26 Direct-Current Circuits Chapter 26 Direct-Current Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing

More information

Physics 212 Midterm 2 Form A

Physics 212 Midterm 2 Form A 1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 10-19 C B. 6.4 10-19 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus

More information

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. 1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. a. The two bulbs are first connected in parallel to a 120 V source. i. Determine the

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review The resistance R of a device is given by Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 8 R =! L A ρ is resistivity of the material from which the device is constructed L is the

More information

Application of Physics II for. Final Exam

Application of Physics II for. Final Exam Application of Physics II for Final Exam Question 1 Four resistors are connected as shown in Figure. (A)Find the equivalent resistance between points a and c. (B)What is the current in each resistor if

More information

Physics 2135 Exam 2 October 20, 2015

Physics 2135 Exam 2 October 20, 2015 Exam Total / 200 Physics 2135 Exam 2 October 20, 2015 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A straight wire segment

More information

Laboratory 7: Charging and Discharging a Capacitor Prelab

Laboratory 7: Charging and Discharging a Capacitor Prelab Phys 132L Fall 2018 Laboratory 7: Charging and Discharging a Capacitor Prelab Consider a capacitor with capacitance C connected in series to a resistor with resistance R as shown in Fig. 1. Theory predicts

More information

Chapter 27. Circuits

Chapter 27. Circuits Chapter 27 Circuits 1 1. Pumping Chagres We need to establish a potential difference between the ends of a device to make charge carriers follow through the device. To generate a steady flow of charges,

More information

Physics 2135 Exam 2 October 18, 2016

Physics 2135 Exam 2 October 18, 2016 Exam Total / 200 Physics 2135 Exam 2 October 18, 2016 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A light bulb having

More information

AP Physics C. Inductance. Free Response Problems

AP Physics C. Inductance. Free Response Problems AP Physics C Inductance Free Response Problems 1. Two toroidal solenoids are wounded around the same frame. Solenoid 1 has 800 turns and solenoid 2 has 500 turns. When the current 7.23 A flows through

More information

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf 1. Fig.1 shows two capacitors, A of capacitance 2µF, and B of capacitance 4µF, connected in parallel. Fig. 2 shows them connected in series. A two-way switch S can connect the capacitors either to a d.c.

More information

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

More information

Physics Investigation 10 Teacher Manual

Physics Investigation 10 Teacher Manual Physics Investigation 10 Teacher Manual Observation When a light bulb is connected to a number of charged capacitors, it lights up for different periods of time. Problem What does the rate of discharging

More information

Capacitance, Resistance, DC Circuits

Capacitance, Resistance, DC Circuits This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

More information

Lecture #3. Review: Power

Lecture #3. Review: Power Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

More information

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L.

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L. 1 (a) A charged capacitor is connected across the ends of a negative temperature coefficient (NTC) thermistor kept at a fixed temperature. The capacitor discharges through the thermistor. The potential

More information

Chapter 28 Solutions

Chapter 28 Solutions Chapter 8 Solutions 8.1 (a) P ( V) R becomes 0.0 W (11.6 V) R so R 6.73 Ω (b) V IR so 11.6 V I (6.73 Ω) and I 1.7 A ε IR + Ir so 15.0 V 11.6 V + (1.7 A)r r 1.97 Ω Figure for Goal Solution Goal Solution

More information

Physics 24 Exam 2 March 18, 2014

Physics 24 Exam 2 March 18, 2014 Exam Total / 200 Physics 24 Exam 2 March 18, 2014 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. You need to store electrical

More information

A positive value is obtained, so the current is counterclockwise around the circuit.

A positive value is obtained, so the current is counterclockwise around the circuit. Chapter 7. (a) Let i be the current in the circuit and take it to be positive if it is to the left in. We use Kirchhoff s loop rule: ε i i ε 0. We solve for i: i ε ε + 6. 0 050.. 4.0Ω+ 80. Ω positive value

More information

M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]

M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29] M. C. Escher: Waterfall 18/9/2015 [tsl425 1/29] Direct Current Circuit Consider a wire with resistance R = ρl/a connected to a battery. Resistor rule: In the direction of I across a resistor with resistance

More information

Phys 2025, First Test. September 20, minutes Name:

Phys 2025, First Test. September 20, minutes Name: Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 10-1 C / N m e

More information

P114 University of Rochester NAME S. Manly Spring 2010

P114 University of Rochester NAME S. Manly Spring 2010 Exam 2 (March 23, 2010) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show your work where indicated. Problem 1 ( 8 pts): In each

More information

Exam 3--PHYS 102--S14

Exam 3--PHYS 102--S14 Name: Exam 3--PHYS 102--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of these statements is always true? a. resistors in parallel have the

More information

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from

More information

Physics 42 Exam 2 PRACTICE Name: Lab

Physics 42 Exam 2 PRACTICE Name: Lab Physics 42 Exam 2 PRACTICE Name: Lab 1 2 3 4 Conceptual Multiple Choice (2 points each) Circle the best answer. 1.Rank in order, from brightest to dimmest, the identical bulbs A to D. A. C = D > B > A

More information

PHYS 241 EXAM #1 October 5, 2006

PHYS 241 EXAM #1 October 5, 2006 1. ( 5 points) Two point particles, one with charge 8 10 9 C and the other with charge 2 10 9 C, are separated by 4 m. The magnitude of the electric field (in N/C) midway between them is: A. 9 10 9 B.

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

Slide 1 / 26. Inductance by Bryan Pflueger

Slide 1 / 26. Inductance by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving

More information

Lecture 39. PHYC 161 Fall 2016

Lecture 39. PHYC 161 Fall 2016 Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS - response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,

More information

PHYS 2135 Exam II March 20, 2018

PHYS 2135 Exam II March 20, 2018 Exam Total /200 PHYS 2135 Exam II March 20, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. For questions 6-9, solutions must

More information

Direct-Current Circuits

Direct-Current Circuits Direct-Current Circuits A'.3/.". 39 '- )232.-/ 32,+/" 7+3(5-.)232.-/ 7 3244)'03,.5B )*+,"- &'&./( 0-1*234 35-2567+- *7 2829*4-& )"< 35- )*+,"-= 9-4-- 3563 A0.5.C2/'-231).D')232.')2-1 < /633-">&@5-:836+-0"1464-625"-4*43"

More information

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS. SEMESTER 2 July 2012

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS. SEMESTER 2 July 2012 ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 July 2012 COURSE NAME: PHYSICS 2 CODE: GROUP: ADET 1 DATE: July 4, 2012 TIME: DURATION: 1:00 pm 2 HOUR INSTRUCTIONS: 1. This paper

More information

IMPORTANT Read these directions carefully:

IMPORTANT Read these directions carefully: Physics 208: Electricity and Magnetism Common Exam 2, October 17 th 2016 Print your name neatly: First name: Last name: Sign your name: Please fill in your Student ID number (UIN): _ - - Your classroom

More information

How many electrons are transferred to the negative plate of the capacitor during this charging process? D (Total 1 mark)

How many electrons are transferred to the negative plate of the capacitor during this charging process? D (Total 1 mark) Q1.n uncharged 4.7 nf capacitor is connected to a 1.5 V supply and becomes fully charged. How many electrons are transferred to the negative plate of the capacitor during this charging process? 2.2 10

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (Part-I) 1. One coulomb charge is equal to the charge on (a) 6.24 x 10 18 electrons (b) 6.24 x 10 24 electrons (c) 6.24 x 10 18 atoms (d) none of the above 2. The correct relation

More information

1. A1, B3 2. A1, B2 3. A3, B2 4. A2, B2 5. A3, B3 6. A1, B1 7. A2, B1 8. A2, B3 9. A3, B1

1. A1, B3 2. A1, B2 3. A3, B2 4. A2, B2 5. A3, B3 6. A1, B1 7. A2, B1 8. A2, B3 9. A3, B1 peden (jp5559) Time onstants peden (0100) 1 This print-out should have 21 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Test is Thursday!

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Electromotive Force An electromotive force device, or emf device, is a source of constant potential. The emf describes the work done per unit charge and has units of

More information

Phys222 W16 Exam 2: Chapters Key. Name:

Phys222 W16 Exam 2: Chapters Key. Name: Name: Please mark your answer here and in the scantron. A positively charged particle is moving in the +y-direction when it enters a region with a uniform electric field pointing in the +y-direction. Which

More information

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply Current The current, which is Coulomb s per second, is simply I = ei e = en e Av d e is the charge is the electron! ne is the density of electrons! A is the cross sectional area of the wire! vd is the

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova

P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova Name: Date: (5)1. How many electrons flow through a battery that delivers a current of 3.0 A for 12 s? A) 4 B) 36 C) 4.8 10 15 D) 6.4 10 18 E)

More information

Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules

Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules Physics 115 General Physics II Session 24 Circuits Series and parallel R Meters Kirchoff s Rules R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/15/14 Phys

More information

Lecture 27: FRI 20 MAR

Lecture 27: FRI 20 MAR Physics 2102 Jonathan Dowling Lecture 27: FRI 20 MAR Ch.30.7 9 Inductors & Inductance Nikolai Tesla Inductors: Solenoids Inductors are with respect to the magnetic field what capacitors are with respect

More information

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Chapter 28 Direct Current Circuits

Chapter 28 Direct Current Circuits Chapter 28 Direct Current Circuits Multiple Choice 1. t what rate is thermal energy being generated in the 2-resistor when = 12 V and = 3.0 Ω? 2 a. 12 W b. 24 W c. 6.0 W d. 3.0 W e. 1.5 W 2. t what rate

More information

Chapter 18 Electric Currents

Chapter 18 Electric Currents Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple

More information

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

More information

Physics 2B Winter 2012 Final Exam Practice

Physics 2B Winter 2012 Final Exam Practice Physics 2B Winter 2012 Final Exam Practice 1) When the distance between two charges is increased, the force between the charges A) increases directly with the square of the distance. B) increases directly

More information

4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors:

4 Electric circuits. Serial and parallel resistors V 3 V 2 V Serial connection of resistors: 4 lectric circuits PHY67 Spring 006 Serial and parallel resistors Serial connection of resistors: As the current I through each of serially connected resistors is the same, one can use Ohm s law and write...

More information

Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits Chapter 21 Electric Current and Direct- Current Circuits 1 Overview of Chapter 21 Electric Current and Resistance Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s Rules

More information

Physics 142 Steady Currents Page 1. Steady Currents

Physics 142 Steady Currents Page 1. Steady Currents Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Name:... Section:... Physics 208 Quiz 8. April 11, 2008; due April 18, 2008

Name:... Section:... Physics 208 Quiz 8. April 11, 2008; due April 18, 2008 Name:... Section:... Problem 1 (6 Points) Physics 8 Quiz 8 April 11, 8; due April 18, 8 Consider the AC circuit consisting of an AC voltage in series with a coil of self-inductance,, and a capacitor of

More information

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time? Chapter 25 Term 083 Q13. Each of the two 25-µF capacitors, as shown in Fig. 3, is initially uncharged. How many Coulombs of charge pass through ammeter A after the switch S is closed for long time? A)

More information

PES 1120 Spring 2014, Spendier Lecture 35/Page 1

PES 1120 Spring 2014, Spendier Lecture 35/Page 1 PES 0 Spring 04, Spendier Lecture 35/Page Today: chapter 3 - LC circuits We have explored the basic physics of electric and magnetic fields and how energy can be stored in capacitors and inductors. We

More information

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

More information

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction Switch Lab 9. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

More information

Series & Parallel Resistors 3/17/2015 1

Series & Parallel Resistors 3/17/2015 1 Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both

More information

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4)

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4) UNIT G485 Module 2 5.2.1 Capacitors PRACTICE QUESTIONS (4) 1 A 2200 µf capacitor is charged to a p.d. of 9.0 V and then discharged through a 100 kω resistor. (a) Calculate : (i) The initial charge stored

More information

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII

PHYSICS ASSIGNMENT ES/CE/MAG. Class XII PHYSICS ASSIGNMENT ES/CE/MAG Class XII MM : 70 1. What is dielectric strength of a medium? Give its value for vacuum. 1 2. What is the physical importance of the line integral of an electrostatic field?

More information

Clicker Session Currents, DC Circuits

Clicker Session Currents, DC Circuits Clicker Session Currents, DC Circuits Wires A wire of resistance R is stretched uniformly (keeping its volume constant) until it is twice its original length. What happens to the resistance? 1) it decreases

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Surprising as it may seem, the power of a computer is achieved simply by the controlled flow of charges through tiny wires and circuit elements. Chapter Goal: To understand the fundamental physical principles

More information

SPS Presents: A Cosmic Lunch!

SPS Presents: A Cosmic Lunch! SPS Presents: A Cosmic Lunch! Who: Dr. Brown will be speaking about Evolution of the Elements: from Periodic table to Standard Model and Beyond! When: October 7 th at am Where: CP 79 (by the front office)

More information

Circuits. David J. Starling Penn State Hazleton PHYS 212

Circuits. David J. Starling Penn State Hazleton PHYS 212 Invention is the most important product of man s creative brain. The ultimate purpose is the complete mastery of mind over the material world, the harnessing of human nature to human needs. - Nikola Tesla

More information

To receive full credit, you must show all your work (including steps taken, calculations, and formulas used).

To receive full credit, you must show all your work (including steps taken, calculations, and formulas used). Page 1 Score Problem 1: (35 pts) Problem 2: (25 pts) Problem 3: (25 pts) Problem 4: (25 pts) Problem 5: (15 pts) TOTAL: (125 pts) To receive full credit, you must show all your work (including steps taken,

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

Physics 2401 Summer 2, 2008 Exam II

Physics 2401 Summer 2, 2008 Exam II Physics 2401 Summer 2, 2008 Exam II e = 1.60x10-19 C, m(electron) = 9.11x10-31 kg, ε 0 = 8.845x10-12 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x10-27 kg. n = nano = 10-9, µ = micro = 10-6, m

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Current and Circuits 2017-07-12 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

Physics 2135 Exam 2 March 22, 2016

Physics 2135 Exam 2 March 22, 2016 Exam Total Physics 2135 Exam 2 March 22, 2016 Key Printed Name: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. B 1. An air-filled

More information

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

More information

Chapter 26 Direct-Current Circuits

Chapter 26 Direct-Current Circuits Chapter 26 Direct-Current Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Class: _ Date: _ w9final Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If C = 36 µf, determine the equivalent capacitance for the

More information

Exercise Problem Correct. Correct. Heimadæmi 5. Part A. Part B. Due: 11:45pm on Thursday, February 18, 2016

Exercise Problem Correct. Correct. Heimadæmi 5. Part A. Part B. Due: 11:45pm on Thursday, February 18, 2016 Heimadæmi 5 Due: 11:45pm on Thursday, February 18, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Exercise 26.34 In the circuit shown in the figure.

More information

XII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K.

XII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K. XII PHYSICS LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [CURRENT ELECTRICITY] CHAPTER NO. 13 CURRENT Strength of current in a conductor is defined as, Number of coulombs

More information

The RC Time Constant

The RC Time Constant The RC Time Constant Objectives When a direct-current source of emf is suddenly placed in series with a capacitor and a resistor, there is current in the circuit for whatever time it takes to fully charge

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Electric Currents. Resistors (Chapters 27-28)

Electric Currents. Resistors (Chapters 27-28) Electric Currents. Resistors (Chapters 27-28) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power

More information

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1 Review Spring Semester 2014 Physics for Scientists & Engineers 2 1 Notes! Homework set 13 extended to Tuesday, 4/22! Remember to fill out SIRS form: https://sirsonline.msu.edu Physics for Scientists &

More information

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1.

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1. 1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. 2 magnetic 1 flux linkage / 0 10 2 Wb-turns 1 2 5 10 15 t / 10 3 s Fig. 3.1 The generator has a flat coil

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

Inductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance.

Inductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance. Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

PHY 131 Review Session Fall 2015 PART 1:

PHY 131 Review Session Fall 2015 PART 1: PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V. V =! " Ir. Terminal Open circuit internal! voltage voltage (emf) resistance" 2.

Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V. V =!  Ir. Terminal Open circuit internal! voltage voltage (emf) resistance 2. Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V V =! " Ir Terminal Open circuit internal! voltage voltage (emf) resistance" 2.) Resistors in series! One of the bits of nastiness about

More information

Direct-Current Circuits. Physics 231 Lecture 6-1

Direct-Current Circuits. Physics 231 Lecture 6-1 Direct-Current Circuits Physics 231 Lecture 6-1 esistors in Series and Parallel As with capacitors, resistors are often in series and parallel configurations in circuits Series Parallel The question then

More information

Physics 6B Summer 2007 Final

Physics 6B Summer 2007 Final Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

AP Physics C Electricity & Magnetism Mid Term Review

AP Physics C Electricity & Magnetism Mid Term Review AP Physics C Electricity & Magnetism Mid Term Review 1984 37. When lighted, a 100-watt light bulb operating on a 110-volt household circuit has a resistance closest to (A) 10-2 Ω (B) 10-1 Ω (C) 1 Ω (D)

More information

Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s

More information