AP Physics C  E & M


 Robert Simon
 2 years ago
 Views:
Transcription
1 Slide 1 / 27
2 Slide 2 / 27 AP Physics C  E & M Current, Resistance & Electromotive Force
3 Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from one region of space to another, and is denoted by a capital I. In conductors electrons move around freely, but since they are going off in all different directions the net current in any normal piece of metal such as copper would be zero. However if an electric field were passed through the copper wire the free charges would begin to move in one specific direction resulting in a current. The motion of these particles is referred to as the drift velocity (v d ). The electrons constantly collide with the ions fixed within the conductor's structure and this results in vibrations which begin to generate heat and slow the particles motion from a magnitude of 10 6 m/s to 104 m/s.
4 Slide 4 / 27 Electric Current _ Before Electric Field _ After Electric Field Once the electric field is turned on their is a net force to the right on the positively charged particles, and a net force to the left on the negative particles. The negative charges would actually move, but the sign of the charge has no effect on solving problems dealing with circuits. So for the purpose of remaining conventional we always say that current flows in the direction of the positive charges, this is referred to as the conventional current.
5 Slide 5 / 27 Electric Current Both positive and negative charges can generate an electric current, but only when they pass through certain materials. In metals only electrons can flow, but in ionized gases, such as plasma, both electrons and positive ions are able to flow.
6 Slide 6 / 27 Electric Current When a current is passing through a wire we state that the current is in the direction the positive charges are moving. In the diagram above the positive charges are flowing through a specific area in a certain amount of time. This is what we define current as, the rate at which the charge flows through the wire. The units for current is a Coulomb/second, better known as the ampere.
7 Slide 7 / 27 Electric Current A Lets return to the situation we just talked about on the last slide. A current is flowing through a wire and we want to find the rate at which the charges are flowing through a cross sectional area of A. The distance each charge moves can be represented as v d dt. If we now multiply by A we find the volume that the charges flow through in the given time. Then multiply by the concentration of the charge flowing through and the magnitude of each, this equals the change in charge with respect to time.
8 Slide 8 / 27 Electric Current The charge per unit of area is called the current Density, which is represented by a J. In the general expression for current and current density the charge q is replaced by its absolute value to show that the charge does not matter, and the current density can also be represented in vector form.
9 Slide 9 / C of charge passes a location in a circuit in 10 seconds. What is the current flowing past the point? 1.2 A
10 Slide 10 / 27 2 How long will it take for 400 C of electric charge to pass through a copper wire if the current through it is 1.5 A? s
11 Slide 11 / 27
12 Slide 12 / 27 Resistivity and Resistance Superconductors behave similarly to the change in temperature as does a metal conductor but at some point with decreasing temperature it drops off to zero. Semiconductors behave in the opposite manner as metal conductors. As the temperature increases the resistivity decreases, but as the temperature decreases the resistivity increases.
13 Slide 13 / 27 Resistivity and Resistance Since Resistance is directly proportional to Resistivity it makes sense that Resistance is also affected by the temperature. Resistance of Hollow Cylinder If we allowed a current to flow from the inside of a hollow cylinder of length L to the outside, we can find the Resistance by cutting up the radius and adding each of the pieces of the resistance we find.
14 Slide 14 / 27 Ohm's Law and Resistance This shows the relationship between current, voltage, and resistance, as well as an equation for the resistance. Ohm's Law Its unit is the Ohm (# )
15 Slide 15 / 27 3 What is the resistance of a copper wire with a length of 2m, a radius of 5cm, and a resistivity of 2.44x108. A 3.2x1010 # B 1.8x1010 # C 2.6x109 # D 3.8x1010 # E 4.2x109 #
16 Slide 16 / 27 4 What is the resistance of a Gold wire of length.5m, a diameter of 6 cm, and a resistivity of 2.75x108. A 1x104 # B 1.5x105 # C 2x105 # D 3x105 # E 3.5x105 #
17 Slide 17 / 27 5 What is the resistance of a rheostat coil, if 0.05 A of current flows through it when 6 V is applied across it? A 1200 # B 120 # C 12 # D 1.2 #
18 Slide 18 / 27 Electromotive Force If you were to pass an electric field through a conductor initially there would be a current, but enough charge will build up quickly on the opposite ends of the conductor producing an electric field equal in magnitude, but in the opposite direction, effectively canceling out the current. In order to maintain a steady current we have to remember that when a charge moves through a conductor and returns to its starting point it has last some of its potential energy. To solve this problem we have to find some device that can increase the potential energy, such as a battery. E   I  E = 0; J = 0
19 Slide 19 / 27 Electromotive Force All circuits require some source of EMF to increase the potential energy of the circuit. A battery has two terminals, one positively charged and the other is negatively charged. When a charge of q moves into the battery it experiences two forces, an electrical force which is due to the electric field present between the two plates and a nonelectrical force, F n. The nonelectrical force could come from different sources such as, a magnetic field present in a generator, a chemical reaction in a battery, or a mechanical input. This prevents the charge from just flowing in a battery, that is why it holds its potential for a while. If this force did not exist then you could not create a battery. F n F E E   
20 Slide 20 / 27 Internal Resistance We sometimes talk about complicated situations in mechanics when we must account for friction, for example if a string does not have a negligible mass. In circuits we sometimes have to take into account the resistance the current will encounter when flowing into the battery, which effects both the current and the emf of the battery. In an ideal situation the emf of the battery would be equal to its potential difference. If we setup a simple circuit, a battery with an internal resistance r which is connected to a light bulb of resistance R, Ohm's law would be written as: I and r R I
21 Slide 21 / 27 Circuit Components Conducting Wire Resistor Battery (Source of emf) Battery (Source of emf with a internal resistance) A Ammeter V Voltmeter
22 Slide 22 / 27 6 A 6V battery, whose internal resistance 1.5 Ω is connected in series to a light bulb with a resistance of 6.8 Ω. What is the current in the circuit?
23 Slide 23 / 27 7 A 6V battery, whose internal resistance 1.5 Ω is connected in series to a light bulb with a resistance of 6.8 Ω. What is the terminal voltage of the battery?
24 Slide 24 / 27 Electrical Energy and Power We have discussed the potential of the battery, resistance, and the current it produces, but in electrical systems we are also concerned with what is the rate at which energy is put into the system or taken from the system. This quantity is termed power and is denoted by P. (Change in charge with respect to time) (Work done by the battery) (Power Equations) (Units of Power)
25 Slide 25 / 27 Electrical Energy and Power Power Output A battery has an internal resistance of r and an emf of. and Power Input If a battery with an emf of is connected to a larger power source and their currents are flowing in opposite directions, then the smaller battery will begin gaining energy. and
26 Slide 26 / 27 8 A toy car's electric motor has a resistance of 17 Ω ; find the power delivered to it by a 6V battery.
27 Slide 27 / 27 9 How much voltage must be applied across a 450 Ω resistor in order for it to consume 120 W of power?
AP Physics C  E & M
AP Physics C  E & M Current and Circuits 20170712 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's
More information1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera
CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric
More informationChapter 25 Current, Resistance, and Electromotive Force
Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity
More informationLecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power
More information6. In a dry cell electrical energy is obtained due to the conversion of:
1. If a wire of uniform area of cross section is cut into two halves (equal in size), the resistivity of each part will be: a) Halved. b) Doubled. c) Becomes four times its initial value. d) Remains the
More informationAP Physics C. Electric Circuits III.C
AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the crosssectional area of the conductor changes. If a conductor has no current,
More informationFlow Rate is the NET amount of water passing through a surface per unit time
Electric Current An Analogy Water Flow in a Pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a surface per unit time Individual molecules are bouncing around with speeds of
More informationContinuous flow of electric charges. Current Electricity
Continuous flow of electric charges Current Electricity Did You Know? The voltage across a muscle cell in your body is about 70 millivolts. A millivolt (mv) is one thousandth of a volt. AC and DC DC Direct
More informationInsulators Nonmetals are very good insulators; their electrons are very tightly bonded and cannot move.
SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and nonohmic conductors Series and parallel connection Energy in an electric circuit Xplanation 1. CONDUCTORS AND INSULATORS
More informationChapter 24: Electric Current
Chapter 24: Electric Current Current Definition of current A current is any motion of charge from one region to another. Suppose a group of charges move perpendicular to surface of area A. The current
More informationElectric Current & DC Circuits How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits
Slide 1 / 127 Slide 2 / 127 Electric Current & DC Circuits www.njctl.org Slide 3 / 127 How to Use this File Slide 4 / 127 Electric Current & DC Circuits Each topic is composed of brief direct instruction
More informationElectric Current & DC Circuits
Electric Current & DC Circuits Circuits Click on the topic to go to that section Conductors Resistivity and Resistance Circuit Diagrams Measurement EMF & Terminal Voltage Kirchhoff's Rules Capacitors*
More informationChapter 3: Electric Current And DirectCurrent Circuits
Chapter 3: Electric Current And DirectCurrent Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field
More informationAlgebra Based Physics
Page 1 of 105 Algebra Based Physics Electric Current & DC Circuits 20151006 www.njctl.org Page 2 of 105 Electric Current & DC Circuits Circuits Conductors Resistivity and Resistance Circuit Diagrams
More information2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E.
Circuits Topics: Current Conservation of current Batteries Resistance and resistivity Simple circuits 0.1 Electromotive Force and Current Conventional current is the hypothetical flow of positive charges
More informationCircuits. Electric Current & DC Circuits. Slide 1 / 127. Slide 2 / 127. Slide 3 / 127. Slide 4 / 127. Slide 5 / 127. Slide 6 / 127
Slide 1 / 127 Slide 2 / 127 New Jersey Center for Teaching and Learning Electric Current & DC Circuits www.njctl.org Progressive Science Initiative This material is made freely available at www.njctl.org
More informationDirect Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014
Direct Currents We will now start to consider charges that are moving through a circuit, currents. 1 Direct Current Current usually consists of mobile electrons traveling in conducting materials Direct
More informationSection 1 Electric Charge and Force
CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible
More informationCapacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery
Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape
More informationChapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final
Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More informationElectric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)
Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which
More informationChapter 21 Electric Current and Direct Current Circuits
Chapter 21 Electric Current and Direct Current Circuits 1 Overview of Chapter 21 Electric Current and Resistance Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s Rules
More informationPhysics for Scientists & Engineers 2
Review The resistance R of a device is given by Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 8 R =! L A ρ is resistivity of the material from which the device is constructed L is the
More informationChapter 3: Electric Current and DirectCurrent Circuit
Chapter 3: Electric Current and DirectCurrent Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Directcurrent is current that flows
More informationEE301 RESISTANCE AND OHM S LAW
Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short
More information3 Electric current, resistance, energy and power
3 3.1 Introduction Having looked at static charges, we will now look at moving charges in the form of electric current. We will examine how current passes through conductors and the nature of resistance
More informationWhich of the following is the SI unit of gravitational field strength?
T52 [122 marks] 1. A cell is connected in series with a 2.0Ω resistor and a switch. The voltmeter is connected across the cell and reads 12V when the switch is open and 8.0V when the switch is closed.
More informationElectric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More informationElectricity Courseware Instructions
Physics Electricity Courseware Instructions This courseware acts as a supplement to the classroom instruction. The five sections on the following slide link to the topic areas. Following the topic area
More informationCHAPTER 1 ELECTRICITY
CHAPTER 1 ELECTRICITY Electric Current: The amount of charge flowing through a particular area in unit time. In other words, it is the rate of flow of electric charges. Electric Circuit: Electric circuit
More informationPhysics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3
Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 Summary of last lecture Equipotential surfaces: Surfaces where the potential is the same everywhere, e.g. the
More informationTSOKOS LSN 51 TO 55 TEST REVIEW
IB HYSICS Name: DEIL HYSICS eriod: Date: # Marks: BADDEST CLASS ON CAMUS TSOKOS LSN 51 TO 55 TEST REIEW 4. This question is about forces on charged particles. (a) (b) A charged particle is situated in
More informationChapter 17 Electric Current and Resistance Pearson Education, Inc.c
Chapter 17 Electric Current and Resistance 2010 Pearson Education, Inc.c 1 Units of Chapter 17 Batteries and Direct Current Current and Drift Velocity Resistance and Ohm s Law Electric Power 2010 Pearson
More informationClosed loop of moving charges (electrons move  flow of negative charges; positive ions move  flow of positive charges. Nucleus not moving)
Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit
More informationCircuits. Circuits. Electric Current & DC Circuits. current and circuits presentation March 22, How to Use this File.
New Jersey Center for Teaching and Learning Electric Current & DC Circuits Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non commercial
More informationPhysicsAndMathsTutor.com
Electricity May 02 1. The graphs show the variation with potential difference V of the current I for three circuit elements. PhysicsAndMathsTutor.com When the four lamps are connected as shown in diagram
More informationElectron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.
Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity
More informationDirect Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1
Direct Current Circuits February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Kirchhoff s Junction Rule! The sum of the currents entering a junction must equal the sum of the currents leaving
More informationQuestion 3: How is the electric potential difference between the two points defined? State its S.I. unit.
EXERCISE (8 A) Question : Define the term current and state its S.I unit. Solution : Current is defined as the rate of flow of charge. I = Q/t Its S.I. unit is Ampere. Question 2: Define the term electric
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (batteries) and energytakers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current
More information1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wbturns 1.
1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. 2 magnetic 1 flux linkage / 0 10 2 Wbturns 1 2 5 10 15 t / 10 3 s Fig. 3.1 The generator has a flat coil
More informationCh 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance?
Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance? 33. How many 100W lightbulbs can you use in a 120V
More informationChapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance 254 Resistivity Example 255: Speaker wires. Suppose you want to connect your stereo to remote speakers. (a) If each wire must be 20 m long, what diameter copper
More informationPhysics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II
Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II In today s lecture, we will learn to: Calculate the resistance of a conductor depending on the material and shape Apply
More informationElectric Currents. Resistors (Chapters 2728)
Electric Currents. Resistors (Chapters 2728) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power
More informationCircuits. Electric Current & DC Circuits Circuits. Unit 6. April Electric Current. Electric Current. Electric Current. ΔQ Δt
Electric Current & DC Circuits Electric Current & DC Circuits Circuits Conductors esistivity and esistance Click on the topic to go to that section Circuit Diagrams Measurement Electric Current Circuits
More informationChapter 25 Current Resistance, and Electromotive Force
Chapter 25 Current Resistance, and Electromotive Force 1 Current In previous chapters we investigated the properties of charges at rest. In this chapter we want to investigate the properties of charges
More informationPhysics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits
Physics 1214 Chapter 19: Current, Resistance, and DirectCurrent Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When
More informationphysics for you February 11 Page 68
urrent Electricity Passage 1 4. f the resistance of a 1 m length of a given wire t is observed that good conductors of heat are also is 8.13 10 3 W, and it carried a current 1, the good conductors of electricity.
More informationElectric Currents and Circuits
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 19 Electric Currents and Circuits Marilyn Akins, PhD Broome Community College Electric Circuits The motion of charges leads to the idea of
More informationA Review of Circuitry
1 A Review of Circuitry There is an attractive force between a positive and a negative charge. In order to separate these charges, a force at least equal to the attractive force must be applied to one
More informationChapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q
More informationPHYS 1444 Section 004 Lecture #10
PHYS 1444 Section 004 Lecture #10 Dr. Electric Current and Resistance The Battery Ohm s Law: Resisters Resistivity Electric Power Alternating Current Power Delivered by AC Today s homework is #6, due 10pm,
More informationXII PHYSICS [CURRENT ELECTRICITY] CHAPTER NO. 13 LECTURER PHYSICS, AKHSS, K.
XII PHYSICS LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [CURRENT ELECTRICITY] CHAPTER NO. 13 CURRENT Strength of current in a conductor is defined as, Number of coulombs
More informationElectricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena.
Unit 11 Electricity 1. Electric charge Electric charge is a property of all objects. It is responsible for electrical phenomena. Electrical phenomena are caused by the forces of attraction and repulsion.
More information10/14/2018. Current. Current. QuickCheck 30.3
Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,
More informationAC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage
Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from
More informationConducting surface  equipotential. Potential varies across the conducting surface. Lecture 9: Electrical Resistance.
Lecture 9: Electrical Resistance Electrostatics (timeindependent E, I = 0) Stationary Currents (timeindependent E and I 0) E inside = 0 Conducting surface  equipotential E inside 0 Potential varies
More information16.1 Electrical Current
16.1 Electrical Current Electric Current Electric Current When the ends of an electric conductor are at different electric potentials, charge flows from one end to the other Flow of Charge Charge flows
More informationELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?
ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,
More informationPhysics 142 Steady Currents Page 1. Steady Currents
Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of
More informationName: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
Name: Class: Date: AP REVIEW 4 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a positively charged glass rod is used to charge a metal
More informationGeneral Physics (PHYC 252) Exam 4
General Physics (PHYC 5) Exam 4 Multiple Choice (6 points). Circle the one best answer for each question. For Questions 13, consider a car battery with 1. V emf and internal resistance r of. Ω that is
More informationSECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM
SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain
More informationChapter 12. Magnetism and Electromagnetism
Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the
More informationMonday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example
Monday July 14 Lecture 5 Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example Lecture 6 Currents and esistance Lecture 9 Circuits Wear Microphone 1 3 Lecture 6 Current and
More informationVersion The diagram below represents lines of magnetic flux within a region of space.
1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field
More informationEXPERIMENT 12 OHM S LAW
EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete
More informationPhysics 7B1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20
Physics 7B1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making
More informationPhysics 2B: Review for Celebration #2. Chapter 22: Current and Resistance
Physics 2: eview for Celebration #2 Chapter 22: Current and esistance Current: q Current: I [I] amps (A) 1 A 1 C/s t Current flows because a potential difference across a conductor creates an electric
More informationA free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law,
Exercises Question 3.1: The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery? Answer 3.1: Emf
More information5. ELECTRIC CURRENTS
5. ELECTRIC CURRENTS TOPIC OUTLINE Section Recommended Time Giancoli Section 5.1 Potential Difference, Current, Resistance 5.2 Electric Circuits 3h 19.1, 19.2 6.2 Electric Field and Force 6.3 Magnetic
More informationVersion 001 CIRCUITS holland (1290) 1
Version CIRCUITS holland (9) This printout should have questions Multiplechoice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated
More informationDirect Current (DC) Circuits
Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be
More informationSlide 1 / 26. Inductance by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationCLASS X ELECTRICITY
Conductor Insulator: Materia Materials through which electric current cannot pass are called insulators. Electric Circuit: A continuous a CLASS X ELECTRICITY als through which electric current can pass
More informationragsdale (zdr82) HW5 ditmire (58335) 1
ragsdale (zdr82) HW5 ditmire (58335) 1 This printout should have 20 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. 001 (part 1 of 2) 10.0
More informationET 162 Circuit Analysis. Current and Voltage. Electrical and Telecommunication Engineering Technology. Professor Jang
ET 162 Circuit Analysis Current and Voltage Electrical and Telecommunication Engineering Technology Professor Jang Acknowledgement I want to express my gratitude to Prentice Hall giving me the permission
More information1. How does a light bulb work?
AP Physics 1 Lesson 12.a Electric Current and Circuits Outcomes 1. Determine the resistance of a resistor given length, crosssectional area and length. 2. Relate the movement of charge to differences
More informationChapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance 251 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte.
More informationElectroMagnetic Induction
ElectroMagnetic Induction Physics 1 What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday first
More informationPhysics 202: Lecture 5, Pg 1
Resistance Resistors Series Parallel Ohm s law Electric Circuits Current Physics 132: Lecture e 15 Elements of Physics II Kirchhoff s laws Agenda for Today Physics 202: Lecture 5, Pg 1 Electric Current
More informationCurrent and Resistance
Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 21 Electric current 22
More informationMITES Middle School Introduction To Engineering Systems
MITES Middle School Introduction To Engineering Systems 2 Expectations for Behavior Be Respectful To teacher, To Peers, To Facilities Follow 1 st Request From Teachers or Peers Golden Rule Treat others
More informationCHARGE AND ELECTRIC CURRENT:
ELECTRICITY: CHARGE AND ELECTRIC CURRENT ELECTRIC CHARGE ELECTRIC CURRENT ELECTRIC CIRCUIT DEFINITION AND COMPONENTS EFFECTS OF ELECTRIC CURRENT TYPES OF CIRCUITS ELECTRIC QUANTITIES VOLTAGE CURRENT RESISTANCE
More informationRead Chapter 7; pages:
Forces Read Chapter 7; pages: 191221 Objectives:  Describe how electrical charges exert forces on each other; Compare the strengths of electric and gravitational forces; Distinguish between conductors
More informationChapter 28. Direct Current Circuits
Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining
More informationDynamic Electricity. All you need to be an inventor is a good imagination and a pile of junk. Thomas Edison
Dynamic Electricity All you need to be an inventor is a good imagination and a pile of junk. Thomas Edison Review Everything is made of atoms which contain POSITIVE particles called PROTONS and NEGATIVE
More informationChapter 24: Electric Current
Chapter 24: Electric Current Electric current Electric current is a net flow of electric charge. Quantitatively, current is the rate at which charge crosses a given area. I = dq dt dq = q(n AL)=q(n Av
More informationChapter 21 Electric Current and Direct Current Circuits
Chapter 21 Electric Current and Direct Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s
More informationChapter 7 DirectCurrent Circuits
Chapter 7 DirectCurrent Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 VoltageCurrent Measurements... 8 7.6
More informationChapter 25: Electric Current
Chapter 25: Electric Current Conductors and Charge Carriers Consider a conducting piece of metal: The valence electrons are weakly bound to the nuclei form a fluidlike sea of electrons that can move through
More informationLABORATORY 4 ELECTRIC CIRCUITS I. Objectives
LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that
More informationUniversity Physics (PHY 2326)
Chapter 25 University Physics (PHY 2326) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm
More informationfehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok
fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok 1 Course Progress Introductory level Electrostatic, Coulomb s Law Electric Field, Gauss Law Magnetic field, Maxwell s Equations Current,
More informationRESISTANCE AND NETWORKS
PURPOSE The purpose of this laboratory is to learn to construct simple circuits; and, to become familiar with the use of power supplies and the digital multimeter. to experimentally find the equivalent
More informationChapter 26 & 27. Electric Current and Direct Current Circuits
Chapter 26 & 27 Electric Current and Direct Current Circuits Electric Current and Direct Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination
More informationTOPIC 4 STATIC ELECTRICITY
IGCSE Physics 0625 notes Topic 4: Static Electricity 1 TOPIC 4 STATIC ELECTRICITY ELECTRICITY: Electricity is the flow of electrical charges or power. The charges could be in the form of electrons or ions.
More informationLesson 8 Electrical Properties of Materials. A. Definition: Current is defined as the rate at which charge flows through a surface:
Lesson 8 Electrical Properties of Materials I. Current I A. Definition: Current is defined as the rate at which charge flows through a surface: + + B. Direction: The direction of positive current flow
More informationChapter 27. Current and Resistance
Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new
More information