Chapter 27: Current & Resistance. HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68


 Luke Berry
 4 years ago
 Views:
Transcription
1 Chapter 27: Current & Resistance HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68
2 Positive Charges move from HI to LOW potential. HI V LOW V
3 Negative Charges move from LOW to HI potential. HI V LOW V
4 HOW FAST DO ELECTRONS MOVE IN A CURRENT CARRYING CONDUCTING WIRE??
5 Electron Speed is called the DRIFT Velocity. Drift velocity ~.001 m/s!!! Electric Fields travel at the speed of light!
6 Current I = dq dt I = Coulomb/second = Ampere Current flows from a higher potential to a lower potential (electrons flow the opposite way). Current carrying wires are neutral! DC current flows in one direction AC current oscillates back and forth Electrons have a drift velocity of.001m/s! Electric Fields travel at speed of light
7 Current is charge in motion Charge, e.g. electrons, exists in conductors with a number density, n e (n e approx m 3 ) Somehow put that charge in motion: effective picture  all charges move with a velocity, v e real picture  a lot of random motion of charges with a small average equal to v e Current density, J, is given by J = q e n e v e = qnv unit of J is C/m 2 sec or A/m 2 (A Ampere) and 1A 1C/s current, I, is J times cross sectional area, I = J πr 2 for 10 Amp in 1mm x 1mm area, J = A/m 2, and v e is about 103 m/s (Yes, the average velocity is only 1mm/s!)
8 Atomic Vision of Ohm s Law Efield in conductor (resistor) provided by a battery Charges are put in motion, but scatter in a very short time from things that get in the way it s crowded inside that metal defects, lattice vibrations (phonons), etc Typical scattering time τ = sec Charges ballistically accelerated for this time and then randomly scattered Average velocity attained in this time is v = Ft/m = qeτ/m Current density is J = qnv so current is proportional to E which is proportional to Voltage OHM s LAW J = (q 2 nτ/m)e or J = σ E σ = conductivity J E = σ σ = 2 qn τ m
9 Ohm s Law Demo: Vary applied voltage V. I R I Measure current I Does ratio remain I constant? V V R V I V slope = R I How to calculate the resistance? Include resistivity of material Include geometry of resistor
10 An ohmic device The resistance is constant over a wide range of voltages The relationship between current and voltage is linear The slope is related to the resistance Ohmic Material
11 Nonohmic Material Nonohmic materials are those whose resistance changes with voltage or current The currentvoltage relationship is nonlinear A diode is a common example of a nonohmic device
12 Resistivity Property of bulk matter related to resistance of a sample is the resistivity (ρ) defined as: 1 m ρ = = σ qnτ ρ E 2 J where E = electric field and J = current density in conductor. I For uniform case: J, A = V = EL I ρl V = EL = ρjl = ρ L = I A A L V = IR where R = ρ A So, in fact, we can compute the resistance if we know a bit about the material, and YES, the property belongs to the material! e.g., for a copper wire, ρ ~ 108 Ωm, 1mm radius, 1 m long, then R.01Ω; for glass, ρ ~ Ωm; for semiconductors ρ ~ 1 Ωm j J E = σ A σ = L E 2 qn τ m
13 Resistance: Resistivity R L ρ A 1 m ρ = = σ qnτ = 2 The LONGER the wire the GREATER the R The THINNER the wire the GREATER the R The HOTTER the wire the GREATER the R
14 Resistance Question Two cylindrical resistors, R 1 and R 2, are made of identical material. R 2 has twice the length of R 1 but half the radius of R 1. These resistors are then connected to a battery V as shown: V I 1 I 2 What is the relation between I 1, the current flowing in R 1, and I 2, the current flowing in R 2? (a) I 1 < I 2 (b) I 1 = I 2 (c) I 1 > I 2 The resistivity of both resistors is the same (ρ). Therefore the resistances are related as: L 2L L R = = ρ = ρ = 8ρ 8 A2 ( A1 / 4) A1 The resistors have the same voltage across them; therefore V V 1 I 2 = = = I1 R 8R R 1
15 Resistors
16 Radial Resistance of a Coaxial Assume the silicon between the conductors to be concentric elements of thickness dr The resistance of the hollow cylinder of silicon is dr = ρ dr 2πrL Cable: Leakage! R L ρ A 1 m ρ = = σ qnτ = 2 The total radial resistance is R b ρ b = dr = ln a 2πL a This is fairly high, which is desirable since you want the current to flow along the cable and not radially out of it
17 Resistance: Dependence on Temperature The HOTTER the wire the GREATER the R R = R 0 (1 + αδt) R = original resistance 0 α = Δ T = temperature coefficient of resistivity temperature change (<100 C) o
18 Resistivity Values
19 When are light bulbs more likely to blow? When hot or cold? The HOTTER the wire the GREATER the R! R = R 0 (1 + αδt) At lower Resistance, the bulb draws more current and it blows the filament!
20 Superconductivity 1911: H. K. Onnes, who had figured out how to make liquid helium, used it to cool mercury to 4.2 K and looked at its resistance: At low temperatures the resistance of some metals 0, measured to be less than ρ conductor (i.e., ρ<1024 Ωm)! Current can flow, even if E=0. Current in superconducting rings can flow for years with no decrease! 1957: Bardeen (UIUC!), Cooper, and Schrieffer ( BCS ) publish theoretical explanation, for which they get the Nobel prize in It was Bardeen s second Nobel prize (1956 transistor)
21 Superconductivity 1986: High temperature superconductors are discovered (Tc=77K) Important because liquid nitrogen (77 K) is much cheaper than liquid helium Highest critical temperature to date 138 K (135 C = 211 F) Today: Superconducting loops are used to produce lossless electromagnets (only need to cool them, not fight dissipation of current) for particle physics. [Fermilab accelerator, IL] The Future: Smaller motors, lossless power transmission lines, magnetic levitation trains, quantum computers??...
22 Ohms Law: ΔV = IR L R = ρ A
23 Resistance QUESTION How much current will flow through a lamp that has a resistance of 60 Ohms when 12 Volts are impressed across it? USE OHMS LAW: ΔV = IR I ΔV 12V 12V = = = = R 60Ω 60 V / A.2A
24 Electrical Power As a charge moves from a to b, the electric potential energy of the system increases by QΔV The chemical energy in the battery must decrease by this same amount As the charge moves through the resistor (c to d), the system loses this electric potential energy during collisions of the electrons with the atoms of the resistor This energy is transformed into internal energy in the resistor as increased vibrational motion of the atoms in the resistor
25 Resistance What makes it glow?
26 Resistance The resistor is normally in contact with the air, so its increased temperature will result in a transfer of energy by heat into the air The resistor also emits thermal radiation After some time interval, the resistor reaches a constant temperature The rate at which the system loses potential energy as the charge passes through the resistor is equal to the rate at which the system gains internal energy in the resistor. The power is the rate at which the energy is delivered to the resistor
27 POWER P = I Δ V Energy time J s [ P] = = = Watt P = I Δ V = I ( IR ) = I R 2 ΔV P = I Δ V = V = R Δ V R 2 You pay for ENERGY not for ELECTRONS! Kilowatthour is the energy consumed in one hour: [kwh]=j NOT TIME! Power x Time
28 QUESTION The voltage and power on a light bulb read 120 V, 60 W How much current will flow through the bulb? USE: P = I ΔV I = P/ΔV = 60 W/120 V = 1/2 Amp
29 QUESTION The power and voltage on a light bulb read 120 V, 60 W What is the resistance of the filament? (I =.5 A) Hint: USE OHMS LAW: V = IR R = V/I = 120 V/.5 A = 240 Ω
30 QUESTION The power rating for two light bulbs read 30W and 60W. Which bulb has the greatest resistance at 120V? 2 2 P = V / R R= V / P R V W 2 = (120 ) / 30 = 480Ω R V W 2 = (120 ) / 60 = 240Ω (fyi: Power ratings are for bulbs in parallel only!)
31 Quick Quiz 27.8 For the two lightbulbs shown in this figure, rank the current values at the points, from greatest to least. I a = I b > I c = I d > I e = I f. The 60 W bulb has the lowest resistance and therefore draws the most current! Which light burns the brightest?
32 If V = 120V, What is I? USE P = IV=> I = P/V Appliance _ Power Current (A) Hair Dryer Electric Iron TV Computer 1600 Watts 1200 Watts 100 Watts 45 Watts
33 If V = 120V, What is I? USE P = IV=> I = P/V Appliance _ Power Current (A) Hair Dryer 1600 Watts 13.3 A Electric Iron 1200 Watts 10 A TV 100 Watts.83 A Computer 45 Watts.38 A
34 Electric Bill: Cost to run for 1 $.05 per 1 kwhr? Cost = Power x Time x Rate Appliance _ Power Cost Hair Dryer Electric Iron TV Computer 1600 Watts 1200 Watts 100 Watts 45 Watts
35 Electric Bill: Cost to run for 1 $.05 per 1 kwhr? Cost = Power x Time x Rate Appliance _ Power Cost Hair Dryer 1600 Watts $0.08 Electric Iron 1200 Watts $0.06 TV 100 Watts $0.005 Computer 45 Watts $0.003
36 Why is Power Transmitted with AC instead of DC? Viva La Resistance! (Modern transmission grids use AC voltages up to 765,000 volts.)
37 Limitations of DC Transmission Large currents in wires produce heat and energy losses by P = I 2 R. Large expensive conductors would be needed or else very high voltage drops (and efficiency losses) would result. High loads of direct current could rarely be transmitted for distances greater than one mile without introducing excessive voltage drops. Direct current can not easily be changed to higher or lower voltages. Separate electrical lines are needed to distribute power to appliances that used different voltages, for example, lighting and electric motors.
38 Advantages of AC Transmission Alternating Current can be transformed to step the voltage up or down with transformers. Power is transmitted at great distances at HIGH voltages and LOW currents and then stepped down to low voltages for use in homes (240V) and industry (440V). Convert AC to DC with a rectifier in appliances. AC is more efficient for Transmission & Distribution of electrical power than DC!
39 In The Future. Long Distance AC Power Transmission may not be needed!!!
Chapter 27: Current & Resistance
Chapter 27: Current & Resistance HW For Chapter 27: 7th/6th: 5/6, 8/8, 11/15, 16/26, 19/31, 31/44, 38/52, 42/55, 44/56, 48/62, 52/68, and also do the Multiple Choice and turn it in! Current: Dead or Alive
More informationElectricity CHARGE. q = 1.6 x1019 C
Electricity CHARGE q = 1.6 x1019 C How many protons in a Coulomb? 19 1.00 C x (1 proton) / (1.60 x 10 C) = 18 6.25x10 protons! Opposites Attract Most materials are Electrically NEUTRAL (lowest potential
More informationChapter 27. Current and Resistance
Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new
More informationChapter 27. Current And Resistance
Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric
More informationElectric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More informationGeneral Physics (PHY 2140)
General Physics (PHY 2140) Lecture 9 Electrodynamics Electric current temperature variation of resistance electrical energy and power http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 1718 1 Department
More informationChapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9
Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q
More informationCurrent and Resistance
Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 21 Electric current 22
More informationChapter 24: Electric Current
Chapter 24: Electric Current Current Definition of current A current is any motion of charge from one region to another. Suppose a group of charges move perpendicular to surface of area A. The current
More informationChapter 27 Current and Resistance 27.1 Electric Current
Chapter 27 Current and esistance 27.1 Electric Current Electric current: dq dt, unit: ampere 1A = 1C s The rate at which charge flows through a surface. No longer have static equilibrium. E and Q can 0
More informationChapter 27. Current and Resistance
Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new
More informationChapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance 254 Resistivity Example 255: Speaker wires. Suppose you want to connect your stereo to remote speakers. (a) If each wire must be 20 m long, what diameter copper
More informationHandout 5: Current and resistance. Electric current and current density
1 Handout 5: Current and resistance Electric current and current density Figure 1 shows a flow of positive charge. Electric current is caused by the flow of electric charge and is defined to be equal to
More informationElectric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A)
Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric current is I Average Electric
More informationOhms Law. V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω)
Ohms Law V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω) Current How would you define it? Current the movement of electric charge through a medium
More informationChapter 27 Current and resistance
27.1 Electric Current Chapter 27 Current and resistance 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.6 Electrical Power 2 27.1 Electric Current Consider a system
More informationELECTRIC CURRENT INTRODUCTION. Introduction. Electric current
Chapter 7 ELECTRIC CURRENT Introduction Electric current Charge conservation Electric conductivity Microscopic picture Electric power Electromotive force Kirchhoff s rules Summary INTRODUCTION The first
More informationPhysics Lecture 19: FRI 10 OCT
Resistance Is Futile! Physics 2113 Jonathan Dowling Physics 2113 Lecture 19: FRI 10 OCT Current & Resistance III Georg Simon Ohm (17891854) Resistance is NOT Futile! Electrons are not completely free
More informationChapter 27. Current And Resistance
Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric
More informationClosed loop of moving charges (electrons move  flow of negative charges; positive ions move  flow of positive charges. Nucleus not moving)
Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit
More information52 VOLTAGE, CURRENT, RESISTANCE, AND POWER
52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage
More informationNote 5: Current and Resistance
Note 5: Current and Resistance In conductors, a large number of conduction electrons carry electricity. If current flows, electrostatics does not apply anymore (it is a dynamic phenomenon) and there can
More informationNama :.. Kelas/No Absen :
Nama :.. Kelas/No Absen : TASK 2 : CURRENT AND RESISTANCE 1. A car battery is rated at 80 A h. An amperehour is a unit of: A. power B. energy C. current D. charge E. force 2. Current has units: A. kilowatthour
More informationElectric Current. Equilibrium: Nonequilibrium: Electric current: E = 0 inside conductor. Mobile charge carriers undergo random motion.
Electric Current Equilibrium: E = 0 inside conductor. Mobile charge carriers undergo random motion. Nonequilibrium: E 0 inside conductor. Mobile charge carriers undergo random motion and drift. Positive
More informationChapter 25: Electric Current
Chapter 25: Electric Current Conductors and Charge Carriers Consider a conducting piece of metal: The valence electrons are weakly bound to the nuclei form a fluidlike sea of electrons that can move through
More informationELECTRIC CURRENT. Ions CHAPTER Electrons. ELECTRIC CURRENT and DIRECTCURRENT CIRCUITS
LCTRC CURRNT CHAPTR 25 LCTRC CURRNT and DRCTCURRNT CRCUTS Current as the motion of charges The Ampère Resistance and Ohm s Law Ohmic and nonohmic materials lectrical energy and power ons lectrons nside
More informationChapter 25 Current, Resistance, and Electromotive Force
Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity
More informationElectrical Circuits. Sources of Voltage
Electrical Circuits ALESSANDRO VOLTA (17451827) ANDRE MARIE AMPERE (17751836) GEORG SIMON OHM (17891854) POTENTIAL IN VOLTS, CURRENT IN AMPS, RESISTANCE IN OHMS! Sources of Voltage Voltage, also known
More information670 Intro Physics Notes: Electric Current and Circuits
Name: Electric Current Date: / / 670 Intro Physics Notes: Electric Current and Circuits 1. Previously, we learned about static electricity. Static electricity deals with charges that are at rest. 2. Now
More informationWhat are the two types of current? The two types of current are direct current and alternating current.
Electric Current What are the two types of current? The two types of current are direct current and alternating current. Electric Current The continuous flow of electric charge is an electric current.
More informationChapter 24: Electric Current
Chapter 24: Electric Current Electric current Electric current is a net flow of electric charge. Quantitatively, current is the rate at which charge crosses a given area. I = dq dt dq = q(n AL)=q(n Av
More informationElectric Currents and Resistance II
Electric Currents and Resistance II Physics 2415 Lecture 11 Michael Fowler, UVa Today s Topics First we ll mention capacitors Power usage: kwh, etc. The microscopic picture Temperature dependence of resistivity
More informationChapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance Units of Chapter 25 The Electric Battery Electric Current Ohm s Law: Resistance and Resistors Resistivity Electric Power Units of Chapter 25 Power in Household
More informationCh. 21: Current, Resistance, Circuits
Ch. 21: Current, Resistance, Circuits Current: How charges flow through circuits Resistors: convert electrical energy into thermal/radiative energy Electrical Energy & Power; Household Circuits TimeDependent
More informationPHYSICS. Chapter 27 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 27 Lecture RANDALL D. KNIGHT Chapter 27 Current and Resistance IN THIS CHAPTER, you will learn how and why charge moves through a wire
More information4.2.1 Current, potential difference and resistance
4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design
More informationGeneral Physics (PHY 2140)
General Physics (PHY 240) Lecture 5 Electrodynamics Electric current temperature variation of resistance electrical energy and power Direct current circuits emf resistors in series http://www.physics.wayne.edu/~alan/240website/main.htm
More informationOhm s Law Book page Syllabus 2.10
Ohm s Law Book page 85 87 Syllabus 2.10 What s wrong with this circuit diagram? Task 2 Sketch a simple series circuit containing a cell and a bulb. On your circuit diagram, show an ammeter and voltmeter
More informationPHYS 1444 Section 002 Lecture #13
PHYS 1444 Section 002 Lecture #13 Monday, Oct. 16, 2017 Dr. Animesh Chatterjee (disguising as Dr. Yu) Chapter 25 Electric Current Ohm s Law: Resisters, Resistivity Electric Power Alternating Current Microscopic
More informationLecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II
Lecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee ١ The glow of the thin wire filament of a light bulb is caused by the electric current passing through it. Electric energy is transformed
More informationChapter 17 Electric Current and Resistance Pearson Education, Inc.c
Chapter 17 Electric Current and Resistance 2010 Pearson Education, Inc.c 1 Units of Chapter 17 Batteries and Direct Current Current and Drift Velocity Resistance and Ohm s Law Electric Power 2010 Pearson
More information3 Electric current, resistance, energy and power
3 3.1 Introduction Having looked at static charges, we will now look at moving charges in the form of electric current. We will examine how current passes through conductors and the nature of resistance
More informationPHYS 1444 Section 003. Lecture #12
Chapter 5 Power PHYS 1444 Section 003 Alternating Current Microscopic Current Chapter 6 EMF and Terminal Voltage Lecture #1 Tuesday October 9, 01 Dr. Andrew Brandt Resistors in Series and Parallel Energy
More informationAP Physics C  E & M
Slide 1 / 27 Slide 2 / 27 AP Physics C  E & M Current, Resistance & Electromotive Force 20151205 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from
More informationChapter 8: E & M (Electricity & Magnetism or Electromagnetism)
Chapter 8: E & M (Electricity & Magnetism or Electromagnetism) Charge conservation&quantization (review from last class) Electric current & circuits Resistance & Ohm s Law Concept of FIELD (electric/magnetic/gravitational)
More informationChapter 27. Current and Resistance
Chapter 27 Current and Resistance CHAPTER OUTLINE 27.1 Electric Current 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.5 Superconductors 27.6 Electrical Power
More informationSection 1 Electric Charge and Force
CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible
More informationphysics for you February 11 Page 68
urrent Electricity Passage 1 4. f the resistance of a 1 m length of a given wire t is observed that good conductors of heat are also is 8.13 10 3 W, and it carried a current 1, the good conductors of electricity.
More informationChapter 18. Direct Current Circuits
Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating
More informationChapter 21 Electric Current and Circuits
Chapter 21 Electric Current and Circuits 1 As an introduction to this chapter you should view the following movie. If you cannot click on the link, then copy it and paste it into your web browser. http://www.ionaphysics.org/movies/vir.mp4
More informationCollege Physics B  PHY2054C
Power College  PHY2054C and 09/15/2014 My Office Hours: Tuesday 10:00 AM  Noon 206 Keen Building PHY2054C Power First MiniExam this week on Wednesday!! Location: UPL 101, 10:1011:00 AM Exam on chapters
More informationPSC1341 Chapter 5 Electricity and Magnetism
PSC1341 Chapter 5 Electricity and Magnetism Chapter 5: Electricity and Magnetism A. The Atom B. Electricity C. Static Electricity D. A circuit E. Current and Voltage F. Resistance G. Ohm s Law H. Power
More informationTemperature coefficient of resistivity
Temperature coefficient of resistivity ρ slope = α ρ = ρ o [ 1+ α(t To )] R = R o [1+ α(t T o )] T T 0 = reference temperature α = temperature coefficient of resistivity, units of (ºC) 1 For Ag, Cu, Au,
More informationChapter 3: Current and Resistance. Direct Current Circuits
Chapter 3: Current and Resistance. Direct Current Circuits 3.1. Electric Current 3.2. Resistance and Resistivity 3.3. Ohm s Law and a Microscopic View of Ohm s Law 3.4. Semiconductors and Superconductors
More informationDownloaded from
CHAPTER 12 ELECTRICITY Electricity is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena such
More informationSection 1: Electric Charge and Force
Electricity Section 1 Section 1: Electric Charge and Force Preview Key Ideas Bellringer Electric Charge Transfer of Electric Charge Induced Charges Charging by Contact Electric Force Electric Field Lines
More information6. In a dry cell electrical energy is obtained due to the conversion of:
1. If a wire of uniform area of cross section is cut into two halves (equal in size), the resistivity of each part will be: a) Halved. b) Doubled. c) Becomes four times its initial value. d) Remains the
More informationRECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel
Unit 3C Circuits RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel 2 Types of Electricity Electrostatics Electricity
More information4.2.1 Current, potential difference and resistance Standard circuit diagram symbols. Content. Key opportunities for skills development WS 1.
4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design
More informationV R I = UNIT V: Electricity and Magnetism Chapters Chapter 34: Electric Current. volt ohm. voltage. current = I. The Flow of Charge (34.
IMPORTANT TERMS: Alternating current (AC) Ampere Diode Direct current (DC) Electric current Electric power Electric resistance Ohm Ohm s Law Potential difference Voltage source EQUATIONS: UNIT V: Electricity
More informationLESSON 5: ELECTRICITY II
LESSON 5: ELECTRICITY II The first two points are a review of the previous lesson 1.1.ELECTRIC CHARGE  Electric charge is a property of all objects and is responsible for electrical phenomena. All matter
More informationElectroscope Used to are transferred to the and Foil becomes and
Electricity Notes Chapter 17 Section 1: Electric Charge and Forces Electric charge is a variety of independent all with one single name. Electricity is related to, and both () and (+) carry a charge.
More informationEnergy Levels Zero energy. From Last Time Molecules. Today. n and ptype semiconductors. Energy Levels in a Metal. Junctions
Today From Last Time Molecules Symmetric and antisymmetric wave functions Lightly higher and lower energy levels More atoms more energy levels Conductors, insulators and semiconductors Conductors and
More informationChapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final
Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge
More informationELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?
ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,
More informationQuestion 3: How is the electric potential difference between the two points defined? State its S.I. unit.
EXERCISE (8 A) Question : Define the term current and state its S.I unit. Solution : Current is defined as the rate of flow of charge. I = Q/t Its S.I. unit is Ampere. Question 2: Define the term electric
More informationElectric Current. You must know the definition of current, and be able to use it in solving problems.
Today s agenda: Electric Current. You must know the definition of current, and be able to use it in solving problems. Current Density. You must understand the difference between current and current density,
More informationElectric Currents and Simple Circuits
1 Electric Currents and Simple Circuits Electrons can flow along inside a metal wire if there is an Efield present to push them along ( F= qe). The flow of electrons in a wire is similar to the flow
More information1 of 23. Boardworks Ltd Electrical Power
1 of 23 Boardworks Ltd 2016 Electrical Power Electrical Power 2 of 23 Boardworks Ltd 2016 What is electrical power? 3 of 23 Boardworks Ltd 2016 Electrical power is the rate at which energy is transferred
More informationElectricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power
Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power Lana Sheridan De Anza College Feb 6, 2018 Last time resistance resistivity conductivity Ohm s Law Overview Drude model
More informationRead Chapter 7; pages:
Forces Read Chapter 7; pages: 191221 Objectives:  Describe how electrical charges exert forces on each other; Compare the strengths of electric and gravitational forces; Distinguish between conductors
More informationElectricity
Electricity Electric Charge There are two fundamental charges in the universe. Positive (proton) has a charge of +1.60 x 1019 C Negative (electron) has a charge of 1.60 x 1019 C There is one general
More informationDirect Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014
Direct Currents We will now start to consider charges that are moving through a circuit, currents. 1 Direct Current Current usually consists of mobile electrons traveling in conducting materials Direct
More informationStandard circuit diagram symbols Content Key opportunities for skills development
4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design
More informationUniversity Physics (PHY 2326)
Chapter 25 University Physics (PHY 2326) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm
More information6 Chapter. Current and Resistance
6 Chapter Current and Resistance 6.1 Electric Current... 62 6.1.1 Current Density... 62 6.2 Ohm s Law... 65 6.3 Summary... 68 6.4 Solved Problems... 69 6.4.1 Resistivity of a Cable... 69 6.4.2 Charge
More informationChapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc.
Chapter 25 Electric Currents and Resistance 251 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte.
More informationMonday July 14. Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example
Monday July 14 Lecture 5 Capacitance demo slide 19 Capacitors in series and parallel slide 33 Elmo example Lecture 6 Currents and esistance Lecture 9 Circuits Wear Microphone 1 3 Lecture 6 Current and
More informationNote on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current
Note on Posted Slides These are the slides that I intended to show in class on Tue. Mar. 18, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably
More informationDEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS
DEL PHYSCS THE BADDEST CLASS ON CAMPUS B PHYSCS TSOKOS LESSON 54: ELECTRC CURRENT AND ELECTRC RESSTANCE Reading Activity Questions? Objectives By the end of this class you should be able to: Q State the
More informationProperties of Electric Charge
1 Goals 2 Properties of Electric Charge 2 Atomic Structure: Composed of three main particles: 1. Proton 2. Neutron 3. Electron Things to Remember: 3 Everything is made of atoms. Electrons can move from
More informationChapter 26 Current and Resistance
Chapter 26 Current and Resistance Electric Current Although an electric current is a stream of moving charges, not all moving charges constitute an electric current. If there is to be an electric current
More informationELECTRICITY. Chapter ELECTRIC CHARGE & FORCE
ELECTRICITY Chapter 17 17.1 ELECTRIC CHARGE & FORCE Essential Questions: What are the different kinds of electric charge? How do materials become charged when rubbed together? What force is responsible
More informationElectron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.
Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity
More informationChapter 8. Electricity and Magnetism. Law of Charges. Negative/Positive
Chapter 8 Electricity and Magnetism Electricity and Magnetism (1) Electric Charge Electric charge is a fundamental conserved property of some subatomic particles, which determines their electromagnetic
More informationChapter 21 Electric Current and Direct Current Circuits
Chapter 21 Electric Current and Direct Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s
More informationCurrent and Resistance
chapter 27 Current and Resistance 27.1 Electric Current 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.5 Superconductors 27.6 Electrical Power We now consider
More informationELECTRICITY UNIT REVIEW
ELECTRICITY UNIT REVIEW S1304: How does the Atomic Model help to explain static electricity? 1. Which best describes static electricity? a) charges that can be collected and held in one place b) charges
More informationCircuitsOhm's Law. 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law?
1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law? 2. A potential drop of 50 volts is measured across a 250 ohm resistor.
More informationPhysics 142 Steady Currents Page 1. Steady Currents
Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of
More informationElectricity and Electromagnetism SOL review Scan for a brief video. A. Law of electric charges.
A. Law of electric charges. Electricity and Electromagnetism SOL review Scan for a brief video The law of electric charges states that like charges repel and opposite charges attract. Because protons and
More informationCurrent and Resistance
Chapter 26 Current and Resistance Copyright 261 Electric Current As Fig. (a) reminds us, any isolated conducting loop regardless of whether it has an excess charge is all at the same potential. No electric
More informationragsdale (zdr82) HW5 ditmire (58335) 1
ragsdale (zdr82) HW5 ditmire (58335) 1 This printout should have 20 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. 001 (part 1 of 2) 10.0
More informationPhysics 1502: Lecture 8 Today s Agenda. Today s Topic :
Physics 1502: Lecture 8 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics today: due next Friday Go to masteringphysics.com
More informationChapter 17. Current and Resistance
Chapter 17 Current and Resistance Electric Current The current is the rate at which the charge flows through a surface Look at the charges flowing perpendicularly through a surface of area A I av The SI
More informationPhysics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II
Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II In today s lecture, we will learn to: Calculate the resistance of a conductor depending on the material and shape Apply
More informationCurrent and Resistance
Chapter 17 Current and esistance Quick Quizzes 1. (d. Negative charges moving in one direction are equivalent to positive charges moving in the opposite direction. Thus, Ia, Ib, Ic, and Id are equivalent
More informationPHYS 1441 Section 001 Lecture #10 Tuesday, June 21, 2016
PHYS 1441 Section 001 Lecture #10 Tuesday, June 21, 2016 Chapter 25 Electric Current and Resistance The Battery Ohm s Law: Resisters, Resistivity Electric Power Alternating Current Microscopic View of
More information12/2/2018. Monday 12/17. Electric Charge and Electric Field
Electricity Test Monday 1/17 Electric Charge and Electric Field 1 In nature, atoms are normally found with equal numbers of protons and electrons, so they are electrically neutral. By adding or removing
More informationPHYS 1442 Section 001. Lecture #5. Chapter 18. Wednesday, June 17, 2009 Dr. Jaehoon Yu
PHYS 1442 Section 001 Chapter 18 Lecture #5 Dr. The Electric Battery Ohm s Law: Resisters Resistivity Electric Power Alternating Current Power Delivered by AC Today s homework is #3, due 9pm, Thursday,
More information