Direct Current (DC) Circuits


 Basil Crawford
 5 years ago
 Views:
Transcription
1 Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be part of your participation grade. PHYS 0219 DC Circuits 1
2 Direct Current (DC) Circuits This experiment has five parts: Using a Galvanometer { 1. Construct an Ammeter to measure electrical current. 2. Construct an Ohmmeter to measure electrical resistance. 3. Construct a oltmeter to measure voltage. 4. Measure the internal resistance of a galvanometer. 5. C Circuits. Electrical charge is a fundamental property of matter, like mass, and may be either positive or negative. The unit of electrical charge is the Coulomb (C) C electrons Electrical Current () The amount of charge flowing past a given point per unit time. Ampere (amp or A) Coulomb second PHYS 0219 DC Circuits 2
3 oltage () The energy per unit of charge. olt () Joule Coulomb The oltage and the Current are related by Ohm s Law: = esistance, units are: olt Ohm ( ) Amp A circuit is a closed path for electrical current Electrons gain potential energy in the battery. 2. They leave the positive end of the battery and travel to the filament of the light bulb. 3. They lose potential energy in the filament by converting it to light and heat. 4. The electrons return to the negative end of the battery and gain more potential energy. PHYS 0219 DC Circuits 3
4 A circuit is often drawn using a schematic Lines represent wires and symbols represent circuit elements. f the voltage of the batter is = 1.5 and the resistance is = 100, what is the current in the circuit? A ma PHYS 0219 DC Circuits 4
5 esistors in a circuit may be connected two different ways: series and parallel. Series The current through each device is the same but the voltage change across each device may be different s is a single resistor that can effectively replace 1 and 2. s s s 1 2 Note that adding resistors in series increases the effective resistance. n general, if there are N resistors in series, then the effective resistance for all of them will be: s N PHYS 0219 DC Circuits 5
6 Parallel The voltage across each device is the same but the current through each device may be different. 2 p p Note that adding resistors in parallel decreases the effective resistance. p is a single resistor that can effectively replace 1 and p n general, if there are N resistors in parallel, then the effective resistance for all of them will be: p PHYS 0219 DC Circuits 6 p N
7 Example: What is the effective resistance of this circuit? Start with the parallel combination: 1 =100 s = p 2 =200 p = p 120 Now calculate the series combination: =300 s s s 220 p PHYS 0219 DC Circuits 7
8 What is the effective resistance between points x and y? x y 200 a) 80 b) 3600 c) 764 d) 500 PHYS 0219 DC Circuits 8
9 Galvanometer A device that measures electrical current in a circuit. A galvanometer must be placed in series in a circuit so that the current passes through the meter. For this reason the internal resistance of the galvanometer m should be as small as possible, ideally zero ohms. m G The arrow means the resistor is variable. +  m G This is the basic circuit you will use for the first three parts of the lab. Ohm s law for this circuit is: m PHYS 0219 DC Circuits 9
10 The power through the resistance substitution box must not exceed 2 Watts. P 5 (2 W) A 0.40 A 400 ma 13 PHYS 0219 DC Circuits 10
11 A word of advice. Adjust the resistance on the decade box to get an even value of the current t is difficult to estimate the value of the current between the tick marks. However, if you adjust the resistance so the needle falls right on a tick mark each time then your results will be much more accurate. PHYS 0219 DC Circuits 11
12 Construction of an Ammeter An ammeter measures electrical current. m m G Solve Ohm s law for. m +  Make the substitution: x 1 x m PHYS 0219 DC Circuits 12
13 x m Make a plot of versus x. slope The voltage of the power supply. intercept m The internal resistance of the galvanometer. PHYS 0219 DC Circuits 13
14 Construction of an Ohmmeter An ohmmeter measures electrical resistance. Same equation as before: x m +  m G The values of and m come form part one. n this part of the lab you will put known values of resistance into the circuit and use this equation to calculate. You will use this circuit to measure individual resistors as well as series and parallel combinations of resistors. PHYS 0219 DC Circuits 14
15 A voltmeter measures voltage. +  Say 2 ma and 10 m Construction of an oltmeter m G then 2 10 A The voltage may be determined with this equation: m The value of m comes form part one and the resistance is preset. n this part of the lab you will put known sources of voltage into the circuit and use this equation to calculate. The preset value of may be determined using Ohm s law: f max and max 30 5 ma max then m 103 max 510 A PHYS 0219 DC Circuits
16 1 +  The nternal esistance of the Galvanometer You will determine the internal resistance of the galvanometer m from the intercept of versus x (1/), but how accurate is it? This procedure will determine m more directly. Step 1 Adjust the external resistor 1 until the current through the galvanometer is 4 ma. m 1 1 m 1 G 2 m 2 2 A m 2 m 2 1 PHYS 0219 DC Circuits m Step 2 Add a second external resistor 2 in parallel with the galvanometer and adjust it until the current through the galvanometer is 2 ma. B m
17 Assume that 10, 1000 and that m 1 A m ma B A B m m m 1 m m 4.02 ma This tells us that when we add 2 to the circuit the total current stays approximately the same (only 0.4% difference). So basically, we can turn this around and say that when we adjust 2 such that the current through the galvanometer is cut in half then: 2 m PHYS 0219 DC Circuits 17
18 esistor Capacitor (C) Circuits A capacitor is a set of two conductors separated by a small distance. Usually a capacitor is constructed from a set of parallel plates or a set of concentric cylinders. The symbol used for capacitors in schematics is as set of parallel plates: O The volume between the conductors can be vacuum, air or a dielectric material. Dielectric materials become polarized by the electric field across a capacitor and thus increase its capacitance. PHYS 0219 DC Circuits 18
19 When a capacitor is connected to a battery, positive and negative charges build up on the two opposite plates. This charging of the capacitor is nearly instantaneous A negative current flowing away from the negative terminal of the battery is just like a positive current flowing towards it. The total amount of charge that builds up is proportional to the voltage across the capacitor. q This can be turned into an equation by multiplying one side by a constant of proportionality called the capacitance C. q C PHYS 0219 DC Circuits 19
20 C C = Capacitance q Coulomb Farad (F) olt 3 mf 10 F 6 F 10 F 9 nf 10 F 12 pf 10 F The charging of a capacitor may be slowed down by placing a resistor in series with it the capacitor C The voltage change across the resistor and capacitor must equal the voltage of the battery, so: 0 C We can rewrite this using Ohm s law and the equation for the capacitance: 0 C This is actually a differential equation since: dq PHYS 0219 DC Circuits 20 q q 0 dt C Divide both sides by : 0 dq q dt C dq dt
21 0 dq q dt C q C e The solution for this differential equation is: 1 t C 0 Divide both sides by C and this becomes: 1 t C 0 e Charging Capacitor C is called the time constant. C olt Coulomb Coulomb second olt second 0 oltage () versus time (t) plot for a charging capacitor t PHYS 0219 DC Circuits 21
22 What happens if the capacitor is charged and the battery is removed? C The voltage change across the resistor and capacitor must now sum to zero volts: 0 C init As before, we can rewrite this using Ohm s law and the equation for the capacitance: 0 q dq q C dt C Divide both sides by : 0 The solution for this differential equation is: q dq dt init q C C e t C The initial voltage on the charged capacitor. Divide both sides by C and this becomes: e init t C Discharging Capacitor PHYS 0219 DC Circuits 22
23 init e init t C 1 ln ln init C oltage () versus time (t) plot for a discharging capacitor Take the natural log of both sides: t Plot ln versus time (t) 1 slope C intercept ln init t PHYS 0219 DC Circuits 23
24 Basic Procedure for C Circuits 1. Observe the charge and discharge curves for a capacitor. 2. Measure the voltage as a function of time for a discharging capacitor. 3. Make a plot of ln versus time and use the slope to determine the C time constant. 1 ln ln init C t 4. Measure the voltage as a function of time for the charging capacitor and use several data points to confirm the equation for a charging capacitor. 1 t C 0 e PHYS 0219 DC Circuits 24
25 NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be part of your participation grade. PHYS 0219 DC Circuits 25
MEP 382: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis
Faculty of Engineering MEP 38: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis Outline oltage and Current Ohm s Law Kirchoff s laws esistors Series and Parallel oltage Dividers
More informationCircuits. 1. The Schematic
+ ircuits 1. The Schematic 2. Power in circuits 3. The Battery 1. eal Battery vs. Ideal Battery 4. Basic ircuit nalysis 1. oltage Drop 2. Kirchoff s Junction Law 3. Series & Parallel 5. Measurement Tools
More informationReview. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.
More informationChapter 20 Electric Circuits
Chapter 0 Electric Circuits Chevy olt  Electric vehicle of the future Goals for Chapter 9 To understand the concept of current. To study resistance and Ohm s Law. To observe examples of electromotive
More informationPHYSICS FORM 5 ELECTRICAL QUANTITES
QUANTITY SYMBOL UNIT SYMBOL Current I Amperes A Voltage (P.D.) V Volts V Resistance R Ohm Ω Charge (electric) Q Coulomb C Power P Watt W Energy E Joule J Time T seconds s Quantity of a Charge, Q Q = It
More informationReview of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.
DC Circuits Objectives The objectives of this lab are: 1) to construct an Ohmmeter (a device that measures resistance) using our knowledge of Ohm's Law. 2) to determine an unknown resistance using our
More informationScience Olympiad Circuit Lab
Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary
More informationQ2 How many coulombs of charge leave the power supply during each second?
Part I  Circuit Elements in Series In Figure 1 at the right circuit elements #1, #2, #3 (in this case light bulbs) are said to be connected "IN SERIES". That is, they are connected in a series one right
More informationCHAPTER 1 ELECTRICITY
CHAPTER 1 ELECTRICITY Electric Current: The amount of charge flowing through a particular area in unit time. In other words, it is the rate of flow of electric charges. Electric Circuit: Electric circuit
More informationCoulomb s constant k = 9x10 9 N m 2 /C 2
1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy
More informationDanger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks:
Danger High Voltage! Your friend starts to climb on this... You shout Get away! That s High Voltage!!! After you save his life, your friend asks: What is Voltage anyway? Voltage... Is the energy (U, in
More informationCLASS X ELECTRICITY
Conductor Insulator: Materia Materials through which electric current cannot pass are called insulators. Electric Circuit: A continuous a CLASS X ELECTRICITY als through which electric current can pass
More informationR R V I R. Conventional Current. Ohms Law V = IR
DC Circuits opics EMF and erminal oltage esistors in Series and in Parallel Kirchhoff s ules EMFs in Series and in Parallel Capacitors in Series and in Parallel Ammeters and oltmeters Conventional Current
More informationChapter 3: Electric Current and DirectCurrent Circuit
Chapter 3: Electric Current and DirectCurrent Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Directcurrent is current that flows
More informationUniversity Physics (PHY 2326)
Chapter 25 University Physics (PHY 2326) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm
More informationElectromagnetism Checklist
Electromagnetism Checklist Elementary Charge and Conservation of Charge 4.1.1A Convert from elementary charge to charge in coulombs What is the charge in coulombs on an object with an elementary charge
More informationEXPERIMENT 12 OHM S LAW
EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete
More informationFigure 1: Capacitor circuit
Capacitors INTRODUCTION The basic function of a capacitor 1 is to store charge and thereby electrical energy. This energy can be retrieved at a later time for a variety of uses. Often, multiple capacitors
More informationINTRODUCTION TO ELECTRONICS
INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways
More informationEngineering Fundamentals and Problem Solving, 6e
Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits Chapter Objectives Compute the equivalent resistance of resistors in series and in parallel Apply Ohm s law to a resistive
More informationElectric Circuits. AP Physics 1
Electric Circuits AP Physics Potential Difference =oltage=emf n a battery, a series of chemical reactions occur in which electrons are transferred from one terminal to another. There is a potential difference
More informationChapter 27: Current and Resistance
Chapter 7: Current and esistance In this section of the course we will be studying the flow of electric charge, current, in a circuit. We have already seen electric current when we first discussed electric
More informationCircuits. Electric Current & DC Circuits Circuits. Unit 6. April Electric Current. Electric Current. Electric Current. ΔQ Δt
Electric Current & DC Circuits Electric Current & DC Circuits Circuits Conductors esistivity and esistance Click on the topic to go to that section Circuit Diagrams Measurement Electric Current Circuits
More informationin series Devices connected in series will have the same amount of charge deposited on each capacitor. But different potential difference. That means
Electric Field Electricity Lecture Series Electric Field: Field an area where any charged object will experience an electric force Kirchoff s Laws The electric field lines around a pair of point charges
More informationChapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final
Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More informationWhat is an Electric Current?
Electric Circuits NTODUCTON: Electrical circuits are part of everyday human life. e.g. Electric toasters, electric kettle, electric stoves All electrical devices need electric current to operate. n this
More informationUNIT II CURRENT ELECTRICITY
UNIT II CUENT ELECTICITY Weightage : 07 Marks Electric current; flow of electric charges in a metllic conductor, drift velocity, mobility and their relation with electric current. Ohm s law electrical
More informationELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?
ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,
More informationRelating Voltage, Current and Resistance
Relating Voltage, Current and Resistance Using Ohm s Law in a simple circuit. A Simple Circuit Consists of:! A voltage source often a battery! A load such as a bulb! Conductors arranged to complete a circuit
More informationCircuits. Electric Current & DC Circuits. Slide 1 / 127. Slide 2 / 127. Slide 3 / 127. Slide 4 / 127. Slide 5 / 127. Slide 6 / 127
Slide 1 / 127 Slide 2 / 127 New Jersey Center for Teaching and Learning Electric Current & DC Circuits www.njctl.org Progressive Science Initiative This material is made freely available at www.njctl.org
More informationDirect Current (DC): In a DC circuit the current and voltage are constant as a function of time. Power (P): Rate of doing work P = dw/dt units = Watts
Lecture 1: Introduction Some Definitions: Current (I): Amount of electric charge (Q) moving past a point per unit time I dq/dt Coulombs/sec units Amps (1 Coulomb 6x10 18 electrons) oltage (): Work needed
More informationCAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING
PHYSICS A2 UNIT 4 SECTION 3: CAPACITANCE CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING # Question CAPACITORS 1 What is current? Current is the rate of flow of charge in a circuit
More informationCapacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery
Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape
More informationA Review of Circuitry
1 A Review of Circuitry There is an attractive force between a positive and a negative charge. In order to separate these charges, a force at least equal to the attractive force must be applied to one
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationPHY102 Electricity Course Summary
TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional
More information52 VOLTAGE, CURRENT, RESISTANCE, AND POWER
52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage
More informationElectric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)
Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which
More informationAC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage
Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from
More informationSwitch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction
Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and
More informationLecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power
More informationSwitch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction
Switch Lab 6. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and
More informationELECTRICITY UNIT REVIEW
ELECTRICITY UNIT REVIEW S1304: How does the Atomic Model help to explain static electricity? 1. Which best describes static electricity? a) charges that can be collected and held in one place b) charges
More informationElectricity Review completed.notebook. June 13, 2013
Which particle in an atom has no electric charge associated with it? a. proton c. neutron b. electron d. nucleus Jun 12 9:28 PM The electrons in a metal sphere can be made to move by touching it with a
More informationElectric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More informationElectric Current & DC Circuits How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits
Slide 1 / 127 Slide 2 / 127 Electric Current & DC Circuits www.njctl.org Slide 3 / 127 How to Use this File Slide 4 / 127 Electric Current & DC Circuits Each topic is composed of brief direct instruction
More informationChapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q
More informationDynamic Electricity. All you need to be an inventor is a good imagination and a pile of junk. Thomas Edison
Dynamic Electricity All you need to be an inventor is a good imagination and a pile of junk. Thomas Edison Review Everything is made of atoms which contain POSITIVE particles called PROTONS and NEGATIVE
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm s law http://www.physics.wayne.edu/~apetrov/phy2140/
More information10/14/2018. Current. Current. QuickCheck 30.3
Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,
More informationElectric Currents. Resistors (Chapters 2728)
Electric Currents. Resistors (Chapters 2728) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power
More informationLABORATORY 4 ELECTRIC CIRCUITS I. Objectives
LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that
More informationRECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel
Unit 3C Circuits RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel 2 Types of Electricity Electrostatics Electricity
More informationChapter 26 & 27. Electric Current and Direct Current Circuits
Chapter 26 & 27 Electric Current and Direct Current Circuits Electric Current and Direct Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination
More informationElectron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.
Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity
More informationMonday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example
Monday July 14 Lecture 5 Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example Lecture 6 Currents and esistance Lecture 9 Circuits Wear Microphone 1 3 Lecture 6 Current and
More informationSIMPLE D.C. CIRCUITS AND MEASUREMENTS Background
SIMPLE D.C. CICUITS AND MEASUEMENTSBackground This unit will discuss simple D.C. (direct current current in only one direction) circuits: The elements in them, the simple arrangements of these elements,
More informationCAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being deenergized.
D ircuits APAITANE APAITANE Because of the effect of capacitance, an electrical circuit can store energy, even after being deenergized. EO 1.5 EO 1.6 EO 1.7 EO 1.8 EO 1.9 DESRIBE the construction of a
More informationSymbol Offers Units. R Resistance, ohms. C Capacitance F, Farads. L Inductance H, Henry. E, I Voltage, Current V, Volts, A, Amps. D Signal shaping 
Electrical Circuits HE 13.11.018 1. Electrical Components hese are tabulated below Component Name Properties esistor Simplest passive element, no dependence on time or frequency Capacitor eactive element,
More informationSPS Presents: A Cosmic Lunch!
SPS Presents: A Cosmic Lunch! Who: Dr. Brown will be speaking about Evolution of the Elements: from Periodic table to Standard Model and Beyond! When: October 7 th at am Where: CP 79 (by the front office)
More informationEE301 RESISTANCE AND OHM S LAW
Learning Objectives a. Describe the concept of resistance b. Use Ohm s law to calculate current, voltage, and resistance values in a circuit c. Discuss the difference between an open circuit and a short
More informationUnit 1 Lesson 1.2 Energy Sources
Unit Lesson. Energy Sources ntroduction to Electricity 0 Electricity Movement of electrons nvisible force that provides light, heat, sound, motion... Elements he simplest form of matter Atoms Smallest
More informationENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004
ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms
More informationSTEPUP 2011 Lesson Plan: Capacitance Brian Heglund Etowah High School Advisor: Phil First
STEPUP 2011 Lesson Plan: Capacitance Brian Heglund Etowah High School Advisor: Phil First Ultra High Vacuum (UHV) at GT can analyze sample surfaces with Leed and Auger. Problem: Can this wire be used
More informationLab #6 Ohm s Law. Please type your lab report for Lab #6 and subsequent labs.
Dr. Day, Fall 2004, Rev. 06/22/10 HEFW PH 262 Page 1 of 4 Lab #6 Ohm s Law Please type your lab report for Lab #6 and subsequent labs. Objectives: When you have completed this lab exercise you should be
More informationSection 1 Electric Charge and Force
CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible
More informationInsulators Nonmetals are very good insulators; their electrons are very tightly bonded and cannot move.
SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and nonohmic conductors Series and parallel connection Energy in an electric circuit Xplanation 1. CONDUCTORS AND INSULATORS
More informationEDEXCEL NATIONAL CERTIFICATE. UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2
EDEXCEL NATIONAL CERTIFICATE UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2 Electric fields and capacitors Electric fields: electrostatics, charge, electron movement in field, force on unit charge,
More informationand the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number.
Name: Physics Chapter 17 Study Guide  Useful Information: e = 1.6"10 #19 C k = 9 "10 9 Nm 2 C 2 $ 0
More informationGeneral Physics II (PHYS 104) Exam 2: March 21, 2002
General Physics II (PHYS 104) Exam 2: March 21, 2002 Name: Multiple Choice (3 points each): Answer the following multiple choice questions. Clearly circle the response (or responses) that provides the
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (batteries) and energytakers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current
More informationCurrent Electricity. ScienceLinks 9, Unit 4 SciencePower 9, Unit 3
Current Electricity ScienceLinks 9, Unit 4 SciencePower 9, Unit 3 Current Electricity The flow of negative charges (electrons) through conductors Watch the BrainPOPs: Electricity Current Electricity Activity:
More informationEXPERIMENT 5A RC Circuits
EXPERIMENT 5A Circuits Objectives 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.
More informationAP Physics C  E & M
AP Physics C  E & M Current and Circuits 20170712 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's
More informationAP Physics C  E & M
Slide 1 / 27 Slide 2 / 27 AP Physics C  E & M Current, Resistance & Electromotive Force 20151205 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from
More informationCapacitance, Resistance, DC Circuits
This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple
More informationTrade of Electrician Standards Based Apprenticeship Capacitance Phase 2 Module No. 2.1 Unit No COURSE NOTES
Trade of Electrician Standards Based Apprenticeship Capacitance Phase 2 Module No. 2.1 Unit No. 2.1.8 COURSE NOTES Certification & Standards Department Created by Gerry Ryan  Galway TC Revision 1 April
More informationSwitch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction
Switch Lab 9. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and
More informationAP Physics C. Electric Circuits III.C
AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the crosssectional area of the conductor changes. If a conductor has no current,
More informationECE 2100 Circuit Analysis
ECE 2100 Circuit Analysis Lesson 3 Chapter 2 Ohm s Law Network Topology: nodes, branches, and loops Daniel M. Litynski, Ph.D. http://homepages.wmich.edu/~dlitynsk/ esistance ESISTANCE = Physical property
More informationPractical 1 RC Circuits
Objectives Practical 1 Circuits 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.
More informationLaboratory Worksheet Experiment NE04  RC Circuit Department of Physics The University of Hong Kong. Name: Student ID: Date:
PHYS1050 / PHYS1250 Laboratory Worksheet Experiment Department of Physics The University of Hong Kong Ref. (Staff Use) Name: Student ID: Date: Draw a schematic diagram of the charging RC circuit with ammeter
More informationChapter 26 DirectCurrent Circuits
Chapter 26 DirectCurrent Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing
More informationCharge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter
Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.
More informationSPH3U1 Lesson 01 Electricity
ELECTRIC CURRENT AND POTENTIAL DIFFERENCE LEARNING GOALS Students will: Define what is meant by electric current. Solve problems involving current, charge and time. Know the difference between electron
More informationFlow Rate is the NET amount of water passing through a surface per unit time
Electric Current An Analogy Water Flow in a Pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a surface per unit time Individual molecules are bouncing around with speeds of
More information16.1 Electrical Current
16.1 Electrical Current Electric Current Electric Current When the ends of an electric conductor are at different electric potentials, charge flows from one end to the other Flow of Charge Charge flows
More informationChapter 21 Electric Current and Circuits
Chapter 21 Electric Current and Circuits 1 As an introduction to this chapter you should view the following movie. If you cannot click on the link, then copy it and paste it into your web browser. http://www.ionaphysics.org/movies/vir.mp4
More informationPHYSICS ASSIGNMENT ES/CE/MAG. Class XII
PHYSICS ASSIGNMENT ES/CE/MAG Class XII MM : 70 1. What is dielectric strength of a medium? Give its value for vacuum. 1 2. What is the physical importance of the line integral of an electrostatic field?
More informationCHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3
urrent onvention HEM*3440 hemical nstrumentation Topic 3 udimentary Electronics ONENTON: Electrical current flows from a region of positive potential energy to a region of more negative (or less positive)
More informationWELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday.
WELCOME TO PERIOD 14 Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday. PHYSICS 1103 PERIOD 14 What is an electric circuit? How
More informationDEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE
DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE NAME. Section 1 2 3 UNIVERSITY OF LAHORE Department of Computer engineering Linear Circuit Analysis Laboratory Manual 2 Compiled by Engr. Ahmad Bilal
More informationCircuit Lab Test. School Name: Competitor Names: For this test:
Circuit Lab Test School Name: Competitor Names: For this test: Use SI units, except when specified otherwise. Make sure not to forget the units when recording your answers. Use positive numbers for voltage
More informationElectric Currents and Circuits
Electric Currents and Circuits Producing Electric Current Electric Current flow of charged particles Need a potential difference to occur Conventional Current flow of positive charges flowing from positive
More informationLab 10: DC RC circuits
Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:
More informationWhich of these particles has an electrical charge?
Which of these particles has an electrical charge? A. Proton. B. Electron. C. Ion. D. All of the above. Which is the predominant carrier of charge in copper wire? A. Proton. B. Electron. C. Ion. D. All
More informationTest Review Electricity
Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show
More informationGreek Letter Omega Ω = Ohm (Volts per Ampere)
) What is electric current? Flow of Electric Charge 2) What is the unit we use for electric current? Amperes (Coulombs per Second) 3) What is electrical resistance? Resistance to Electric Current 4) What
More information2015 EdExcel ALevel Physics Topic 3. Charge and current
2015 EdExcel ALevel Physics Topic 3 Charge and current 9/17/2018 Electric Charge Atoms consists of Negativelycharged electrons and Positively charged protons. Atoms have the same number of protons and
More information