Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance?


 Morris Mills
 4 years ago
 Views:
Transcription
1 Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120V source. What current does the toaster carry, and what is its resistance? 33. How many 100W lightbulbs can you use in a 120V circuit without tripping a 15A circuit breaker? (The bulbs are connected in parallel, which means that the potential difference across each lightbulb is 120 V.) 13. Find the current in the 12Ω resistor in Figure P A small motor draws a current of 1.75 A from a 120V line. The output power of the motor is 0.20 hp. (a) At a rate of $0.060/kWh, what is the cost of operating the motor for 4.0 h? (b) What is the efficiency of the motor? 52. Birds resting on highvoltage power lines are a common sight. The copper wire on which a bird stands is 2.2 cm in diameter and carries a current of 50 A. If the bird s feet are 4.0 cm apart, calculate the potential difference across its body. Ch 18 Problem Set 14. Calculate the power delivered to each resistor in the circuit shown in Figure P (a) You need a 45Ω resistor, but the stockroom has only 20Ω and 50Ω resistors. How can the desired resistance be achieved under these circumstances? (b) What can you do if you need a 35Ω resistor? 9. Consider the circuit shown in Figure P18.9. Find (a) the current in the 20.0Ω resistor and (b) the potential difference between points a and b. 16. The ammeter shown in Figure P18.16 reads 2.00 A. Find I 1, I 2, and ε. 11. The resistance between terminals a and b in Figure P18.11 is 75 Ω. If the resistors labeled R have the same value, determine R. 17. Determine the current in each branch of the circuit shown in Figure P18.17.
2 27. Find the current in each resistor in Figure P Chapter Figure P18.19 shows a circuit diagram. Determine (a) the current, (b) the potential of wire A relative to ground, and (c) the voltage drop across the Ω resistor. 1. An electron gun fires electrons into a magnetic field that is directed straight downward. Find the direction of the force exerted by the field on an electron for each of the following directions of the electron s velocity: (a) horizontal and due north; (b) horizontal and 30 west of north; (c) due north, but at 30 below the horizontal; (d) straight upward. (Remember that an electron has a negative charge.) 2. (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown below. (b) Repeat part (a), assuming the moving particle is an electron. 20. In the circuit of Figure P18.20, the current I 1 is 3.0 A and the values of ε and R are unknown. What are the currents I 2 and I 3? 23. (a) Find the current in each resistor shown in Figure P18.23 and (b) find the potential difference between points c and f. 3. Find the direction of the magnetic field acting on the positively charged particle moving in the various situations shown in Figure P19.3 below, if the direction of the magnetic force acting on it is as indicated.
3 4. Determine the initial direction of the deflection of charged particles as they enter the magnetic fields shown in Figure P19.4 below. 15. A wire carries a current of 10.0 A in a direction that makes an angle of 30.0 with the direction of a magnetic field of strength T. Find the magnetic force on a 5.00m length of the wire. 5. At the Equator near Earth s surface, the magnetic field is approximately 50.0 μt northward and the electric field is about 100 N/C downward in fair weather. Find the gravitational, electric, and magnetic forces on an electron with an instantaneous velocity of m/s directed to the east in this environment. 6. A proton travels with a speed of m/s at an angle of 37 with the direction of a magnetic field of 0.30 T in the +y direction. What are (a) the magnitude of the magnetic force on the proton and (b) the proton s acceleration? 9. A proton moves perpendicularly to a uniform magnetic field B at m/s and experiences an acceleration of m/s 2 in the +x direction when its velocity is in the +z direction. Determine the magnitude and direction of the field. 11. A current I = 15 A is directed along the positive x axis and perpendicularly to a magnetic field. The conductor experiences a magnetic force per unit length of 0.12 N/m in the negative y direction. Calculate the magnitude and direction of the magnetic field in the region through which the current passes. 14. A wire carries a steady current of 2.40 A. A straight section of the wire is m long and lies along the x axis within a uniform magnetic field of magnitude 1.60 T in the positive z direction. If the current is in the + x direction, what is the magnetic force on the section of wire? 20. A thin, horizontal copper rod is 1.00 m long and has a mass of 50.0 g as shown in the figure above. What is the minimum current in the rod that can cause it to float in a horizontal magnetic field of 2.00 T? 27. A particle with a +2.0 μc charge and a kinetic energy of J is fired into a uniform magnetic field of magnitude 0.10 T. If the particle moves in a circular path of radius 3.0 m, determine it s mass. 29. Figure P19.29a above is a diagram of a device called a velocity selector, in which particles of a specific velocity pass through undeflected but those with greater or lesser velocities are deflected either upward or downward. An electric field is directed perpendicularly to a magnetic field. This produces on the charged particle an electric force and a magnetic force that can be equal in magnitude and opposite in direction (Fig. P19.29b above), and hence cancel. Show that particles with a speed of v = E/B will pass through undeflected.
4 37. At what distance from a long, straight wire carrying a current of 5.0 A is the magnetic field due to the wire equal to the strength of Earth s field, approximately T? 30. Consider the mass spectrometer shown schematically in Figure P19.30 above. The electric field between the plates of the velocity selector is 950 V/m, and the magnetic fields in both the velocity selector and the deflection chamber have magnitudes of T. Calculate the radius of the path in the system for a singly charged ion with mass m = kg. (Hint: See Problem 29.) 31. A singly charged positive ion has a mass of kg. After being accelerated through a potential difference of 250 V, the ion enters a magnetic field of T, in a direction perpendicular to the field. Calculate the radius of the ion s path in the field. 34. Find the direction of the current in the wire in Figure P19.34 that would produce a magnetic field directed as shown, in each case. 44. Two parallel wires are 10.0 cm apart, and each carries a current of 10.0 A. (a) If the currents are in the same direction, find the force per unit length exerted by one of the wires on the other. Are the wires attracted or repelled? (b) Repeat the problem with the currents in opposite directions. 47. What current is required in the windings of a long solenoid that has turns uniformly distributed over a length of m in order to produce a magnetic field of magnitude T at the center of the solenoid? Chapter A magnetic field of strength 0.30 T is directed perpendicular to a plane circular loop of wire of radius 25 cm. Find the magnetic flux through the area enclosed by this loop. 2. A circular loop with a radius of m is placed in a uniform magnetic field of magnitude T. The normal to the loop makes an angle of 30.0 with respect to the direction of B. If the field increases to T, what is the increase in magnetic flux through the loop? 4. A long, straight wire carrying a current of 2.00 A is placed along the axis of a cylinder of radius m and a length of 3.00 m. Determine the total magnetic flux through the cylinder. 5. A long, straight wire lies in the plane of a circular coil with a radius of m. The wire carries a current of 2.0 A and is placed along a diameter of the coil. (a) What is the net flux through the coil? (b) If the wire passes through the center of the coil and is perpendicular to the plane of the coil, find the net flux through the coil. 6. A solenoid 4.00 cm in diameter and 20.0 cm long has 250 turns and carries a current of 15.0 A. Calculate the magnetic flux through the circular crosssectional area of the solenoid. 35. A lightning bolt may carry a current of A for a short period of time. What is the resulting magnetic field 100 m from the bolt? Suppose that the bolt extends far above and below the point of observation. 8. A circular coil of radius 20 cm is placed in an external magnetic field of strength 0.20 T so that the plane of the coil is perpendicular to the field. The coil is pulled out of the field in 0.30 s. Find the average induced emf during this interval.
5 9. A 25turn circular coil of wire has a diameter of 1.00 m. It is placed with its axis along the direction of Earth s magnetic field of 50.0 μt, and then in s it is flipped 180. An average emf of what magnitude is generated in the coil? Figure P A bar magnet is positioned near a coil of wire as shown in Figure P What is the direction of the current through the resistor when the magnet is moved (a) to the left? (b) to the right? 10. The flexible loop in Figure P20.10 has a radius of 12 cm and is in a magnetic field of strength 0.15 T. The loop is grasped at points A and B and stretched until its area is nearly zero. If it takes 0.20 s to close the loop, find the magnitude of the average induced emf in it during this time. 11. A strong electromagnet produces a uniform field of 1.60 T over a crosssectional area of m 2. We place a coil having 200 turns and a total resistance of 20.0 Ω around the electromagnet. We then smoothly decrease the current in the electromagnet until it reaches zero in 20.0 ms. What is the current induced in the coil? Figure P A bar magnet is held above the center of a wire loop in a horizontal plane, as shown in Figure P The south end of the magnet is toward the loop. The magnet is dropped. Find the direction of the current through the resistor (a) while the magnet is falling toward the loop and (b) after the magnet has passed through the loop and moves away from it. 18. Consider the arrangement shown in Figure P20.18 above. Assume that R = 6.00 Ω and = 1.20 m, and that a uniform 2.50T magnetic field is directed into the page. At what speed should the bar be moved to produce a current of A in the resistor? Figure P What is the direction of the current induced in the resistor when the current in the long, straight wire in Figure P20.25 decreases rapidly to zero?
6 Figure P In Figure P20.26, what is the direction of the current induced in the resistor at the instant the switch is closed? Figure P Find the direction of the current through the resistor in Figure P20.28, (a) at the instant the switch is closed, (b) after the switch has been closed for several minutes, and (c) at the instant the switch is opened.
Chapter 12. Magnetism and Electromagnetism
Chapter 12 Magnetism and Electromagnetism 167 168 AP Physics Multiple Choice Practice Magnetism and Electromagnetism SECTION A Magnetostatics 1. Four infinitely long wires are arranged as shown in the
More informationCHAPTER 4: MAGNETIC FIELD
CHAPTER 4: MAGNETIC FIELD PSPM II 2005/2006 NO. 4 4. FIGURE 3 A copper rod of mass 0.08 kg and length 0.20 m is attached to two thin current carrying wires, as shown in FIGURE 3. The rod is perpendicular
More informationVersion The diagram below represents lines of magnetic flux within a region of space.
1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field
More information2. Draw the Magnetic Field lines created by the below two bar magnets. Homework 3. Draw the Magnetic Field lines created by the below bar magnets.
Chapter Problems Magnetic Fields 1. Draw the Magnetic Field lines created by the below bar magnet. S N 2. Draw the Magnetic Field lines created by the below two bar magnets S N N S 3. Draw the Magnetic
More information4. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If B x
Magnetic Fields 3. A particle (q = 4.0 µc, m = 5.0 mg) moves in a uniform magnetic field with a velocity having a magnitude of 2.0 km/s and a direction that is 50 away from that of the magnetic field.
More informationPHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism)
PHYSICS 3204 PUBLIC EXAM QUESTIONS (Magnetism &Electromagnetism) NAME: August 2009
More informationPhysics 196 Final Test Point
Physics 196 Final Test  120 Point Name You need to complete six 5point problems and six 10point problems. Cross off one 5point problem and one 10point problem. 1. Two small silver spheres, each with
More informationPHYS 1444 Section 02 Review #2
PHYS 1444 Section 02 Review #2 November 9, 2011 Ian Howley 1 1444 Test 2 Eq. Sheet Terminal voltage Resistors in series Resistors in parallel Magnetic field from long straight wire Ampére s Law Force on
More informationPRACTICE EXAM 2 for Midterm 2
PRACTICE EXAM 2 for Midterm 2 Multiple Choice Questions 1) In the circuit shown in the figure, all the lightbulbs are identical. Which of the following is the correct ranking of the brightness of the bulbs?
More information1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wbturns 1.
1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. 2 magnetic 1 flux linkage / 0 10 2 Wbturns 1 2 5 10 15 t / 10 3 s Fig. 3.1 The generator has a flat coil
More informationUnit 8: Electromagnetism
Multiple Choice Portion Unit 8: Electromagnetism 1. Four compasses are placed around a conductor carrying a current into the page, as shown below. Which compass correctly shows the direction of the magnetic
More informationSt. Vincent College PH : General Physics II. Exam 5 4/8/2016
St. Vincent College PH 11201: General Physics II Exam 5 4/8/2016 The exam consists of 4 questions. The questions may not be worth the same number of points, so read the entire exam before beginning work.
More informationMagnetism Chapter Questions
Magnetism Chapter Questions 1. Both Electric and Magnetic Forces will cause objects to repel and attract each other. What is a difference in the origin of these forces? 2. A Magnet has a north and a south
More informationPHYS 1102 EXAM  II. SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) You have 1 hr 45 minutes to complete the test
PHYS 1102 EXAM  II SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) Your Name: Student ID: You have 1 hr 45 minutes to complete the test PLEASE DO NOT START TILL YOU ARE INSTRUCTED
More informationAP Physics Electromagnetic Wrap Up
AP Physics Electromagnetic Wrap Up Here are the glorious equations for this wonderful section. This is the equation for the magnetic force acting on a moving charged particle in a magnetic field. The angle
More informationθ θ θ θ current I Fig. 6.1 The conductor and the magnetic field are both in the plane of the paper. State
3 1 (a) A straight conductor carrying a current I is at an angle θ to a uniform magnetic field of flux density B, as shown in Fig. 6.1. magnetic field, flux density B θ θ θ θ current I Fig. 6.1 The conductor
More information(D) Blv/R Counterclockwise
1. There is a counterclockwise current I in a circular loop of wire situated in an external magnetic field directed out of the page as shown above. The effect of the forces that act on this current is
More informationChapter 4: Magnetic Field
Chapter 4: Magnetic Field 4.1 Magnetic Field 4.1.1 Define magnetic field Magnetic field is defined as the region around a magnet where a magnetic force can be experienced. Magnetic field has two poles,
More informationElectromagnetism Notes 1 Magnetic Fields
Electromagnetism Notes 1 Magnetic Fields Magnets can or other magnets. They are able to exert forces on each other without touching because they are surrounded by. Magnetic Flux refers to Areas with many
More information21 MAGNETIC FORCES AND MAGNETIC FIELDS
CHAPTER 1 MAGNETIC FORCES AND MAGNETIC FIELDS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1 (d) RightHand Rule No 1 gives the direction of the magnetic force as x for both drawings A and B In drawing C, the
More informationPS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions
PS I AP Physics 2 Electromagnetic Induction Multiple Choice Questions 1. A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the coils do not carry a current,
More informationTwo point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation.
Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges would yield
More informationPhysics 106, Section 1
Physics 106, Section 1 Magleby Exam 2, Summer 2012 Exam Cid You are allowed a pencil and a testing center calculator. No scratch paper is allowed. Testing center calculators only. 1. A circular coil lays
More informationAP Physics 2 Electromagnetic Induction Multiple Choice
Slide 1 / 50 AP Physics 2 Electromagnetic Induction Multiple Choice www.njctl.org Slide 2 / 50 1 A beam of electrons travels between two parallel coils of wire, as shown in the figures above. When the
More information1. Write the relation for the force acting on a charge carrier q moving with velocity through a magnetic field in vector notation. Using this relation, deduce the conditions under which this force will
More informationPHYS102 Previous Exam Problems. Induction
PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with
More informationMagnetism. and its applications
Magnetism and its applications Laws of Magnetism 1) Like magnetic poles repel, and 2) unlike poles attract. Magnetic Direction and Strength Law 3  Magnetic force, either attractive or repelling varies
More informationA) I B) II C) III D) IV E) V
1. A square loop of wire moves with a constant speed v from a fieldfree region into a region of uniform B field, as shown. Which of the five graphs correctly shows the induced current i in the loop as
More informationMagnetism Practice Problems PSI AP Physics B
Magnetism Practice Problems PSI AP Physics B Name 1. A straight wire carries a current down. What is the direction of the magnetic field at the point to the East from the wire? (A) West (B) East (C) North
More informationPhysicsAndMathsTutor.com 1
PhysicsndMathsTutor.com 1 Q1. Which line, to, correctly describes the trajectory of charged particles which enter, at right angles, (a) a uniform electric field, and (b) a uniform magnetic field? (a) uniform
More informationWhich of the following is the SI unit of gravitational field strength?
T52 [122 marks] 1. A cell is connected in series with a 2.0Ω resistor and a switch. The voltmeter is connected across the cell and reads 12V when the switch is open and 8.0V when the switch is closed.
More informationPhysics 212 Question Bank III 2010
A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic
More informationPHYS 2326 University Physics II Class number
PHYS 2326 University Physics II Class number HOMEWORK SET #1 CHAPTERS: 27,28,29 (DUE JULY 22, 2013) Ch. 27.======================================================= 1. A rod of 2.0m length and a square
More informationv = E B FXA 2008 UNIT G485 Module Magnetic Fields BQv = EQ THE MASS SPECTROMETER
UNIT G485 Module 1 5.1.2 Magnetic Fields 11 Thus, in order for the particle to suffer NO DEFLECTION and so exit the device at Y : From which : MAGNETIC FORCE UP = ELECTRIC FORCE DOWN BQv = EQ THE MASS
More informationPhysics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5.
Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. 1. Which one of the following statements best explains why tiny bits of paper are attracted to a charged rubber rod? A) Paper
More informationFig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field.
1 (a) Fig. 2.1 shows a horizontal currentcarrying wire placed in a uniform magnetic field. I region of uniform magnetic field wire Fig. 2.1 The magnetic field of flux density 0.070 T is at right angles
More informationAn ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path?
T51 [237 marks] 1. A circuit is formed by connecting a resistor between the terminals of a battery of electromotive force (emf) 6 V. The battery has internal resistance. Which statement is correct when
More informationPHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law
PHYSICS 1444001 Fall 2012 Lecture 15 Electromagnetic Induction and Faraday s Law A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday Induced emf A primary
More informationPhysics 2220 Fall 2010 George Williams THIRD MIDTERM  REVIEW PROBLEMS
Physics 2220 Fall 2010 George Williams THIRD MIDTERM  REVIEW PROBLEMS Solution sets are available on the course web site. A data sheet is provided. Problems marked by "*" do not have solutions. 1. An
More informationSPH 4U: Unit 3  Electric and Magnetic Fields
Name: Class: _ Date: _ SPH 4U: Unit 3  Electric and Magnetic Fields Modified True/False (1 point each) Indicate whether the statement is true or false. If false, change the identified word or phrase to
More informationDownloaded from
Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns
More informationSECTION B Induction. 1. The rate of change of flux has which of the following units A) farads B) joules C) volts D) m/s E) webers
SECTION B Induction 1. The rate of change of flux has which of the following units ) farads B) joules C) volts D) m/s E) webers 2. For the solenoids shown in the diagram (which are assumed to be close
More informationPH2200 Practice Exam II Summer 2003
PH00 Practice Exam II Summer 00 INSTRUCTIONS. Write your name and student identification number on the answer sheet and mark your recitation section.. Please cover your answer sheet at all times.. This
More informationPhys 2B Final Exam Name:
Phys 2B Final Exam Name: Multiple Choice (3 points each) 1. Two capacitors initially uncharged are connected in series to a battery, as shown. What is the charge on the top plate of C 1? a. 81 μc b. 18
More informationUnit 4 Magnetism Essential Fundamentals of Magnetism 1. Magnetism is a fundamental force.
Unit 4 Magnetism Essential Fundamentals of Magnetism 1. Magnetism is a fundamental force. Early Booklet E.C.: + 1 Unit 4 Hwk. Pts.: / 34 Unit 4 Lab Pts.: / 36 Late, Incomplete, No Work, No Units Fees?
More informationP ROBL E M S. 10. A currentcarrying conductor experiences no magnetic force when placed in a certain manner in a uniform magnetic field. Explain. 11.
918 C HAPTER 29 Magnetic Fields 10. A currentcarrying conductor experiences no magnetic force when placed in a certain manner in a uniform magnetic field. Explain. 11. s it possible to orient a current
More informationPhysics 6B Summer 2007 Final
Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills
More informationPhys 2025, First Test. September 20, minutes Name:
Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 101 C / N m e
More informationHW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37
Fall 12 PHY 122 Homework Solutions #7 HW7: Ch. 26 P 34, 36 Ch.27 Q 2, 4, 8, 18 P 2, 8, 17, 19, 37 Chapter 26 Problem 34 Determine the magnitudes and directions of the currents in each resistor shown in
More informationPHYSICS 30 ELECTROMAGNETISM ASSIGNMENT 3 VERSION:0
Communication includes statement of the physics concept used and how it is applied in the situation along with diagrams, word explanations and calculations in a well laid out formula, substitution, answer
More informationName: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
Name: Class: _ Date: _ w9final Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If C = 36 µf, determine the equivalent capacitance for the
More informationPhysics 212 Question Bank III 2006
A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all. The magnetic force on a moving charge is (A)
More informationUnit 7 ~ Learning Guide Name:
Unit 7 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have
More informationP202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova
P202 Practice Exam 2 Spring 2004 Instructor: Prof. Sinova Name: Date: (5)1. How many electrons flow through a battery that delivers a current of 3.0 A for 12 s? A) 4 B) 36 C) 4.8 10 15 D) 6.4 10 18 E)
More informationNAME: PHYSICS 6B SPRING 2011 FINAL EXAM ( VERSION A )
NAME: PHYSCS 6B SPRNG 2011 FNAL EXAM ( VERSON A ) Choose the best answer for each of the following multiplechoice questions. There is only one answer for each. Questions 12 are based on the following
More informationChapter 4  Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,
Question 4.1: A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil? Number of turns
More informationPhysics 2401 Summer 2, 2008 Exam III
Physics 2401 Summer 2, 2008 Exam e = 1.60x1019 C, m(electron) = 9.11x1031 kg, ε 0 = 8.845x1012 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x1027 kg. n = nano = 109, µ = micro = 106, m =
More informationMagnets and Electromagnetism
Review 9 Magnets and Electromagnetism 1. A 1.2 cm wire carrying a current of 0.8 A is perpendicular to a 2.4 T magnetic field. What is the magnitude of the force on the wire? 2. A 24 cm length of wire
More informationa) headon view b) side view c) side view Use the right hand rule for forces to confirm the direction of the force in each case.
Electromagnetism Magnetic Force on a Wire Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 8 Electricity and Magnetism 1. Magnetism Application of magnetic forces Ampere s law 2. Induced voltages and induction Magnetic flux http://www.physics.wayne.edu/~alan/2140website/main.htm
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A jeweler needs to electroplate gold (atomic mass 196.97 u) onto a bracelet. He knows
More informationThe rectangular loop shown in the figure is pivoted about the y axis and carries a current of 15.0 in the direction indicated. T +
Heimadæmi 6 Due: 11:00pm on Thursday, February 25, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 27.68 The rectangular loop shown in the figure
More information2. Thus, if the current is doubled while the inductance is constant, the stored energy increases by a factor of 4 and the correct choice is (d).
34 Chapter 7. The energy stored in an inductor of inductance and carrying current is PE 1. Thus, if the current is doubled while the inductance is constant, the stored energy increases by a factor of 4
More informationElectromagnetism IB 12
Electromagnetism Magnetic Field around a Bar Magnet Direction of magnetic field lines: the direction that the North pole of a small test compass would point if placed in the field (N to S) What is the
More informationExam 2 Solutions. PHY2054 Spring Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014
Exam 2 Solutions Prof. Paul Avery Prof. Pradeep Kumar Mar. 18, 2014 1. A series circuit consists of an open switch, a 6.0 Ω resistor, an uncharged 4.0 µf capacitor and a battery with emf 15.0 V and internal
More informationPhysics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.
Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the yaxis, 15 µm above the origin, while another charge q
More informationREVIEW SESSION. Midterm 2
REVIEW SESSION Midterm 2 Summary of Chapter 20 Magnets have north and south poles Like poles repel, unlike attract Unit of magnetic field: tesla Electric currents produce magnetic fields A magnetic field
More informationUniverse Video. Magnetic Materials and Magnetic Fields Lab Activity. Discussion of Magnetism and Magnetic Fields
Date Zero Hour In Class Homework Magnetism Intro: Mechanical 1/5 Tue (A) Universe Video 1/6 Wed (B) 1/7 Thur (C) Magnetic Materials and Magnetic Fields Lab Activity 1/8 Fri (A) Discussion of Magnetism
More informationPhysics 54 Lecture March 1, Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields
Physics 54 Lecture March 1, 2012 OUTLINE Microquiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic
More information4 pt. (in J) 3.A
Mark Reeves  Physics 22, Fall 2011 1 A point charge of mass 0.0699 kg and charge q = +6.87 µc is suspended by a thread between the vertical parallel plates of a parallelplate capacitor, as shown in the
More informationThe principles of conservation of energy and charge apply to electrical circuits. Properties of magnetic fields apply in nature and technology.
UIT E UMMARY KEY COCEPT CHAPTER UMMARY 11 The principles of conservation of energy and charge apply to electrical circuits. Electrical circuits Conventional current and electron flow Current, electrical
More information224 g (Total 1 mark) A straight line in a direction opposite to that of the field.
Q1. The diagram shows a rigidlyclamped straight horizontal currentcarrying wire held midway between the poles of a magnet on a top pan balance. The wire is perpendicular to the magnetic field direction.
More informationChapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields
Chapter 27 Magnetism Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. However, if you cut a magnet in half, you don t get a north pole and a south pole you get
More informationFigure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12 Ω resistor shown in the circuit of Figure 2 is:
Term: 13 Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R=105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? Figure 1 A).3 V B) +.3
More informationPHYSICS 12 NAME: Electrostatics Review
NAME: Electrostatics Review 1. The diagram below shows two positive charges of magnitude Q and 2Q. Which vector best represents the direction of the electric field at point P, which is equidistant from
More informationPHYS 241 EXAM #2 November 9, 2006
1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages
More informationElectroMagnetic Induction
ElectroMagnetic Induction Physics 1 What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday first
More informationP202 Practice Exam 1 Spring 2004 Instructor: Prof. Sinova
P202 Practice Exam 1 Spring 2004 Instructor: Prof. Sinova Name: Date: 1. Each of three objects has a net charge. Objects A and B attract one another. Objects B and C also attract one another, but objects
More information2 (Total 1 mark) D. 30 N kg 1 (Total 1 mark)
1. A spherical planet of uniform density has three times the mass of the Earth and twice the average radius. The magnitude of the gravitational field strength at the surface of the Earth is g. What is
More informationMagnetic Fields & Forces
Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the
More information11 Magnetism. q ν B.(1) = q ( ) (2)
11 Magnetism Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you drew electric field lines. Magnetic north and south pole s behavior is not unlike electric
More informationName: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
Name: Class: Date: AP REVIEW 4 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a positively charged glass rod is used to charge a metal
More informationVersion 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1
Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 This printout should have 35 questions. Multiplechoice questions may continue on the next column or page find all choices before answering.
More informationP Q 2 = 3.0 x 106 C
1. Which one of the following represents correct units for electric field strength? A. T B. N/C C. J / C D. N m 2 /C 2 2. The diagram below shows two positive charges of magnitude Q and 2Q. P Q 2Q Which
More informationPhysics 208, Spring 2016 Exam #3
Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You
More informationQ1. Ans: (1.725) =5.0 = Q2.
Coordinator: Dr. A. Naqvi Wednesday, January 11, 2017 Page: 1 Q1. Two strings, string 1 with a linear mass density of 1.75 g/m and string 2 with a linear mass density of 3.34 g/m are tied together, as
More informationSCS 139 Applied Physic II Semester 2/2011
SCS 139 Applied Physic II Semester 2/2011 Practice Questions for Magnetic Forces and Fields (I) 1. (a) What is the minimum magnetic field needed to exert a 5.4 1015 N force on an electron moving at 2.1
More informationEndofChapter Exercises
EndofChapter Exercises Exercises 1 12 are primarily conceptual questions, designed to see whether you understand the main concepts of the chapter. 1. A charged particle is moving with a constant velocity
More informationElectric_Field_core_P1
Electric_Field_core_P1 1. [1 mark] An electron enters the region between two charged parallel plates initially moving parallel to the plates. The electromagnetic force acting on the electron A. causes
More informationPhys102 Final163 Zero Version Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1. = m/s
Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1 Q1. A 125 cm long string has a mass of 2.00 g and a tension of 7.00 N. Find the lowest resonant frequency of the string. A) 2.5 Hz B) 53.0 Hz C)
More informationDe La Salle University Manila Physics Fundamentals for Engineering 2 Quiz No. 3 Reviewer
De La Salle University Manila Physics Fundamentals for Engineering 2 Quiz No. 3 Reviewer Multiple Choice: 1. Which of the two arrangements shown has the smaller equivalent resistance between points a and
More informationChapter 15 Magnetism and Electromagnetic Induction 15.1 Magnetic Force on a CurrentCarrying Wire Homework # 125
Magnetism and Electromagnetic nduction 15.1 Magnetic Force on a CurrentCarrying Wire Homework # 125 01. A wire carrying a 2.45A current wire passes through a 1.60T magnetic field. What is the force
More informationCURRENTCARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS
PHYSICS A2 UNIT 4 SECTION 4: MAGNETIC FIELDS CURRENTCARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS # Questions MAGNETIC FLUX DENSITY 1 What is a magnetic field? A region in
More informationPHY 131 Review Session Fall 2015 PART 1:
PHY 131 Review Session Fall 2015 PART 1: 1. Consider the electric field from a point charge. As you move farther away from the point charge, the electric field decreases at a rate of 1/r 2 with r being
More informationQ1. A wave travelling along a string is described by
Coordinator: Saleem Rao Wednesday, May 24, 2017 Page: 1 Q1. A wave travelling along a string is described by y( x, t) = 0.00327 sin(72.1x 2.72t) In which all numerical constants are in SI units. Find the
More informationPhysics 12 Final Exam Review Booklet # 1
Physics 12 Final Exam Review Booklet # 1 1. Which is true of two vectors whose sum is zero? (C) 2. Which graph represents an object moving to the left at a constant speed? (C) 3. Which graph represents
More informationChapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.
Chapter 27 Magnetism 271 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 271 Magnets and Magnetic Fields However, if you cut a
More informationElectromagnetic Induction Practice Problems Homework PSI AP Physics B
Electromagnetic Induction Practice Problems Homework PSI AP Physics B Name Multiple Choice Questions 1. A square loop of wire is placed in a uniform magnetic field perpendicular to the magnetic lines.
More informationForce Due to Magnetic Field You will use
Force Due to Magnetic Field You will use Units: 1 N = 1C(m/s) (T) A magnetic field of one tesla is very powerful magnetic field. Sometimes it may be convenient to use the gauss, which is equal to 1/10,000
More informationYour name: Your TA: Your section Day/Time: PHY 101 Practice inclass exam III Wednesday, November 28, 3:153:35PM
1 Your name: Your TA: Your section Day/Time: PHY 101 Practice inclass exam III Wednesday, November 28, 3:153:35PM Please be sure to show your work where it is requested. If no work is shown where it
More information