1. FY10 GOES-R3 Project Proposal Title Page

Size: px
Start display at page:

Download "1. FY10 GOES-R3 Project Proposal Title Page"

Transcription

1 1. FY10 GOES-R3 Project Proposal Title Page Title: Transitioning GOES-Based Nowcasting Capability into the GOES-R Era Project Type: Product development Proposal Status: Renewal Duration: 3 years FY08 - FY10 Leads: Stephan Smith, Mamoudou Ba, NOAA/NWS Meteorological Development Laboratory (MDL), Robert J. Kuligowski, NOAA/NESDIS Center for Satellite Applications and Research (STAR), Robert Rabin, NOAA/OAR National Severe Storms Laboratory (NSSL), Valliappa Lakshmanan, CIMMS, Reza Khanbilvardi, Arnold Gruber, Shayesteh Mahani and Brian Vant-Hull, NOAA/CUNY Cooperative Remote Sensing Science and Technology Centre (CREST) Other Participants: Interactions with Eumetsat Nowcasting SAF and French developers of RDT from Météo-France 1

2 2. Project Summary Goal is: transition of satellite based nowcasting capability into the GOES-R era This work involves: Evaluating nowcasting models for the US using GOES Data. New York Metropolitan area is selected as the test-bed. Models being studied at NOAA-CREST include:» Rapidly Developing Thunderstorm (RDT): operational model used by Eumetsat SAF» Segmotion: operational clustering and tracking algorithm in use at NSSL» SatCast: Convective initiation detection in use at CIMMS and UAH Enhance nowcasting models for use with GOES-R Coordinate with AWG in evaluating candidate Day-1 nowcasting algorithms for GOES-R Support AWG via research and development of enhanced Day-2 rainfall estimation and nowcasting algorithms (SCaMPR) Research enhancements include:» Extrapolation of storm development into the future» Inclusion of lightning data,» Use of NWP wind shear and convective products, and ABI upper level divergence to improve nowcasting of development and decay of storms,» Improvements to rain rate algorithms for nowcasting storms. 2

3 3. Motivation/Justification Supports NOAA Mission Goal: Serve society's needs for weather and water information. The objective of the work proposed here is to support the work of the AWG for a Day-1 nowcasting model and develop improved GOES R nowcasting algorithms for Day 2 and beyond by:» Assisting in the algorithm selection process by producing output from the RDT and other nowcasting algorithms as needed ( e.g. HN) for use in the Hydrology Algorithm Team intercomparison.» Conducting research to support further improvements to the algorithm beyond the initial version that will be presented to the GOES-R Prime Contractor in early Serve as nowcasting testbed for NOAA/MDL s work in implementing satellite based nowcasting into System for Convection Analysis and Nowcasting 3

4 4. Methodology Use lightning and precipitation radar data as validation for nowcasting models with GOES-R inputs. Evaluate the potential impact of additional inputs into nowcasting algorithms, including:» Data from the GOES Lightning Mapper (GLM)» Wind shear products and convective products from the ABI» Derived upper-level divergence Investigate potential improvements to the Version 1 rainfall rate algorithm by using nowcasting tools to create Lagrangian variables (growth and cooling rates) for use as precipitation predictors. Use lifecycle studies to produce extrapolation of storm cells. Test bed sites will be centered on the NYC metropolitan area, Norman (OK), and Reno (NV) 4

5 5. Summary of Previous Results Contact established with RDT developers at Meteo-France and operational staff at EUMETSAT The Hydro-Estimator and Hydro-Nowcaster models from NESDIS and RDT model from Météo-France/EuMetSat were installed at CREST. RDT has been modified to use GOES-IR instead of MSG data as input RDT installed on site with implementation of 24 7 web based for NYC metro-area using real time GOES-IR from CREST satellite receiver antenna. RDT Performance Evaluations to Detect: - convective initiation and growth rate, using SatCast comparison - early convective initiation, using cloud to ground lightning data & precipitation, - small and/or under 15 minute convective cells, using GOES rapid scan data (7.5 minutes) 5

6 5. Summary of Previous Results (Cont.) Initial studies performed to evaluate the possibility of using RDT as the basis for a rainfall detection algorithm. Software has been developed to display Lightning Mapper Array (LMA) data in real time. A lifecycle study of the convective tower elements selected by RDT demonstrated that on an individual basis they did not exhibit the regular behaviour of mesoscale convective clusters. (Stable results using averaged lifecycle data is described later). Cloud cell life cycle analysis that is continuing using both RDT and WDSSII segmotion trajectories. Produced documentation and training materials that can be used to train students to run the RDT thunderstorm identification algorithm. Assembled satellite, radar and SPC model data for study of full life cycle of convective storms. ( Rabin, NSSL). 6

7 6a. Expected FY10 Outcomes A peer-reviewed journal publication about RDT-SatCast comparison. A peer-reviewed journal publication about RDT Cloud Lifecycle studies and application to extrapolation and nowcasting. Incorporate new precipitation variables (e.g., cell growth rates) into SCaMPR for improving precipitation products. Apply the results of cloud lifecycle study and identified correlated variables to forecast precipitation. Incorporate results into enhanced nowcasting model and evaluate for test sites and nationwide. 7

8 6b. FY10 Accomplishments & Results RDT Lifecycle Studies (directed undergraduate research) Lifecycle studies of the RDT cells are largely complete. Cells of similar lifetime have been grouped together, averaged, and Gaussian functions of time fit to the results. The curve fitting will be used for extrapolation of cell development. Results show that the area extrapolation is fairly stable, but the parabolic position extrapolation is not. show Began design of software to evaluate the quality of the RDT extrapolation. 8

9 6b. FY10 Accomplishments & Results (Cont) Satcast-RDT Comparison Rebuilt some of the code for the RDT-SatCast comparison (lost by stolen computer), specifically to ingest rainfall data, and to output summary trajectories including the rainfall. Precipitation was added as validation. RDT contours with SatCast convective detection does better at predicting rainfall than lightning. With pure RDT convective detection, lightning is predicted with better skill. This is expected as SatCast was calibrated against radar echos. Imagery that shows SatCast convective indications tend to appear in highly textured cloud masses, while RDT detects large plumes. show Performed test of shorter RDT towers, but found an insignificant change in the number of SatCast pixels inside the RDT contours. 9

10 6b. FY10 Accomplishments & Results (Cont.) Segmotion Lifecycle Studies Installed Segmotion at CREST Created code (unix, C, WDSII) to calculate cooling rates on a pixel basis using the SegMotion algorithm. The code will be ingested into the SCAMPR (Self CAlibrating Multivariate Precipitation Retrieval) rainfall algorithm to see if the extra information improves the skill of precipitation estimation. Developed code to ingest rainfall (national mosaic NMQ) and lightning (NDLN) data into the segmotion output for lifecycle studies. This will be needed until the NSSL output is usable. Currently the NSSL output uses 10 degree bins that are too coarse to capture convective initiation. show Completed code for segmotion lifecycle study using operational output. As noted above, this will not be useful until the algorithm temperature bins are retuned. 10

11 6b. FY10 NSSL Accomplishments & Ongoing Enhancements were made to time-series of variables associated with convective cloud tracks using the k-means technique developed by V. Lakshaman. New parameters include mean cloud top temperature, precipitation rate from radar, and precipitable water. These parameters are being used to develop a statistical algorithm for storm intensification and dissipation at CREST. Provided time-series plots of environmental parameters along storm tracks (including upper-level divergence, deep layer shear, and CAPE) for sample storms, by B. Rabin. show Developed on-line web page to facilitate qualitative comparisons of hourly rainfall from radar and forecasts from the \RUC HRRR (high resolution rapid refresh model, 3km) to be used for comparison with the developed Nowcasting model, by B. Rabin. 11

12 6c. FY10 Ongoing & Future Directions Satcast-RDT Comparison & Lifecycle Studies Prepare RDT-SatCast and RDT lifecycle studies for publication. Break down RDT SatCast comparison by individual convective indicators, as opposed to the sum. This will pinpoint why RDT fails to capture convective initiation. Design temperature bin array for use by the NSSL algorithm that can capture thunderstorm development with no significant increase of computation time. This will be used to continue the lifecycle study until acquisition of a new computer allows finer resolution. Identification of Lagrangian variables from lifecycle study that correlate to precipitation. show Apply results of the lifecycle study to forecast precipitation based on the life history of a cell. 12

13 6c. FY10 Ongoing & Future Directions Segmotion lifecycle study results will be evaluated for nowcasting precipitation and lightning. Discussions are underway to combine 3-D wind fields estimated from WSR- 88D Doppler radars using the VDRAS assimulation technique (NCAR) with GOES-R wind and stability products (CIMSS and CIRA) to improve diagnosis of convective storm initiation and evolution Incorporate new precipitation variables (e.g., cell growth rates) into SCaMPR for improving precipitation products. Incorporate results into enhanced nowcasting model and evaluate for test sites and nationwide. Cloud Tracking Extrapolation Develop a stable spatial extrapolation scheme so the algorithm can be presented on the web site. Positional extrapolation based on NWM winds will be explored 13

14 Goals and Approach Use the best ideas from existing algorithms to produce a nowcasting suite: - Convective Initiation: Satcast - Tracking: RDT and SegMotion - Mature thunderstorm detection: RDT - Extrapolation to the future: FORTRACC Apply lifecycle analysis to nowcasting precipitation/lightning. Outline Eumetsat RDT: tracking and extrapolation of storms RDT, SatCast, and Convective Initiation Segmotion (Kmeans), lifecycles and environmental parameters Cross collaborations 14

15 RDT Lifecycles Gaussians fitted to the average areas and tower heights as a function of time: cells of similar lifetimes grouped together. We see monotonic pattern up to 2 hr lifetimes. 15

16 Applying extrapolation: FORTRACC method. Parabolic position doesn t work so well at times. Other approaches are under consideration. return 16

17 Precipitation is also part of a storm s lifecycle.. Area Time Area and growth rate uniquely define storm intensity and where it is in its lifecycle, presumably including precipitation. Recent work by Delgado et al show good correlation of total rain to area growth rate and cooling rate. 17

18 return RDT and Precipitation White < 243 K ~ 50% of heavy precipitation falls outside RDT tower structures. 18

19 RDT versus Satcast Convective Detection: May 5-10, 2009 RDT tested with Lightning/Precipitation (35 dbz) Hits: 83/30 Misses: 301/1642 False Alarms: 65/118 POD: 22% / 2% FAR: 44% / 80% RDT detection leads event in 5/8 cases, avg lead time: 74/111 min Simultaneous: 34/6 cases, avg 53/89 minutes into storm lifecycle RDT detection lags event in 44/16 cases, avg lag time: 57/63 min SatCast/RDT tested with Lightning/Precipitation (35 dbz) Hits: 62/286 Misses: 322/1386 False Alarms: 476/252 POD: 16% / 17% FAR: 88% / 47% SatCast detection leads event in 12/74 cases, avg lead time: 37/47 min Simultaneous: 15/92 cases, avg 19/16 minutes into storm lifecycle SatCast detection lags event in 35/120 cases, avg lag time: 58/39 min 19

20 Satcast and Convective Initiation T i T i +5 i -20 Top of water vapor layer Initiation layer TT i +20 i -5 Freezing level 8 convective initiation indicators, including presence in initiation layers and growth rates 20

21 Area => Area => return Satcast and RDT Satcast can be used to find which pixels have convectively active characteristics, and then see which types of behavior fall inside the RDT contours. Below, pixels with relevant brightness temperatures and cooling rates are classified by their RDT contour areas. Green pixels: Satcast Red: RDT storms Orange: RDT regular Satcast detected pixels within 20 C below water vapor level Outside the contours: 0 area Inside the contours, by area Satcast detected pixels with significant cooling rate Outside the contours: 0 area Inside the contours, by area 21

22 Current Evaluation of RDT Good job tracking storms. Moderate job detecting developed storms as identified by lightning (new version will do better!). Poor job detecting initiating/newly developed storms. Poor job predicting heavy rain: half falls outside the contours. The failures are due mainly to the initial detection of clouds via tower structures, less to subsequent classification of detected clouds as storms. 22

23 Segmotion and Environmental Bins The Segmotion algorithm (aka Kmeans ) is running operationally at NSSL. It tracks cloud patches, calculates statistics, and associates cloud patches with data from weather model analysis, radar, and lightning. Many of these variables were added for this project. We group trajectories of similar lifetime together, then use the model data to stratify trajectory averages by the following environmental parameters: Total Precipitable Water Wind Shear CAPE 23

24 Segmotion Lifecycle Averages AREA area Overall Averages precip lightning Low Cape Mid Cape High Cape Precipitation High Cape Mid Cape Low Cape 24

25 return Needed Adjustments to Operational Segmotion Current Standard Segmotion BT view View with with RDT 10 contours K temperature bins 25

26 NSSL Storm Tracker Enhancements return Upper Precipitation level divergence and Wind Precipitable and speed lightning (shear) water 26

27 Crossover with AWG: Precipitation Wrote algorithm based on Segmotion to calculate cooling rates for input to AWG precipitation algorithm (SCAMPR). Have contracted to evaluate how scale of the segmotion algorithm affects extrapolation of the AWG precipitation product. 27

28 Summary of FY2010 Results A Gaussian extrapolation scheme based on lifecycle statistics is being evaluated for the RDT algorithm Due to the reliance on cloud tower structures, RDT does not do well with convective initiation or precipitation estimation A lifecycle study based on environmental parameters is underway with segmotion to be applied to nowcasting of precipitation/lightning, but awaits a more optimal selection of temperature bins. Work is being done with AWG to improve the precipitation estimation and extrapolation algorithms. 28

29 7. Proposed FY11 Outcomes Nationwide web product of enhanced nowcasting algorithm, including extrapolation of storm position, size, precipitation and lightning. Incorporation of satellite wind and stability products into the VDRAS technique, which currently combines radar data with a high resolution numerical model to obtain 3D winds and thermodynamic structure of individual storms. Evaluate object based variables (such as cell volume growth rate) for use in the GOES-R operational precipitation algorithm. 29

30 8. Funding Profile ($K) Funding Sources Purchase Items FY10 GOES-R3 Other Sources (See next slide) 130K 0K 9. Budget Profile ($) Expected Budget CREST NSSL NESDIS TOTAL BUDGET FY10 $119,300 $10,000 $700 $130,000 30

31 10. Supplemental Information Coordination with other Groups» Interaction with the developers of RDT in Meteo-France continues.» Dr. Bob Rabin from NSSL has visited CREST several times and has helped students with MCIDAS and precipitation data.» Coordination with other groups and GOES R work comes through different team members, e.g., Auto-nowcaster- Dr. Ba, (MDL) GOES R rainfall algorithms, SCaMPR, Dr. Kuligowski (NESDIS) GIMPAP developments, Dr. Rabin (NSSL) FORTRACC comparisons with Daniel Vila (CICS) SatCast comparison with Dr. John Mecikalski (UAH & NSSTC) K-means tracking, Dr. Valliappa Lakshmanan (CIMMS) 31

Update on CoSPA Storm Forecasts

Update on CoSPA Storm Forecasts Update on CoSPA Storm Forecasts Haig August 2, 2011 This work was sponsored by the Federal Aviation Administration under Air Force Contract No. FA8721-05-C-0002. Opinions, interpretations, conclusions,

More information

Improving real time observation and nowcasting RDT. E de Coning, M Gijben, B Maseko and L van Hemert Nowcasting and Very Short Range Forecasting

Improving real time observation and nowcasting RDT. E de Coning, M Gijben, B Maseko and L van Hemert Nowcasting and Very Short Range Forecasting Improving real time observation and nowcasting RDT E de Coning, M Gijben, B Maseko and L van Hemert Nowcasting and Very Short Range Forecasting Introduction Satellite Application Facilities (SAFs) are

More information

Satellite-based Convection Nowcasting and Aviation Turbulence Applications

Satellite-based Convection Nowcasting and Aviation Turbulence Applications Satellite-based Convection Nowcasting and Aviation Turbulence Applications Kristopher Bedka Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin-Madison In collaboration

More information

Nowcasting thunderstorms for aeronautical end-users

Nowcasting thunderstorms for aeronautical end-users Nowcasting thunderstorms for aeronautical end-users Jean-Marc Moisselin Météo-France, Nowcasting Department co-authors: Céline Jauffret (Météo-France) Overview Introduction SAT RADAR NWP image crédit:

More information

The GOES-R Rainfall Rate, Rainfall Potential, and Probability of Rainfall Algorithms

The GOES-R Rainfall Rate, Rainfall Potential, and Probability of Rainfall Algorithms The GOES-R Rainfall Rate, Rainfall Potential, and Probability of Rainfall Algorithms Bob Kuligowski, NOAA/NESDIS/STAR Yaping Li, Zhihua Zhang, Richard Barnhill, I. M. Systems Group 5 th International Precipitation

More information

NEW SCHEME TO IMPROVE THE DETECTION OF RAINY CLOUDS IN PUERTO RICO

NEW SCHEME TO IMPROVE THE DETECTION OF RAINY CLOUDS IN PUERTO RICO NEW SCHEME TO IMPROVE THE DETECTION OF RAINY CLOUDS IN PUERTO RICO Joan Manuel Castro Sánchez Advisor Dr. Nazario Ramirez UPRM NOAA CREST PRYSIG 2016 October 7, 2016 Introduction A cloud rainfall event

More information

Nowcasting of Severe Weather from Satellite Images (for Southern

Nowcasting of Severe Weather from Satellite Images (for Southern Nowcasting of Severe Weather from Satellite Images (for Southern Europe) Petra Mikuš Jurković Forecasting/ nowcasting of convective storms NWP models cannot well predict the exact location and intesity

More information

Judit Kerényi. OMSZ - Hungarian Meteorological Service, Budapest, Hungary. H-1525 Budapest, P.O.Box 38, Hungary.

Judit Kerényi. OMSZ - Hungarian Meteorological Service, Budapest, Hungary. H-1525 Budapest, P.O.Box 38, Hungary. SATELLITE-DERIVED PRECIPITATION ESTIMATIONS DEVELOPED BY THE HYDROLOGY SAF PROJECT CASE STUDIES FOR THE INVESTIGATION OF THEIR ACCURACY AND FEATURES IN HUNGARY Judit Kerényi OMSZ - Hungarian Meteorological

More information

Satellite-based thunderstorm tracking, monitoring and nowcasting over South Africa

Satellite-based thunderstorm tracking, monitoring and nowcasting over South Africa Satellite-based thunderstorm tracking, monitoring and nowcasting over South Africa Caroline Forster 1, Estelle de Coning 2, Sebastian Diebel 1, Tobias Zinner 3 EUMETSAT Meteorological Satellite Conference

More information

Tool for Storm Analysis Using Multiple Data Sets

Tool for Storm Analysis Using Multiple Data Sets Tool for Storm Analysis Using Multiple Data Sets Robert M. Rabin 1,2 and Tom Whittaker 2 1 NOAA/National Severe Storms Laboratory, Norman OK 73069, USA 2 Cooperative Institute for Meteorological Satellite

More information

Performance of a Probabilistic Cloud-to-Ground Lightning Prediction Algorithm

Performance of a Probabilistic Cloud-to-Ground Lightning Prediction Algorithm Performance of a Probabilistic Cloud-to-Ground Lightning Prediction Algorithm John Cintineo 1,2,3 * Valliappa Lakshmanan 1,2, Travis Smith 1,2 Abstract A probabilistic cloud- to- ground lightning algorithm

More information

Judit Kerényi. OMSZ-Hungarian Meteorological Service P.O.Box 38, H-1525, Budapest Hungary Abstract

Judit Kerényi. OMSZ-Hungarian Meteorological Service P.O.Box 38, H-1525, Budapest Hungary Abstract Comparison of the precipitation products of Hydrology SAF with the Convective Rainfall Rate of Nowcasting-SAF and the Multisensor Precipitation Estimate of EUMETSAT Judit Kerényi OMSZ-Hungarian Meteorological

More information

Rapidly Developing Thunderstorm (RDT)

Rapidly Developing Thunderstorm (RDT) Rapidly Developing Thunderstorm (RDT) Jean-Marc Moisselin, Frédéric Autones Météo-France Nowcasting Department 42, av. Gaspard Coriolis 31057 Toulouse France jean-marc.moisselin@meteo.fr EUMETRAIN Convection

More information

P5.7 THE ADVANCED SATELLITE AVIATION WEATHER PRODUCTS (ASAP) INITIATIVE: PHASE I EFFORTS AT THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

P5.7 THE ADVANCED SATELLITE AVIATION WEATHER PRODUCTS (ASAP) INITIATIVE: PHASE I EFFORTS AT THE UNIVERSITY OF ALABAMA IN HUNTSVILLE P5.7 THE ADVANCED SATELLITE AVIATION WEATHER PRODUCTS (ASAP) INITIATIVE: PHASE I EFFORTS AT THE UNIVERSITY OF ALABAMA IN HUNTSVILLE John R. Mecikalski #1, Todd A. Berendes #, U. S. Nair #, Wayne F. Feltz*,

More information

P3.10 EVALUATION OF A 2 HOUR REFLECTIVITY NOWCAST USING A CROSS CORRELATION TECHNIQUE COMPARED TO PERSISTENCE

P3.10 EVALUATION OF A 2 HOUR REFLECTIVITY NOWCAST USING A CROSS CORRELATION TECHNIQUE COMPARED TO PERSISTENCE P3.1 EVALUATION OF A 2 HOUR REFLECTIVITY NOWCAST USING A CROSS CORRELATION TECHNIQUE COMPARED TO PERSISTENCE Steven Vasiloff 1 1 National Severe Storms Laboratory, Norman, OK 1. INTRODUCTION A very short

More information

Page 1/8 Long duration validation of PGE11. SAF - Nowcasting Product Assessment Review Worshop (Madrid ctober 2005

Page 1/8 Long duration validation of PGE11. SAF - Nowcasting Product Assessment Review Worshop (Madrid ctober 2005 Page 1/8 Plan Research activity (visiting scientist: Oleksiy Kryvobok) Use of other PGEs and HRVis for RDT improvement Tuning PGE11 satellite-based discrimination using SEVIRI data Long duration validation

More information

P1.10 Synchronization of Multiple Radar Observations in 3-D Radar Mosaic

P1.10 Synchronization of Multiple Radar Observations in 3-D Radar Mosaic Submitted for the 12 th Conf. on Aviation, Range, and Aerospace Meteor. 29 Jan. 2 Feb. 2006. Atlanta, GA. P1.10 Synchronization of Multiple Radar Observations in 3-D Radar Mosaic Hongping Yang 1, Jian

More information

DATA FUSION NOWCASTING AND NWP

DATA FUSION NOWCASTING AND NWP DATA FUSION NOWCASTING AND NWP Brovelli Pascal 1, Ludovic Auger 2, Olivier Dupont 1, Jean-Marc Moisselin 1, Isabelle Bernard-Bouissières 1, Philippe Cau 1, Adrien Anquez 1 1 Météo-France Forecasting Department

More information

Using McIDAS-V for Satellite-Based Thunderstorm Research and Product Development

Using McIDAS-V for Satellite-Based Thunderstorm Research and Product Development Using McIDAS-V for Satellite-Based Thunderstorm Research and Product Development Kristopher Bedka UW-Madison, SSEC/CIMSS In Collaboration With: Tom Rink, Jessica Staude, Tom Whittaker, Wayne Feltz, and

More information

REPORT ON THE ACTIVITIES OF THE EUMETSAT-ESSL CONVECTION WORKING GROUP

REPORT ON THE ACTIVITIES OF THE EUMETSAT-ESSL CONVECTION WORKING GROUP REPORT ON THE ACTIVITIES OF THE EUMETSAT-ESSL CONVECTION WORKING GROUP Marianne König EUMETSAT, Eumetsat Allee 1, 64295 Darmstadt, Germany Abstract The focus of the Convection Working Group is to have

More information

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM Mária Putsay, Zsófia Kocsis and Ildikó Szenyán Hungarian Meteorological Service, Kitaibel Pál u. 1, H-1024, Budapest, Hungary Abstract The

More information

P5.11 TACKLING THE CHALLENGE OF NOWCASTING ELEVATED CONVECTION

P5.11 TACKLING THE CHALLENGE OF NOWCASTING ELEVATED CONVECTION P5.11 TACKLING THE CHALLENGE OF NOWCASTING ELEVATED CONVECTION Huaqing Cai*, Rita Roberts, Dan Megenhardt, Eric Nelson and Matthias Steiner National Center for Atmospheric Research, Boulder, CO, 80307,

More information

*Corresponding author address: Charles Barrere, Weather Decision Technologies, 1818 W Lindsey St, Norman, OK

*Corresponding author address: Charles Barrere, Weather Decision Technologies, 1818 W Lindsey St, Norman, OK P13R.11 Hydrometeorological Decision Support System for the Lower Colorado River Authority *Charles A. Barrere, Jr. 1, Michael D. Eilts 1, and Beth Clarke 2 1 Weather Decision Technologies, Inc. Norman,

More information

Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now

Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now Michael Berechree National Manager Aviation Weather Services Australian Bureau of Meteorology

More information

A NOWCASTING SYSTEM USING SATELLITE AND RADAR DATA: THE CHUVA PROJECT EXPERIENCE

A NOWCASTING SYSTEM USING SATELLITE AND RADAR DATA: THE CHUVA PROJECT EXPERIENCE A NOWCASTING SYSTEM USING SATELLITE AND RADAR DATA: THE CHUVA PROJECT EXPERIENCE Luiz Augusto Machado Chuva Science Team CHUVA Project: Cloud processes of the main precipitation 6 systems in Brazil: A

More information

AOMSUC-6 Training Event

AOMSUC-6 Training Event Effective use of high temporal and spatial resolution Himawari-8 data AOMSUC-6 Training Event Bodo Zeschke Australian Bureau of Meteorology Training Centre Australian VLab Centre of Excellence Content

More information

RDT-CW: TOWARD A MULTIDIMENSIONAL DESCRIPTION OF CONVECTION

RDT-CW: TOWARD A MULTIDIMENSIONAL DESCRIPTION OF CONVECTION RDT-CW: TOWARD A MULTIDIMENSIONAL DESCRIPTION OF CONVECTION Jean-Marc Moisselin, Frederic Autonès Météo-France, DPREVI/PI, 42 avenue G. Coriolis 31057 Toulouse, France Abstract RDT-CW (Rapid Development

More information

McIDAS Activities Within The NASA Langley Research Center Clouds And Radiation Group

McIDAS Activities Within The NASA Langley Research Center Clouds And Radiation Group McIDAS Activities Within The NASA Langley Research Center Clouds And Radiation Group Kristopher Bedka Science Systems and Applications Inc @ NASA LaRC In Collaboration With (in alphabetical order) J. K.

More information

"Experiences with use of EUMETSAT MPEF GII product for convection/storm nowcasting"

Experiences with use of EUMETSAT MPEF GII product for convection/storm nowcasting "Experiences with use of EUMETSAT MPEF GII product for convection/storm nowcasting" Marianne König 1, Monika Pajek 2, Piotr Struzik 2 1) EUMETSAT 2) Institute of Meteorology and Water Management, Kraków,

More information

Xinhua Liu National Meteorological Center (NMC) of China Meteorological Administration (CMA)

Xinhua Liu National Meteorological Center (NMC) of China Meteorological Administration (CMA) The short-time forecasting and nowcasting technology of severe convective weather for aviation meteorological services in China Xinhua Liu National Meteorological Center (NMC) of China Meteorological Administration

More information

WARNING DECISION SUPPORT SYSTEM INTEGRATED INFORMATION (WDSS-II). PART I: MULTIPLE-SENSOR SEVERE WEATHER APPLICATIONS DEVELOPMENT AT NSSL DURING 2002

WARNING DECISION SUPPORT SYSTEM INTEGRATED INFORMATION (WDSS-II). PART I: MULTIPLE-SENSOR SEVERE WEATHER APPLICATIONS DEVELOPMENT AT NSSL DURING 2002 14.8 WARNING DECISION SUPPORT SYSTEM INTEGRATED INFORMATION (WDSS-II). PART I: MULTIPLE-SENSOR SEVERE WEATHER APPLICATIONS DEVELOPMENT AT NSSL DURING 2002 Travis M. Smith 1,2, *, Gregory J. Stumpf 1,2,

More information

Use of radar to detect weather

Use of radar to detect weather 2 April 2007 Welcome to the RAP Advisory Panel Meeting Use of radar to detect weather G. Brant Foote Brant Director Foote Rita Roberts Roelof Bruintjes Research Applications Program Radar principles Radio

More information

An Algorithm to Identify and Track Objects on Spatial Grids

An Algorithm to Identify and Track Objects on Spatial Grids An Algorithm to Identify and Track Objects on Spatial Grids VA L L I A P PA L A K S H M A N A N N AT I O N A L S E V E R E S T O R M S L A B O R AT O R Y / U N I V E R S I T Y O F O K L A H O M A S E P,

More information

Utilising Radar and Satellite Based Nowcasting Tools for Aviation Purposes in South Africa. Erik Becker

Utilising Radar and Satellite Based Nowcasting Tools for Aviation Purposes in South Africa. Erik Becker Utilising Radar and Satellite Based Nowcasting Tools for Aviation Purposes in South Africa Erik Becker Morné Gijben, Mary-Jane Bopape, Stephanie Landman South African Weather Service: Nowcasting and Very

More information

Meteorology 311. RADAR Fall 2016

Meteorology 311. RADAR Fall 2016 Meteorology 311 RADAR Fall 2016 What is it? RADAR RAdio Detection And Ranging Transmits electromagnetic pulses toward target. Tranmission rate is around 100 s pulses per second (318-1304 Hz). Short silent

More information

A new mesoscale NWP system for Australia

A new mesoscale NWP system for Australia A new mesoscale NWP system for Australia www.cawcr.gov.au Peter Steinle on behalf of : Earth System Modelling (ESM) and Weather&Environmental Prediction (WEP) Research Programs, CAWCR Data Assimilation

More information

Hail nowcast exploiting radar and satellite observations

Hail nowcast exploiting radar and satellite observations Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Hail nowcast exploiting radar and satellite observations Ulrich Hamann, Elena Leonarduzzi, Kristopher Bedka,

More information

An Algorithm to Nowcast Lightning Initiation and Cessation in Real-time

An Algorithm to Nowcast Lightning Initiation and Cessation in Real-time An Algorithm to Nowcast Initiation and Cessation in Real-time An Data Mining Model Valliappa 1,2 Travis Smith 1,2 1 Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma 2 Radar

More information

1.29 LIFE CYCLE OF CONVECTIVE CELLS WITH RAPID SCAN SATELLITE AND RADAR DATA IN THE EASTERN ALPINE REGION

1.29 LIFE CYCLE OF CONVECTIVE CELLS WITH RAPID SCAN SATELLITE AND RADAR DATA IN THE EASTERN ALPINE REGION 1.29 LIFE CYCLE OF CONVECTIVE CELLS WITH RAPID SCAN SATELLITE AND RADAR DATA IN THE EASTERN ALPINE REGION Friedrich Wölfelmaier 1, Veronika Zwatz-Meise 2 1 ZAMG, Regional center Styria, Graz, Austria,

More information

Aviation Hazards: Thunderstorms and Deep Convection

Aviation Hazards: Thunderstorms and Deep Convection Aviation Hazards: Thunderstorms and Deep Convection TREND Diagnosis of thunderstorm hazards using imagery Contents Satellite imagery Visible, infrared, water vapour Basic cloud identification Identifying

More information

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing Remote Sensing in Meteorology: Satellites and Radar AT 351 Lab 10 April 2, 2008 Remote Sensing Remote sensing is gathering information about something without being in physical contact with it typically

More information

Figure 5: Comparison between SAFIR warning and radar-based hail detection for the hail event of June 8, 2003.

Figure 5: Comparison between SAFIR warning and radar-based hail detection for the hail event of June 8, 2003. SAFIR WARNING : Expected risk Radar-based Probability of Hail 0915 0930 0945 1000 Figure 5: Comparison between SAFIR warning and radar-based hail detection for the hail event of June 8, 2003. Lightning

More information

J8.6 Lightning Meteorology I: An Introductory Course on Forecasting with Lightning Data

J8.6 Lightning Meteorology I: An Introductory Course on Forecasting with Lightning Data Zajac and Weaver (2002), Preprints, Symposium on the Advanced Weather Interactive Processing System (AWIPS), Orlando, FL, Amer. Meteor. Soc. J8.6 Lightning Meteorology I: An Introductory Course on Forecasting

More information

Nowcasting techniques in use for severe weather operation in NMC/CMA

Nowcasting techniques in use for severe weather operation in NMC/CMA WWRP NMRWG Buenos Aires Aug 2017 Nowcasting techniques in use for severe weather operation in NMC/CMA Jianjie WANG National Meteorological Center, CMA Cascading Weather Forecasting Process --- different

More information

J8.4 NOWCASTING OCEANIC CONVECTION FOR AVIATION USING RANDOM FOREST CLASSIFICATION

J8.4 NOWCASTING OCEANIC CONVECTION FOR AVIATION USING RANDOM FOREST CLASSIFICATION J8.4 NOWCASTING OCEANIC CONVECTION FOR AVIATION USING RANDOM FOREST CLASSIFICATION Huaqing Cai*, Cathy Kessinger, David Ahijevych, John Williams, Nancy Rehak, Daniel Megenhardt and Matthias Steiner National

More information

Near Real-time Cloud Classification, Mesoscale Winds, and Convective Initiation Fields from MSG Data

Near Real-time Cloud Classification, Mesoscale Winds, and Convective Initiation Fields from MSG Data Near Real-time Cloud Classification, Mesoscale Winds, and Convective Initiation Fields from MSG Data Wayne Feltz *, J. Mecikalski, and K. Bedka * Cooperative Institute of Meteorological Satellite Studies

More information

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY Eszter Lábó OMSZ-Hungarian Meteorological Service, Budapest, Hungary labo.e@met.hu

More information

SUPER-RAPID SCAN SATELLITE IMAGERY ANALYSIS OF TWO HAILSTORMS SAMPLED BY HAILSTONE

SUPER-RAPID SCAN SATELLITE IMAGERY ANALYSIS OF TWO HAILSTORMS SAMPLED BY HAILSTONE SUPER-RAPID SCAN SATELLITE IMAGERY ANALYSIS OF TWO HAILSTORMS SAMPLED BY HAILSTONE Jennifer M. Laflin* and Scott F. Blair NOAA/NWS Kansas City/Pleasant Hill, Missouri Chad Gravelle NOAA/NWS Operations

More information

0-6 hour Weather Forecast Guidance at The Weather Company. Steven Honey, Joseph Koval, Cathryn Meyer, Peter Neilley The Weather Company

0-6 hour Weather Forecast Guidance at The Weather Company. Steven Honey, Joseph Koval, Cathryn Meyer, Peter Neilley The Weather Company 1 0-6 hour Weather Forecast Guidance at The Weather Company Steven Honey, Joseph Koval, Cathryn Meyer, Peter Neilley The Weather Company TWC Forecasts: Widespread Adoption 2 0-6 Hour Forecast Details 3

More information

U. S. Contributions to COPS: Satellite-estimated Convective Initiation

U. S. Contributions to COPS: Satellite-estimated Convective Initiation U. S. Contributions to COPS: Satellite-estimated Convective Initiation John R. Mecikalski 1, Kristopher M. Bedka 2 Simon J. Paech 1, Todd A. Berendes 1, Wayne M. Mackenzie 1 1 Atmospheric Science Department

More information

Extracting probabilistic severe weather guidance from convection-allowing model forecasts. Ryan Sobash 4 December 2009 Convection/NWP Seminar Series

Extracting probabilistic severe weather guidance from convection-allowing model forecasts. Ryan Sobash 4 December 2009 Convection/NWP Seminar Series Extracting probabilistic severe weather guidance from convection-allowing model forecasts Ryan Sobash 4 December 2009 Convection/NWP Seminar Series Identification of severe convection in high-resolution

More information

Auto-Nowcast System Tom Saxen (July) Huaqing Cai (Aug) National Center for Atmospheric Research

Auto-Nowcast System Tom Saxen (July) Huaqing Cai (Aug) National Center for Atmospheric Research Auto-Nowcast System Tom Saxen (July) Huaqing Cai (Aug) National Center for Atmospheric Research Summer 2006 ATEC Forecaster Conference Photo courtesy of Greg Thompson Overview: Introductory comments on

More information

A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations

A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations Elisabetta Ricciardelli*, Filomena Romano*, Nico Cimini*, Frank Silvio Marzano, Vincenzo Cuomo* *Institute of Methodologies

More information

Cb-LIKE: thunderstorm forecasts up to 6 hrs with fuzzy logic

Cb-LIKE: thunderstorm forecasts up to 6 hrs with fuzzy logic Cb-LIKE: thunderstorm forecasts up to 6 hrs with fuzzy logic Martin Köhler DLR Oberpfaffenhofen 15th EMS/12th ECAM 07 11 September, Sofia, Bulgaria Long-term forecasts of thunderstorms why? -> Thunderstorms

More information

LIGHTNING ACTIVITY AND CHARGE STRUCTURE OF MICROBURST PRODUCING STORMS

LIGHTNING ACTIVITY AND CHARGE STRUCTURE OF MICROBURST PRODUCING STORMS LIGHTNING ACTIVITY AND CHARGE STRUCTURE OF MICROBURST PRODUCING STORMS Kristin M. Kuhlman, Travis M. Smith Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma and NOAA/National

More information

Thunderstorm Downburst Prediction: An Integrated Remote Sensing Approach. Ken Pryor Center for Satellite Applications and Research (NOAA/NESDIS)

Thunderstorm Downburst Prediction: An Integrated Remote Sensing Approach. Ken Pryor Center for Satellite Applications and Research (NOAA/NESDIS) Thunderstorm Downburst Prediction: An Integrated Remote Sensing Approach Ken Pryor Center for Satellite Applications and Research (NOAA/NESDIS) Topics of Discussion Thunderstorm Life Cycle Thunderstorm

More information

National Convective Weather Forecasts Cindy Mueller

National Convective Weather Forecasts Cindy Mueller National Convective Weather Forecasts Cindy Mueller National Center for Atmospheric Research Research Applications Program National Forecast Demonstration 2-4-6 hr Convection Forecasts Collaborative forecast

More information

METEOSAT CONVECTIVE INITIATION PRODUCT WITH AND WITHOUT CLOUD TRACKING - EXPERIENCES

METEOSAT CONVECTIVE INITIATION PRODUCT WITH AND WITHOUT CLOUD TRACKING - EXPERIENCES METEOSAT CONVECTIVE INITIATION PRODUCT WITH AND WITHOUT CLOUD TRACKING - EXPERIENCES Mária Putsay 1, Zsófia Kocsis 1, Marianne König 2, Ildikó Szenyán 1, Márta Diószeghy 1, André Simon 1 and Márk Rajnai

More information

7.26 THE NWS/NCAR MAN-IN-THE-LOOP (MITL) NOWCASTING DEMONSTRATION: FORECASTER INPUT INTO A THUNDERSTORM NOWCASTING SYSTEM

7.26 THE NWS/NCAR MAN-IN-THE-LOOP (MITL) NOWCASTING DEMONSTRATION: FORECASTER INPUT INTO A THUNDERSTORM NOWCASTING SYSTEM 7.26 THE NWS/NCAR MAN-IN-THE-LOOP (MITL) NOWCASTING DEMONSTRATION: FORECASTER INPUT INTO A THUNDERSTORM NOWCASTING SYSTEM Rita Roberts 1, Steven Fano 2, William Bunting 2, Thomas Saxen 1, Eric Nelson 1,

More information

Incorporation of SMOS Soil Moisture Data on Gridded Flash Flood Guidance for Arkansas Red River Basin

Incorporation of SMOS Soil Moisture Data on Gridded Flash Flood Guidance for Arkansas Red River Basin Incorporation of SMOS Soil Moisture Data on Gridded Flash Flood Guidance for Arkansas Red River Basin Department of Civil and Environmental Engineering, The City College of New York, NOAA CREST Dugwon

More information

B.W.Golding * Met Office, Exeter, UK

B.W.Golding * Met Office, Exeter, UK 7.35 A NEW APPROACH TO NOWCASTING AT THE MET OFFICE B.W.Golding * Met Office, Exeter, UK 1. BACKGROUND * The Nimrod system was introduced into operational use in the Met Office in 1996 (Golding, 1998).

More information

The Nowcasting Demonstration Project for London 2012

The Nowcasting Demonstration Project for London 2012 The Nowcasting Demonstration Project for London 2012 Susan Ballard, Zhihong Li, David Simonin, Jean-Francois Caron, Brian Golding, Met Office, UK Introduction The success of convective-scale NWP is largely

More information

Inner core dynamics: Eyewall Replacement and hot towers

Inner core dynamics: Eyewall Replacement and hot towers Inner core dynamics: Eyewall Replacement and hot towers FIU Undergraduate Hurricane Internship Lecture 4 8/13/2012 Why inner core dynamics is important? Current TC intensity and structure forecasts contain

More information

Warning procedures for extreme events in the Emilia-Romagna Region

Warning procedures for extreme events in the Emilia-Romagna Region Warning procedures for extreme events in the Emilia-Romagna Region Anna Fornasiero, Miria Celano, Roberta Amorati, Virginia Poli and Pier Paolo Alberoni Arpa Emilia-Romagna Hydro-Meteo-Climate Service,

More information

FAA Weather Research Plans

FAA Weather Research Plans FAA Weather Research Plans Presented to: Friends /Partners in Aviation Weather Vision Forum By: Ray Moy FAA Aviation Weather Office Date: Aviation Weather Research Program (AWRP) Purpose: Applied Research

More information

DEVELOPMENT OF CELL-TRACKING ALGORITHM IN THE CZECH HYDROMETEOROLOGICAL INSTITUTE

DEVELOPMENT OF CELL-TRACKING ALGORITHM IN THE CZECH HYDROMETEOROLOGICAL INSTITUTE DEVELOPMENT OF CELL-TRACKING ALGORITHM IN THE CZECH HYDROMETEOROLOGICAL INSTITUTE H. Kyznarová 1 and P. Novák 2 1 Charles University, Faculty of Mathematics and Physics, kyznarova@chmi.cz 2 Czech Hydrometeorological

More information

Long term analysis of convective storm tracks based on C-band radar reflectivity measurements

Long term analysis of convective storm tracks based on C-band radar reflectivity measurements Long term analysis of convective storm tracks based on C-band radar reflectivity measurements Edouard Goudenhoofdt, Maarten Reyniers and Laurent Delobbe Royal Meteorological Institute of Belgium, 1180

More information

CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA

CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA CHARACTERISATION OF STORM SEVERITY BY USE OF SELECTED CONVECTIVE CELL PARAMETERS DERIVED FROM SATELLITE DATA Piotr Struzik Institute of Meteorology and Water Management, Satellite Remote Sensing Centre

More information

Thunderstorm Forecasting and Warnings in the US: Applications to the Veneto Region

Thunderstorm Forecasting and Warnings in the US: Applications to the Veneto Region Thunderstorm Forecasting and Warnings in the US: Applications to the Veneto Region Bill Conway Vice President Weather Decision Technologies Norman, Oklahoma, USA Andrea Rossa ARPAV Lead Scientist Centre

More information

Talking Points for VISITview Lesson The Satellite Rainfall Hydro-Estimator

Talking Points for VISITview Lesson The Satellite Rainfall Hydro-Estimator Talking Points for VISITview Lesson The Satellite Rainfall Hydro-Estimator 1. This presentation will focus on the HYDRO-ESTIMATOR, which estimates rainfall amounts based on satellite imagery. This slide

More information

Generating Multi-Sensor Precipitation Estimates over Radar Gap Areas

Generating Multi-Sensor Precipitation Estimates over Radar Gap Areas Generating Multi-Sensor Precipitation Estimates over Radar Gap Areas SHAYESTEH E. MAHANI and REZA KHANBILVARDI Civil Engineering Department City University of New York (CUNY) & Cooperative Remote Sensing

More information

Identification of Predictors for Nowcasting Heavy Rainfall In Taiwan --------------------- Part II: Storm Characteristics and Nowcasting Applications Challenges in Developing Nowcasting Applications for

More information

Low-end derecho of 19 August 2017

Low-end derecho of 19 August 2017 Low-end derecho of 19 August 2017 By Richard H. Grumm and Charles Ross National Weather Service State College, PA 1. Overview A cluster of thunderstorms developed in eastern Ohio around 1800 UTC on 19

More information

Probabilistic Quantitative Precipitation Forecasts for Tropical Cyclone Rainfall

Probabilistic Quantitative Precipitation Forecasts for Tropical Cyclone Rainfall Probabilistic Quantitative Precipitation Forecasts for Tropical Cyclone Rainfall WOO WANG CHUN HONG KONG OBSERVATORY IWTCLP-III, JEJU 10, DEC 2014 Scales of Atmospheric Systems Advection-Based Nowcasting

More information

SATELLITE SIGNATURES ASSOCIATED WITH SIGNIFICANT CONVECTIVELY-INDUCED TURBULENCE EVENTS

SATELLITE SIGNATURES ASSOCIATED WITH SIGNIFICANT CONVECTIVELY-INDUCED TURBULENCE EVENTS SATELLITE SIGNATURES ASSOCIATED WITH SIGNIFICANT CONVECTIVELY-INDUCED TURBULENCE EVENTS Kristopher Bedka 1, Wayne Feltz 1, John Mecikalski 2, Robert Sharman 3, Annelise Lenz 1, and Jordan Gerth 1 1 Cooperative

More information

Which AMVs for which model? Chairs: Mary Forsythe, Roger Randriamampianina IWW14, 24 April 2018

Which AMVs for which model? Chairs: Mary Forsythe, Roger Randriamampianina IWW14, 24 April 2018 Which AMVs for which model? Chairs: Mary Forsythe, Roger Randriamampianina IWW14, 24 April 2018 Thanks to Regis Borde, EUMETSAT James Cotton, Met Office Javier Garcia-Pereda, NWC SAF Graeme Kelly, Met

More information

THUNDERSTORM LIGHTNING DATA

THUNDERSTORM LIGHTNING DATA THUNDERSTORM EVOLUTION ANALYSIS AND ESTIMATION USING RADAR AND TOTAL LIGHTNING DATA Jianhua Dai 1,2 *, Yuan Wang 1, Lei Chen 2, Lan Tao 2, Hong Lin 2 1. Department of Atmospheric Sciences, Key Laboratory

More information

Synergie PC Updates and Plans. A. Lasserre-Bigorry, B. Benech M-F Voidrot, & R. Giraud

Synergie PC Updates and Plans. A. Lasserre-Bigorry, B. Benech M-F Voidrot, & R. Giraud Synergie PC Updates and Plans A. Lasserre-Bigorry, B. Benech M-F Voidrot, & R. Giraud 1 2 3 4 Introduction Migration to PC-Linux Synergie 4.0 features Perspectives for 2006 ECMWF 10 th Workshop on Meteorological

More information

EUMETSAT Hydrological SAF H05 product development at CNMCA

EUMETSAT Hydrological SAF H05 product development at CNMCA EUMETSAT Conference 2013 Session 3 - Quantitative applications for nowcasting Poster Presentation EUMETSAT Hydrological SAF H05 product development at CNMCA Antonio Vocino, Valentina Scappiti, Daniele

More information

Multi Radar Multi Sensor NextGen Weather Program. Presentation materials sourced from: Ken Howard HydroMet Research Group NSSL Warning R&D Division

Multi Radar Multi Sensor NextGen Weather Program. Presentation materials sourced from: Ken Howard HydroMet Research Group NSSL Warning R&D Division Multi Radar Multi Sensor NextGen Weather Program Presentation materials sourced from: Ken Howard HydroMet Research Group NSSL Warning R&D Division What is Multiple Radar Multi Sensor System () is the world

More information

Severe storms over the Mediterranean Sea: A satellite and model analysis

Severe storms over the Mediterranean Sea: A satellite and model analysis National Research Council of Italy Severe storms over the Mediterranean Sea: A satellite and model analysis V. Levizzani, S. Laviola, A. Malvaldi, M. M. Miglietta, and E. Cattani 6 th International Precipitation

More information

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager 1 EUMETSAT SAF NETWORK Lothar Schüller, EUMETSAT SAF Network Manager EUMETSAT ground segment overview METEOSAT JASON-2 INITIAL JOINT POLAR SYSTEM METOP NOAA SATELLITES CONTROL AND DATA ACQUISITION FLIGHT

More information

Preliminary results. Leonardo Calvetti, Rafael Toshio, Flávio Deppe and Cesar Beneti. Technological Institute SIMEPAR, Curitiba, Paraná, Brazil

Preliminary results. Leonardo Calvetti, Rafael Toshio, Flávio Deppe and Cesar Beneti. Technological Institute SIMEPAR, Curitiba, Paraná, Brazil HIGH RESOLUTION WRF SIMULATIONS FOR WIND GUST EVENTS Preliminary results Leonardo Calvetti, Rafael Toshio, Flávio Deppe and Cesar Beneti Technological Institute SIMEPAR, Curitiba, Paraná, Brazil 3 rd WMO/WWRP

More information

COMBINATION OF SATELLITE PRECIPITATION ESTIMATES AND RAIN GAUGE FOR HIGH SPATIAL AND TEMPORAL RESOLUTIONS INTRODUCTION

COMBINATION OF SATELLITE PRECIPITATION ESTIMATES AND RAIN GAUGE FOR HIGH SPATIAL AND TEMPORAL RESOLUTIONS INTRODUCTION COMBINATION OF SATELLITE PRECIPITATION ESTIMATES AND RAIN GAUGE FOR HIGH SPATIAL AND TEMPORAL RESOLUTIONS Ferreira, Rute Costa¹ ; Herdies, D. L.¹; Vila, D.A.¹; Beneti, C.A. A.² ¹ Center for Weather Forecasts

More information

Validation Report for Precipitation products from Cloud Physical Properties (PPh-PGE14: PCPh v1.0 & CRPh v1.0)

Validation Report for Precipitation products from Cloud Physical Properties (PPh-PGE14: PCPh v1.0 & CRPh v1.0) Page: 1/26 Validation Report for Precipitation SAF/NWC/CDOP2/INM/SCI/VR/15, Issue 1, Rev. 0 15 July 2013 Applicable to SAFNWC/MSG version 2013 Prepared by AEMET Page: 2/26 REPORT SIGNATURE TABLE Function

More information

TIFS DEVELOPMENTS INSPIRED BY THE B08 FDP. John Bally, A. J. Bannister, and D. Scurrah Bureau of Meteorology, Melbourne, Victoria, Australia

TIFS DEVELOPMENTS INSPIRED BY THE B08 FDP. John Bally, A. J. Bannister, and D. Scurrah Bureau of Meteorology, Melbourne, Victoria, Australia P13B.11 TIFS DEVELOPMENTS INSPIRED BY THE B08 FDP John Bally, A. J. Bannister, and D. Scurrah Bureau of Meteorology, Melbourne, Victoria, Australia 1. INTRODUCTION This paper describes the developments

More information

IMPACT OF DIFFERENT MICROPHYSICS SCHEMES AND ADDITIONAL SURFACE OBSERVATIONS ON NEWS-E FORECASTS

IMPACT OF DIFFERENT MICROPHYSICS SCHEMES AND ADDITIONAL SURFACE OBSERVATIONS ON NEWS-E FORECASTS IMPACT OF DIFFERENT MICROPHYSICS SCHEMES AND ADDITIONAL SURFACE OBSERVATIONS ON NEWS-E FORECASTS Francesca M. Lappin 1, Dustan M. Wheatley 2,3, Kent H. Knopfmeier 2,3, and Patrick S. Skinner 2,3 1 National

More information

Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia

Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia 15B.1 RADAR RAINFALL ESTIMATES AND NOWCASTS: THE CHALLENGING ROAD FROM RESEARCH TO WARNINGS Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia 1. Introduction Warnings are

More information

NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS

NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS David D NOAA / Earth System Research Laboratory / Global Systems Division Nowcasting and Mesoscale Research Working Group Meeting World Meteorological

More information

WMO Coordination Group on Satellite Data Requirements for Region III and IV Sept 5-8, 2016 Willemstad, Curaçao

WMO Coordination Group on Satellite Data Requirements for Region III and IV Sept 5-8, 2016 Willemstad, Curaçao WMO Coordination Group on Satellite Data Requirements for Region III and IV Sept 5-8, 2016 Willemstad, Curaçao 1. Current Satellite Reception 2. Preparation for Next-Gen GOES-R JPSS 3. Satellite Data Applications

More information

STATUS AND DEVELOPMENT OF SATELLITE WIND MONITORING BY THE NWP SAF

STATUS AND DEVELOPMENT OF SATELLITE WIND MONITORING BY THE NWP SAF STATUS AND DEVELOPMENT OF SATELLITE WIND MONITORING BY THE NWP SAF Mary Forsythe (1), Antonio Garcia-Mendez (2), Howard Berger (1,3), Bryan Conway (4), Sarah Watkin (1) (1) Met Office, Fitzroy Road, Exeter,

More information

Introduction to the NWC SAF

Introduction to the NWC SAF Introduction to the NWC SAF NWC SAF Event Week EUMeTrain course 18-22 November, online P. Fernández 1 Where are you listening from? Contents SAF Network scope NWC SAF Overview Products Next versions 2014

More information

Final Report. We will discuss the project accomplishments in two sub sections, reflecting the two major efforts given in Section 1.

Final Report. We will discuss the project accomplishments in two sub sections, reflecting the two major efforts given in Section 1. Final Report to Cooperative Program for Operational Meteorology, Education and Training (COMET) University: University of Illinois in Urbana Champaign Name of University Researcher Preparing Report: David

More information

ENVIRONMENTAL ANALYSIS OF GOES-R PROVING GROUND CONVECTION INITIATION FORECASTING ALGORITHMS

ENVIRONMENTAL ANALYSIS OF GOES-R PROVING GROUND CONVECTION INITIATION FORECASTING ALGORITHMS University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Sciences Earth and Atmospheric Sciences, Department of Fall 12-6-2013 ENVIRONMENTAL

More information

CAS & CAeM Aviation Research and Demonstration Project Paris-CDG airport

CAS & CAeM Aviation Research and Demonstration Project Paris-CDG airport World Meteorological Organization Working together in weather, climate and water WMO CAS & CAeM Aviation Research and Demonstration Project Paris-CDG airport WMO www.wmo.int Paris-CDG airport Mid-latitude

More information

7.17 RAPIDS A NEW RAINSTORM NOWCASTING SYSTEM IN HONG KONG

7.17 RAPIDS A NEW RAINSTORM NOWCASTING SYSTEM IN HONG KONG 7.17 RAPIDS A NEW RAINSTORM NOWCASTING SYSTEM IN HONG KONG Li Ping-Wah *, Wong Wai-Kin and Edwin S.T. Lai Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong 1. INTRODUCTION and the numerical forecast

More information

MESOSCALE WINDS IN VICINITY OF CONVECTION AND WINTER STORMS. Robert M. Rabin

MESOSCALE WINDS IN VICINITY OF CONVECTION AND WINTER STORMS. Robert M. Rabin MESOSCALE WINDS IN VICINITY OF CONVECTION AND WINTER STORMS Robert M. Rabin NOAA/National Severe Storms Lab (NSSL), Norman, OK Cooperative Institute for Meteorological Satellite Studies (CIMSS), Madison,

More information

Applications of future GEO advanced IR sounder for high impact weather forecasting demonstration with regional OSSE

Applications of future GEO advanced IR sounder for high impact weather forecasting demonstration with regional OSSE Applications of future GEO advanced IR sounder for high impact weather forecasting demonstration with regional OSSE Jun Li @, Tim Schmit &, Zhenglong Li @, Feng Zhu @*, Pei Wang @*, Agnes Lim @, and Robert

More information

Himawari-8 BUFR Development for Winds Processing and Radiances - Packaging for Algorithm Integration Team (AIT)

Himawari-8 BUFR Development for Winds Processing and Radiances - Packaging for Algorithm Integration Team (AIT) Sandy Supplemental Grant Recipient Quarterly Progress Report Himawari-8 BUFR Development for Winds Processing and Radiances - Packaging for Algorithm Integration Team (AIT) Award Number: NA14NWS4830052

More information

FLYSAFE meteorological hazard nowcasting driven by the needs of the pilot

FLYSAFE meteorological hazard nowcasting driven by the needs of the pilot FLYSAFE meteorological hazard nowcasting driven by the needs of the pilot R. W. Lunnon, Met Office, Exeter, EX1 3PB, United Kingdom., Thomas Hauf, Thomas Gerz, and Patrick Josse. 1. Introduction The FLYSAFE

More information