Note 5: Current and Resistance

Size: px
Start display at page:

Download "Note 5: Current and Resistance"

Transcription

1 Note 5: Current and Resistance In conductors, a large number of conduction electrons carry electricity. If current flows, electrostatics does not apply anymore (it is a dynamic phenomenon) and there can be electric field in conductors (metals). Otherwise, current cannot be driven. The direction of current is defined in terms of motion of positive charge. In conductors, current flow is against the flow of electrons. In some metals, positive carriers (holes) exist. Electrons collide with lattice ions and lose momentum (origin of resistivity). current Electron drift

2 Current Density J (A/m ) 3 If the number density of electrons is (m ) and the average electron velocity is v (m/s), the current density is given by J = n e v = nev ( )( ) (A/m ) The electron density is a large number and is of 8 wave c = m/ 0 0 n order 10 / m. Then the electron 9 3 velocity is expected to be very small. The electron velocity should not be confused with the velocity of electromagnetic 1 = εµ s. J (A/m ) I (Amp) S v E

3 Example 1 6. A 1 gauge copper wire (cross-section area m ) is carrying 10 A current. Find the average electron drift velocity. Assume each copper atom contributes one coduction electron. The copper density 3 is 8.9 g/cm and the molar mass of copper is 63.5 g/mol. Sol. One mole contains atoms. Then the number density of electrons is g/cm / mol /c n = = 63.5 g/mol The current density is I 10 A J = = = A/m 6 A m The electron drift velocity is 6 6 J A/m v = = = ne /m C m = /m m/s.

4 Origin of Resistance In coductors, electrons are accelerated by electric field. However, electrons frequently collide with lattice ions and lose momentum. In steady state, electrons acquire a consatnt (terminal) velocity according to dv ee m = 0 = ee mν cv v = dt mν where ν c is the collision frequency (1/sec). The current density is ne J = E J = σ E mν c ne σ = : conductivity (S/m) (Not surface charge density) mν c E = ρ 1 mν ρ = c = : resistivity Ohm m σ ne ( ) c

5 Example 8 : The ressitivity of copper at room temperature is m. Estimate the lectron collision frequency. η = Ω m ν Sol. The resistivity is η = ne m e e c 31 (electron mass) = kg n (electron density) = /m Then e 8 3 where ηne ( ) ν c = = = 31 m / sec

6 Resistivity and Resistance The microscopic Ohm's law: E = ρj. ρ is resistivity ( Ω m) In a resistive rod of cross-section Aand length l, the voltage is V = El I and current density is J = A V I l E = ρj = ρ V = ρ I = RI l A A l Resistnce of the rod is R = ρ ( Ω) A

7 Example 3 6. Nichrome has a resistivity m at room temperature 0 C. Find the resistance of -gauge Nichrome wire 1 m long. The radius of the wire is 0.3 mm. Sol. l R = ρ = Ω π r Supplement m 1 m 3 π ( m) ( ) R( ) α ( ) ρ = Ω = 3.1 Ω 3 The temperature coefficient of Nichrome is = / C. Find the resistance of the wire at 500 C. Sol. R Example 4. Find the resistance of a conical conductor shown C = 0 C = = 8.9 Ω. Sol. The radius of the cross section is r r h 1 r = r1 + z The resistance is R h dz ρ = ρ = πr π 0 0 z= h ρ h 1 ρ h = = π r r r r π rr r + z h z= 0 h r 1 + r dz r 1 h z α h

8 Energy Dissipation in Resistor In a simple closed circuit consisting of power supply (e.g., battery) and a resistor, the rate of charge flow (current) is constant. In unit time one second, a charge I (C) is transfered everywhere along the circuit. In the power supply, the charge gains energy being lifted by the electromotive force (EMF) at the rate C J I V ( Volts = = Watts) sec sec In the resistor, the energy is converted into heat at the same rate. V Power = IV = RI = R Note on Energy Dissipation. (Serway warned about the use of energy dissipation in resistors and instead he suggested energy delivered to resistors. I disagree. In resistors electric energy is consumed irreversibly into heat.)

9 Energy Transfer from EMF to Resistor The amount of charge transferred in unit time (1 second) is I 1 sec = I C. At the EMF, the charge gains energy at the rate resistor, the charge gives away energy at the same rate I (voltage in R) = I RI = RI I EMF (J/sec). At the EMF + - Current Resistor

10 Quiz. Find the current in each light bulb. The voltage is 10 V. 30W The current in the 30 W bulb is I = = 0.5 A 10 V 60 W and that in the 80 W bulb is I ' = = 0.5 A. 10 V Quiz. Determine the curents at positions a through f. a: 0.75 A; b: 0.75 A; c and d: 0.5 A; e and f: 0.5 A. 0.5 A 0.5 A 0.75 A

11 Example 5. An electric heater has a resistance of 8 Ω. When it is connected to 10 V line, what is the power? How long does it take the heater to boil water of 1.5 liter from 10 C? Assume 80% efficiency. V 10 Sol. The power is P = = = 1800 W. R 8 Amount of energy needed to heat 1.5 L water from 10 to 100 degree C is U ( ) = = / 0.8 J J (Recall that to raise the temperature of 1 g water by 1 degree C, 4. J = 1 cal of energy is needed.) It takes t J = = 350 seconds =5.8 Min J/s 3 6 If the rate is $ 0.1/kWh (1 kwh = = J), the cost is about 1.75 cents.

12 Example 6: Explain why high voltage power transmission is more beneficial than low voltage. Ans. For a given power P = VI, the loss in transmission line of a resistance R is P Loss rate = RI = R V Therefore, the loss decreases as the voltage increases. Power line voltage of 100 kv to 1 MV is commonly employed in long distance power transmission. Consider a power line having a resistance of 50 Ω over 100 miles. At 700 kv, 1000 A, the power is transmitted at 700 MW and the loss rate in the line is RI = 50 MW. At 1 MV, the current is 700 A for the same power. But the loss decreases to 4.5 MW.

13 Example 7. Using 1 g of copper, design a wire having a resistance of 0.5 Ω. The ρ = Ω 8 3 copper resistivity is m and copper density is m = 8900 kg/m. ρ Sol. Let the wire radius be r and length be l. The resistance is l R = ρ = 0.5 Ω π r The volume of the wire is V= πrl. Then ρπ m rl= kg ρρml Solutions are l = 1.8 m and r = 0.8 mm. 4 4 = 5 10 l = = 3.31 m 8

14 Superconductors In 1911, Onnes (Dutch physicist) found that the resistivity of mercury totally disappeared at cryogenic temperatures lower than 4. K (liquid He temperature). In 1990 s, high temperature superconductors were developed. The ultimate goal is to develop superconductors that work at the room temperature. Applications: high magnetic field (NMI, fusion, high energy accelerators, etc.), loss-less power transmission.

15 500 km/hr Superconducting Maglev Train in Japan (commercial line under construction)

Chapter 27 Current and Resistance 27.1 Electric Current

Chapter 27 Current and Resistance 27.1 Electric Current Chapter 27 Current and esistance 27.1 Electric Current Electric current: dq dt, unit: ampere 1A = 1C s The rate at which charge flows through a surface. No longer have static equilibrium. E and Q can 0

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 9 Electrodynamics Electric current temperature variation of resistance electrical energy and power http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 17-18 1 Department

More information

Current and Resistance

Current and Resistance Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 2-1 Electric current 2-2

More information

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

Chapter 25: Electric Current

Chapter 25: Electric Current Chapter 25: Electric Current Conductors and Charge Carriers Consider a conducting piece of metal: The valence electrons are weakly bound to the nuclei form a fluidlike sea of electrons that can move through

More information

Chapter 27: Current & Resistance. HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68

Chapter 27: Current & Resistance. HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68 Chapter 27: Current & Resistance HW For Chapter 27: 6, 18, 20, 30, 42, 48, 52, 56, 58, 62, 68 Positive Charges move from HI to LOW potential. HI V LOW V Negative Charges move from LOW to HI potential.

More information

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c Chapter 17 Electric Current and Resistance 2010 Pearson Education, Inc.c 1 Units of Chapter 17 Batteries and Direct Current Current and Drift Velocity Resistance and Ohm s Law Electric Power 2010 Pearson

More information

Current and Resistance

Current and Resistance PHYS102 Previous Exam Problems CHAPTER 26 Current and Resistance Charge, current, and current density Ohm s law Resistance Power Resistance & temperature 1. A current of 0.300 A is passed through a lamp

More information

AP Physics C - E & M

AP Physics C - E & M Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

More information

Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q

More information

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance 25-4 Resistivity Example 25-5: Speaker wires. Suppose you want to connect your stereo to remote speakers. (a) If each wire must be 20 m long, what diameter copper

More information

15 - THERMAL AND CHEMICAL EFFECTS OF CURRENTS Page 1 ( Answers at the end of all questions )

15 - THERMAL AND CHEMICAL EFFECTS OF CURRENTS Page 1 ( Answers at the end of all questions ) 5 - THERMAL AND CHEMICAL EFFECTS OF CURRENTS Page A heater coil is cut into two equal parts and only one part is now used in the heater. The heat generated will now be four times doubled halved ( d one-fourth

More information

Conducting surface - equipotential. Potential varies across the conducting surface. Lecture 9: Electrical Resistance.

Conducting surface - equipotential. Potential varies across the conducting surface. Lecture 9: Electrical Resistance. Lecture 9: Electrical Resistance Electrostatics (time-independent E, I = 0) Stationary Currents (time-independent E and I 0) E inside = 0 Conducting surface - equipotential E inside 0 Potential varies

More information

ELECTRIC CURRENT INTRODUCTION. Introduction. Electric current

ELECTRIC CURRENT INTRODUCTION. Introduction. Electric current Chapter 7 ELECTRIC CURRENT Introduction Electric current Charge conservation Electric conductivity Microscopic picture Electric power Electromotive force Kirchhoff s rules Summary INTRODUCTION The first

More information

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move. SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and non-ohmic conductors Series and parallel connection Energy in an electric circuit X-planation 1. CONDUCTORS AND INSULATORS

More information

Chapter 26 Current and Resistance

Chapter 26 Current and Resistance Chapter 26 Current and Resistance Electric Current Although an electric current is a stream of moving charges, not all moving charges constitute an electric current. If there is to be an electric current

More information

physics for you February 11 Page 68

physics for you February 11 Page 68 urrent Electricity Passage 1 4. f the resistance of a 1 m length of a given wire t is observed that good conductors of heat are also is 8.13 10 3 W, and it carried a current 1, the good conductors of electricity.

More information

Chapter 24: Electric Current

Chapter 24: Electric Current Chapter 24: Electric Current Electric current Electric current is a net flow of electric charge. Quantitatively, current is the rate at which charge crosses a given area. I = dq dt dq = q(n AL)=q(n Av

More information

Chapter 25 Current, Resistance, and Electromotive Force

Chapter 25 Current, Resistance, and Electromotive Force Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity

More information

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Conductors under dynamic conditions Current, current density, drift velocity Ohm s law Types of conductor

More information

3 Electric current, resistance, energy and power

3 Electric current, resistance, energy and power 3 3.1 Introduction Having looked at static charges, we will now look at moving charges in the form of electric current. We will examine how current passes through conductors and the nature of resistance

More information

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9,

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, Look over Chapter 26 sections 1-7 Examples 3, 7 Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, 1)How to find a current in a wire. 2)What the Current Density and Draft Speed are. 3)What

More information

Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving)

Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving) Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapter 25 University Physics (PHY 2326) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm

More information

Chapter 27: Current and Resistance

Chapter 27: Current and Resistance Chapter 7: Current and esistance In this section of the course we will be studying the flow of electric charge, current, in a circuit. We have already seen electric current when we first discussed electric

More information

Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A)

Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric current is I Average Electric

More information

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current? ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,

More information

Current and Resistance

Current and Resistance Chapter 17 Current and esistance Quick Quizzes 1. (d. Negative charges moving in one direction are equivalent to positive charges moving in the opposite direction. Thus, Ia, Ib, Ic, and Id are equivalent

More information

Chapter 24: Electric Current

Chapter 24: Electric Current Chapter 24: Electric Current Current Definition of current A current is any motion of charge from one region to another. Suppose a group of charges move perpendicular to surface of area A. The current

More information

Chapter 25 Current Resistance, and Electromotive Force

Chapter 25 Current Resistance, and Electromotive Force Chapter 25 Current Resistance, and Electromotive Force 1 Current In previous chapters we investigated the properties of charges at rest. In this chapter we want to investigate the properties of charges

More information

Ohms Law. V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω)

Ohms Law. V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω) Ohms Law V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω) Current How would you define it? Current the movement of electric charge through a medium

More information

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II In today s lecture, we will learn to: Calculate the resistance of a conductor depending on the material and shape Apply

More information

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014 Direct Currents We will now start to consider charges that are moving through a circuit, currents. 1 Direct Current Current usually consists of mobile electrons traveling in conducting materials Direct

More information

What is an Electric Current?

What is an Electric Current? Electric Circuits NTODUCTON: Electrical circuits are part of everyday human life. e.g. Electric toasters, electric kettle, electric stoves All electrical devices need electric current to operate. n this

More information

PHYS 1444 Section 003. Lecture #12

PHYS 1444 Section 003. Lecture #12 Chapter 5 Power PHYS 1444 Section 003 Alternating Current Microscopic Current Chapter 6 EMF and Terminal Voltage Lecture #1 Tuesday October 9, 01 Dr. Andrew Brandt Resistors in Series and Parallel Energy

More information

9/22/16 ANNOUNCEMENT ANNOUNCEMENT FINAL EXAM

9/22/16 ANNOUNCEMENT ANNOUNCEMENT FINAL EXAM ANNOUNCEMENT Exam 1: Tuesday September 27, 2016, 8 PM 10 PM Location: Elliot Hall of Music Covers all readings, lectures, homework from Chapters 21 through 23 Multiple choice (1518 questions) Practice

More information

Handout 5: Current and resistance. Electric current and current density

Handout 5: Current and resistance. Electric current and current density 1 Handout 5: Current and resistance Electric current and current density Figure 1 shows a flow of positive charge. Electric current is caused by the flow of electric charge and is defined to be equal to

More information

Current and Resistance

Current and Resistance Chapter 26 Current and Resistance Copyright 26-1 Electric Current As Fig. (a) reminds us, any isolated conducting loop regardless of whether it has an excess charge is all at the same potential. No electric

More information

Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27. Electric Current and Direct- Current Circuits Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

More information

1. What is heating effect of current? What is its cause?

1. What is heating effect of current? What is its cause? GRADE: X PHYSICS (ELECTRICITY) DOMESTIC ELECTRIC CIRCUITS: SERIES OR PARALLEL Disadvantages of series circuits for domestic wiring : In series circuit, if one electrical appliance stops working, due to

More information

Chapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance 25-1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte.

More information

Physics Lecture 19: FRI 10 OCT

Physics Lecture 19: FRI 10 OCT Resistance Is Futile! Physics 2113 Jonathan Dowling Physics 2113 Lecture 19: FRI 10 OCT Current & Resistance III Georg Simon Ohm (1789-1854) Resistance is NOT Futile! Electrons are not completely free

More information

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

Temperature coefficient of resistivity

Temperature coefficient of resistivity Temperature coefficient of resistivity ρ slope = α ρ = ρ o [ 1+ α(t To )] R = R o [1+ α(t T o )] T T 0 = reference temperature α = temperature coefficient of resistivity, units of (ºC) -1 For Ag, Cu, Au,

More information

Chapter 3: Current and Resistance. Direct Current Circuits

Chapter 3: Current and Resistance. Direct Current Circuits Chapter 3: Current and Resistance. Direct Current Circuits 3.1. Electric Current 3.2. Resistance and Resistivity 3.3. Ohm s Law and a Microscopic View of Ohm s Law 3.4. Semiconductors and Superconductors

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 240) Lecture 5 Electrodynamics Electric current temperature variation of resistance electrical energy and power Direct current circuits emf resistors in series http://www.physics.wayne.edu/~alan/240website/main.htm

More information

week 6 chapter 31 Current and Resistance

week 6 chapter 31 Current and Resistance week 6 chapter 31 Current and Resistance Which is the correct way to light the lightbulb with the battery? 4) all are correct 5) none are correct 1) 2) 3) Which is the correct way to light the lightbulb

More information

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric

More information

CURRENT ELECTRICITY The charge flowing any cross-section per unit time in a conductor is called electric current.

CURRENT ELECTRICITY The charge flowing any cross-section per unit time in a conductor is called electric current. CUENT ELECTICITY Important Points:. Electric Current: The charge flowing any cross-section per unit time in a conductor is called electric current. Electric Current I q t. Current Density: a) The current

More information

Chapter 27. Current and Resistance

Chapter 27. Current and Resistance Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new

More information

Chapter 27 Solutions. )( m 3 = = s = 3.64 h

Chapter 27 Solutions. )( m 3 = = s = 3.64 h Chapter 27 Solutions 27.1 I Q t N Q e Q I t (30.0 10 6 A)(40.0 s) 1.20 10 3 C 1.20 10 3 C 1.60 10 19 C/electron 7.50 1015 electrons *27.2 The atomic weight of silver 107.9, and the volume V is V (area)(thickness)

More information

Physics 11b Lecture #8

Physics 11b Lecture #8 Physics 11b Lecture #8 Current and Resistance S&J Chapter 27 Administravia First midterm this Thursday Covers up to and including capacitance Lectures #1 #7, textbook chapters 23 26 Five problems Problem

More information

Electric Currents. Resistors (Chapters 27-28)

Electric Currents. Resistors (Chapters 27-28) Electric Currents. Resistors (Chapters 27-28) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power

More information

Flow Rate is the NET amount of water passing through a surface per unit time

Flow Rate is the NET amount of water passing through a surface per unit time Electric Current An Analogy Water Flow in a Pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a surface per unit time Individual molecules are bouncing around with speeds of

More information

and in a simple circuit Part 2

and in a simple circuit Part 2 Current, Resistance, and Voltage in a simple circuit Part 2 Electric Current Whenever electric charges of like signs move, an electric current is said to exist. Look at the charges flowing perpendicularly

More information

CURRENT, RESISTANCE, AND ELECTROMOTIVE FORCE

CURRENT, RESISTANCE, AND ELECTROMOTIVE FORCE CURRENT, RESISTNCE, ND ELECTROMOTIVE FORCE 5 Q 5.1. IDENTIFY and SET UP: The lightning is a current that lasts for a brief time. I =. t 6 Q= I t = (5,000 )(40 10 s) = 1. 0 C. EVLUTE: Even though it lasts

More information

A Review of Circuitry

A Review of Circuitry 1 A Review of Circuitry There is an attractive force between a positive and a negative charge. In order to separate these charges, a force at least equal to the attractive force must be applied to one

More information

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law,

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law, Exercises Question 3.1: The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery? Answer 3.1: Emf

More information

Class 8. Resistivity and Resistance Circuits. Physics 106. Winter Press CTRL-L to view as a slide show. Class 8. Physics 106.

Class 8. Resistivity and Resistance Circuits. Physics 106. Winter Press CTRL-L to view as a slide show. Class 8. Physics 106. and Circuits and Winter 2018 Press CTRL-L to view as a slide show. Last time we learned about Capacitance Problems Parallel-Plate Capacitors Capacitors in Circuits Current Ohm s Law and Today we will learn

More information

CHAPTER: 3 CURRENT ELECTRICITY

CHAPTER: 3 CURRENT ELECTRICITY CHAPTER: 3 CURRENT ELECTRICITY 1. Define electric current. Give its SI unit. *Current is the rate of flow of electric charge. I (t) = dq dt or I = q t SI unit is ampere (A), 1A = 1C 1s 2. Define current

More information

Electric Current & DC Circuits

Electric Current & DC Circuits Electric Current & DC Circuits Circuits Click on the topic to go to that section Conductors Resistivity and Resistance Circuit Diagrams Measurement EMF & Terminal Voltage Kirchhoff's Rules Capacitors*

More information

6. In a dry cell electrical energy is obtained due to the conversion of:

6. In a dry cell electrical energy is obtained due to the conversion of: 1. If a wire of uniform area of cross section is cut into two halves (equal in size), the resistivity of each part will be: a) Halved. b) Doubled. c) Becomes four times its initial value. d) Remains the

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 4 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm s law resistivity

More information

Ch. 21: Current, Resistance, Circuits

Ch. 21: Current, Resistance, Circuits Ch. 21: Current, Resistance, Circuits Current: How charges flow through circuits Resistors: convert electrical energy into thermal/radiative energy Electrical Energy & Power; Household Circuits Time-Dependent

More information

Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)

Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C) Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm s law http://www.physics.wayne.edu/~apetrov/phy2140/

More information

Electric Currents & Resistance

Electric Currents & Resistance Electric Currents & Resistance Electric Battery A battery produces electricity by transforming chemical energy into electrical energy. The simplest battery contains two plates or rods made of dissimilar

More information

Physics 212 Midterm 2 Form A

Physics 212 Midterm 2 Form A 1. A wire contains a steady current of 2 A. The charge that passes a cross section in 2 s is: A. 3.2 10-19 C B. 6.4 10-19 C C. 1 C D. 2 C E. 4 C 2. In a Physics 212 lab, Jane measures the current versus

More information

Downloaded from

Downloaded from CHAPTER 12 ELECTRICITY Electricity is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena such

More information

Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

More information

Physics 142 Steady Currents Page 1. Steady Currents

Physics 142 Steady Currents Page 1. Steady Currents Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

More information

Question 3: How is the electric potential difference between the two points defined? State its S.I. unit.

Question 3: How is the electric potential difference between the two points defined? State its S.I. unit. EXERCISE (8 A) Question : Define the term current and state its S.I unit. Solution : Current is defined as the rate of flow of charge. I = Q/t Its S.I. unit is Ampere. Question 2: Define the term electric

More information

Chapter 27. Current And Resistance

Chapter 27. Current And Resistance Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

More information

Chapter 27. Current And Resistance

Chapter 27. Current And Resistance Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

More information

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance Units of Chapter 25 The Electric Battery Electric Current Ohm s Law: Resistance and Resistors Resistivity Electric Power Units of Chapter 25 Power in Household

More information

Brown University PHYS 0060 OHM S LAW

Brown University PHYS 0060 OHM S LAW INTRODUCTION OHM S LAW Recently you have heard many ways of reducing energy consumption in the home. One of the suggested ways is to use 60W light bulbs rather than 00W bulbs; another is to cut back on

More information

Nama :.. Kelas/No Absen :

Nama :.. Kelas/No Absen : Nama :.. Kelas/No Absen : TASK 2 : CURRENT AND RESISTANCE 1. A car battery is rated at 80 A h. An ampere-hour is a unit of: A. power B. energy C. current D. charge E. force 2. Current has units: A. kilowatt-hour

More information

Electric Currents and Resistance II

Electric Currents and Resistance II Electric Currents and Resistance II Physics 2415 Lecture 11 Michael Fowler, UVa Today s Topics First we ll mention capacitors Power usage: kwh, etc. The microscopic picture Temperature dependence of resistivity

More information

UNIT 5: Electric Current and Direct-Current Circuit (D.C.)

UNIT 5: Electric Current and Direct-Current Circuit (D.C.) UNT 5: Electric Current Direct-Current Circuit (D.C.) SF07 5. Electric Current, Consider a simple closed circuit consists of wires, a battery a lamp as shown in figure 5.a. F r e E r rea, From the figure,

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review The resistance R of a device is given by Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 8 R =! L A ρ is resistivity of the material from which the device is constructed L is the

More information

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis

Chapter 19. Electric Current, Resistance, and DC Circuit Analysis Chapter 19 Electric Current, Resistance, and DC Circuit Analysis I = dq/dt Current is charge per time SI Units: Coulombs/Second = Amps Direction of Electron Flow _ + Direction of Conventional Current:

More information

Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power

Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power Lana Sheridan De Anza College Feb 6, 2018 Last time resistance resistivity conductivity Ohm s Law Overview Drude model

More information

Current and Resistance

Current and Resistance 27 Current and Resistance CHAPTER OUTLINE 27.1 Electric Current 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.5 Superconductors 27.6 Electrical Power * An asterisk

More information

CURRENT ELECTRICITY MARKS WEIGHTAGE 7 marks

CURRENT ELECTRICITY MARKS WEIGHTAGE 7 marks CURRENT ELECTRICITY MARKS WEIGHTAGE 7 marks QUICK REVISION (Important Concepts & Formulas) Electric current The current is defined as the rate of flow of charges across any cross sectional area of a conductor.

More information

Page 1 ELTECH 113 Lecture (Ouiz #1, In Class) Date : Thursday, (5 :30 pm - 6 :45 pm) Instructor : Bret Allen

Page 1 ELTECH 113 Lecture (Ouiz #1, In Class) Date : Thursday, (5 :30 pm - 6 :45 pm) Instructor : Bret Allen ':_~ 4~~ Z ṭ.1 Page 1 ELTECH 113 Lecture (Ouiz #1, In Class) Date : Thursday, 8-29-2002 (5 :30 pm - 6 :45 pm) Instructor : Bret Allen Instructions : Select the best possible answer from each of the following

More information

Resistivity and Temperature Coefficients (at 20 C)

Resistivity and Temperature Coefficients (at 20 C) Homework # 4 Resistivity and Temperature Coefficients (at 0 C) Substance Resistivity, Temperature ( m) Coefficient, (C ) - Conductors Silver.59 x 0-0.006 Copper.6 x 0-0.006 Aluminum.65 x 0-0.0049 Tungsten

More information

Ohm's Law and Resistance

Ohm's Law and Resistance Ohm's Law and Resistance Resistance Resistance is the property of a component which restricts the flow of electric current. Energy is used up as the voltage across the component drives the current through

More information

Chapter 27. Current and Resistance

Chapter 27. Current and Resistance Chapter 27 Current and Resistance CHAPTER OUTLINE 27.1 Electric Current 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.5 Superconductors 27.6 Electrical Power

More information

Current and Resistance

Current and Resistance chapter 27 Current and Resistance 27.1 Electric Current 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.5 Superconductors 27.6 Electrical Power We now consider

More information

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1.

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1. 1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. 2 magnetic 1 flux linkage / 0 10 2 Wb-turns 1 2 5 10 15 t / 10 3 s Fig. 3.1 The generator has a flat coil

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3 Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 Summary of last lecture Equipotential surfaces: Surfaces where the potential is the same everywhere, e.g. the

More information

Chapter 27 Current and resistance

Chapter 27 Current and resistance 27.1 Electric Current Chapter 27 Current and resistance 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.6 Electrical Power 2 27.1 Electric Current Consider a system

More information

Algebra Based Physics

Algebra Based Physics Page 1 of 105 Algebra Based Physics Electric Current & DC Circuits 2015-10-06 www.njctl.org Page 2 of 105 Electric Current & DC Circuits Circuits Conductors Resistivity and Resistance Circuit Diagrams

More information

Version 001 HW 20 Circuits C&J sizemore (21301jtsizemore) 1

Version 001 HW 20 Circuits C&J sizemore (21301jtsizemore) 1 Version 00 HW 20 Circuits C&J sizemore (230jtsizemore) This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Serway

More information

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is:

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is: Term: 13 Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R=105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? Figure 1 A).3 V B) +.3

More information

Physics 1502: Lecture 8 Today s Agenda. Today s Topic :

Physics 1502: Lecture 8 Today s Agenda. Today s Topic : Physics 1502: Lecture 8 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics today: due next Friday Go to masteringphysics.com

More information

EE 42/100 Lecture 3: Circuit Elements, Resistive Circuits. Rev D 1/22/2012 (4:19PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 3: Circuit Elements, Resistive Circuits. Rev D 1/22/2012 (4:19PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 3 p. 1/22 EE 42/100 Lecture 3: Circuit Elements, Resistive Circuits ELECTRONICS Rev D 1/22/2012 (4:19PM) Prof. Ali M. Niknejad University

More information

Electric Current. Equilibrium: Nonequilibrium: Electric current: E = 0 inside conductor. Mobile charge carriers undergo random motion.

Electric Current. Equilibrium: Nonequilibrium: Electric current: E = 0 inside conductor. Mobile charge carriers undergo random motion. Electric Current Equilibrium: E = 0 inside conductor. Mobile charge carriers undergo random motion. Nonequilibrium: E 0 inside conductor. Mobile charge carriers undergo random motion and drift. Positive

More information